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Abstract: The unstable title compound has been characterized for the first time. Its melting point,
UV, IR, 1H and 13C-NMR and high-resolution mass spectra are presented. The X-ray structure
has also been determined and shows a rather long C–Br bond perpendicular to the otherwise
planar molecule.
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1. Introduction

In the course of the synthesis of a natural product, we recently required 2,6-
dimethoxy benzyl bromide 1 and were surprised to find that this simple aromatic
compound has apparently not been characterised in any way before. The first mention
of the compound in the literature seems to be in 1988, when it was briefly evaluated
together with other methoxybenzyl bromides as a selective OH-protecting reagent in
carbohydrate chemistry [1]. Since then, it has found increasing use both for this appli-
cation [2,3], and in construction of new ligands [4], organocatalysts [5], antibacterial
agents [6], synthetic intermediates [7], insecticides [8] and anticancer agents [9]. How-
ever, in all these cases, it is prepared and used immediately without any attempt at
isolation or characterisation. The method of preparation is most commonly by reaction
of the corresponding alcohol 2 with phosphorus tribromide [6], although treatment of
2 with hydrobromic acid [8], and radical bromination of 2,6-dimethoxytoluene 3 with
N-bromosuccinimide [2] have also been used (Scheme 1).
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1. Introduction 
In the course of the synthesis of a natural product, we recently required 2,6-di-

methoxybenzyl bromide 1 and were surprised to find that this simple aromatic compound 
has apparently not been characterised in any way before. The first mention of the com-
pound in the literature seems to be in 1988, when it was briefly evaluated together with 
other methoxybenzyl bromides as a selective OH-protecting reagent in carbohydrate 
chemistry [1]. Since then, it has found increasing use both for this application [2,3], and in 
construction of new ligands [4], organocatalysts [5], antibacterial agents [6], synthetic in-
termediates [7], insecticides [8] and anticancer agents [9]. However, in all these cases, it is 
prepared and used immediately without any attempt at isolation or characterisation. The 
method of preparation is most commonly by reaction of the corresponding alcohol 2 with 
phosphorus tribromide [6], although treatment of 2 with hydrobromic acid [8], and radi-
cal bromination of 2,6-dimethoxytoluene 3 with N-bromosuccinimide [2] have also been 
used (Scheme 1). 
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8 has a similar lack of characterisation to 1, being mentioned in two patents [18,19] as 
being generated from the corresponding alcohol and PBr3 and used immediately without 
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Scheme 1. Synthetic routes to compound 1.

This situation is in marked contrast to most of the other isomeric dimethoxybenzyl
bromides (Figure 1), where both the 2,3-isomer 4 [10] and the 3,4-isomer 5 [11,12] have
been known since the 1920s and have been thoroughly characterised using all the main
analytical and spectroscopic methods. The 2,5-isomer 6 was first reported in 1953 [13]
and full spectra were subsequently described [14]. The 3,5-isomer 7 was first prepared
in 1962 [15] and is the only one of the six isomers to be characterised by X-ray diffraction
to date, with both powder [16] and single crystal [17] data available. Interestingly,
the 2,4-isomer 8 has a similar lack of characterisation to 1, being mentioned in two
patents [18,19] as being generated from the corresponding alcohol and PBr3 and used
immediately without isolation, and in terms of data, only the 1H-NMR chemical shift for
its CH2 is available [20].
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Figure 1. The other isomeric dimethoxybenzyl bromides. 

We here describe the preparation, isolation and full characterisation of compound 1 
including its melting point, UV, IR, 1H and 13C-NMR spectra, HRMS and X-ray structure 
determination. Some observations on the stability and decomposition of this reactive com-
pound are also documented. 

2. Results 
Reaction of 2,6-dimethoxybenzyl alcohol, prepared by esterification then LiAlH4 re-

duction of commercially available 2,6-dimethoxybenzoic acid [21], with 0.33 equivalents 
of PBr3 in diethyl ether at 0 °C, followed by aqueous work-up, drying of the ether extract 
and evaporation gave the target compound 1 as colourless crystals, mp 65–67 °C. How-
ever, it was quickly discovered that the compound decomposed over a period of hours to 
days at room temperature to give a dark purple polymeric material, insoluble in any com-
mon solvents. The decomposition seemed to be accelerated by light, heat or contact with 
a nickel spatula and, once initiated, seemed to be autocatalytic so that, once it started, it 
accelerated rapidly. Despite this, samples of the compound have been stored in a foil-
covered flask in a refrigerator at 5 °C for several months without decomposition. 

The UV, IR and 1H and 13C-NMR spectra could be recorded by working rapidly and 
with suitable precautions, and the data documented in the Experimental Section and il-
lustrated in the Supplementary Material are in agreement with expectation and also with 
those for the isomeric compounds of Figure 1. In particular, the UV spectrum consisted of 
a series of three shoulders at 291, 278 and 246 nm of steadily increasing intensity, while 
the most prominent peak in the IR spectrum was at 1088 cm–1, attributable to aromatic C–
Br stretch. The NMR spectra showed the expected shielding effect of OMe with 3/5 posi-
tions giving signals at δH 6.54 and δC 103.7, respectively. The quaternary carbon at C-1 
gave a particularly weak signal at δC 114.4 ppm. High-resolution mass spectrometry gave 
a signal at m/z 151, corresponding to M+–Br and showing good agreement with the theo-
retical value. This gives some hint as to the mechanism of decomposition since the carbo-
cation 9 formed by ionisation with loss of Br– is significantly stabilised by the two OMe 
groups (Scheme 2), and we speculate that the main mode of decomposition may be bro-
mide mediated O-demethylation of 9 to give the ortho-quinomethane species 10, which 
then polymerises. 

 
Scheme 2. Suggested mode of decomposition for 1. 
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Figure 1. The other isomeric dimethoxybenzyl bromides.

We here describe the preparation, isolation and full characterisation of compound 1
including its melting point, UV, IR, 1H and 13C-NMR spectra, HRMS and X-ray structure
determination. Some observations on the stability and decomposition of this reactive
compound are also documented.

2. Results

Reaction of 2,6-dimethoxybenzyl alcohol, prepared by esterification then LiAlH4
reduction of commercially available 2,6-dimethoxybenzoic acid [21], with 0.33 equivalents
of PBr3 in diethyl ether at 0 ◦C, followed by aqueous work-up, drying of the ether extract
and evaporation gave the target compound 1 as colourless crystals, mp 65–67 ◦C. However,
it was quickly discovered that the compound decomposed over a period of hours to days
at room temperature to give a dark purple polymeric material, insoluble in any common
solvents. The decomposition seemed to be accelerated by light, heat or contact with a nickel
spatula and, once initiated, seemed to be autocatalytic so that, once it started, it accelerated
rapidly. Despite this, samples of the compound have been stored in a foil-covered flask in
a refrigerator at 5 ◦C for several months without decomposition.

The UV, IR and 1H and 13C-NMR spectra could be recorded by working rapidly
and with suitable precautions, and the data documented in the Experimental Section and
illustrated in the Supplementary Material are in agreement with expectation and also with
those for the isomeric compounds of Figure 1. In particular, the UV spectrum consisted of
a series of three shoulders at 291, 278 and 246 nm of steadily increasing intensity, while
the most prominent peak in the IR spectrum was at 1088 cm–1, attributable to aromatic
C–Br stretch. The NMR spectra showed the expected shielding effect of OMe with 3/5
positions giving signals at δH 6.54 and δC 103.7, respectively. The quaternary carbon at
C-1 gave a particularly weak signal at δC 114.4 ppm. High-resolution mass spectrometry
gave a signal at m/z 151, corresponding to M+–Br and showing good agreement with the
theoretical value. This gives some hint as to the mechanism of decomposition since the
carbocation 9 formed by ionisation with loss of Br– is significantly stabilised by the two
OMe groups (Scheme 2), and we speculate that the main mode of decomposition may be
bromide mediated O-demethylation of 9 to give the ortho-quinomethane species 10, which
then polymerises.
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Crystals suitable for X-ray diffraction were obtained directly from the freshly prepared
material and quickly mounted while still cold for data collection at 93 K. The resulting
molecular structure (Figure 2) shows the two methoxy groups as essentially coplanar with
the benzene ring while the CH2–Br bond is essentially orthogonal to it. The arrangement
of the four molecules in the unit cell is also shown in Figure 2.
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Figure 2. (left) Molecular structure of 1 with anisotropic displacement ellipsoids drawn at 50% probability level and
showing numbering system used. (right) View of unit cell along the b axis showing packing.

A good number of similar compounds have been crystallographically characterised
and a comparison of the key parameters for the Ar–CH2–Br group for a selection of these
(Figure 3) is presented in Table 1. As compared to the unsubstituted benzyl bromide 9
compound 1 shows lengthening of both ring–CH2 and CH2–Br bonds and a torsion angle
much closer to 90◦. In considering the data for the isomeric 3,5-dimethoxy compound 7, it
should be noted that the first set of data [16] is derived from a powder diffraction study,
and the discrepancy between this and the single-crystal data [17], as well as all the other
values in Table 1, is likely to be due to systematic errors linked to the different technique.
The situation for the apparently good model compound 10 is complicated by the fact that
there are two separate crystal forms containing, respectively, three and two independent
molecules in the unit cell and each molecule has all three CH2Br groups non-equivalent,
thus delivering a total of 15 values for each parameter, which actually span the full range
of values exhibited by the other compounds in the Table. Nonetheless, it can be seen that
the parameters listed for 1 are broadly in line with those of closely similar compounds. but
the CH2–Br bond length is among the longest and the ring–CH2–Br torsion angle is among
the closest to 90◦.

In summary, the simple but unstable compound 2,6-dimethoxybenzyl bromide has
been characterised for the first time, with its melting point, UV, IR, 1H and 13C-NMR spectra
recorded. A correct HRMS measurement was obtained for M+–Br. The X-ray structure was
also determined and shows structural parameters in good agreement with similar highly
substituted benzyl bromides.
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Table 1. Geometric parameters for 1 and other comparable benzyl bromides.

Compd Length
C–CH2 (Å)

Length
CH2–Br (Å)

Angle
C–CH2–Br ◦

Torsion Angle
Ring/CH2–Br ◦ Ref

1 1.488 (6) 1.992 (4) 112.4 (3) 88.67 this work
9 1.465 (14) 1.971 (11) 110.3 (6) 77.07 [22]
7a a 1.466 (2) 1.908 (1) 116.68 (8) 75.65 [16]
7b 1.498 (4) 1.987 (3) 110.8 (2) 75.82 [17]
10a b 1.475 (4)–1.491 (5) 1.964 (4)–1.980 (2) 111.2 (2)–113.4 (2) 78.57–89.93 [23]
10b c 1.485 (4)–1.498 (6) 1.972 (4)–1.988 (3) 110.7 (2)–114.2 (2) 76.64–89.86 [24]
11 1.495 (3) 1.979 (3) 111.6 (2) 89.38 [25]

1.491 (3) 1.984 (2) 113.1 (2) 83.19
12 1.491 (3) 1.987 (2) 112.0 (1) 83.43 [26]

1.493 (2) 1.978 (2) 111.2 (1) 79.42
13 1.49 (1) 1.947 (8) 111.4 (5) 81.47 [27]

1.50 (1) 1.965 (8) 110.4 (5) 84.45
14 1.49 (1) 1.991 (7) 112.3 (5) 82.45 [28]
15 1.497 (4) 1.975 (3) 110.1 (2) 78.99 [29]

a powder diffraction; b range of 9 values; c range of 6 values.

3. Experimental Section

Melting points were recorded on a Reichert hot-stage microscope (Reichert, Vienna,
Austria) and are uncorrected. UV spectra were recorded using a Shimadzu (Milton Keynes,
UK) instrument and IR spectra were recorded on a Perkin-Elmer 1420 instrument (Perkin-
Elmer, Waltham, MA, USA). NMR spectra were recorded using a Bruker (Bruker, Billerica,
MA, USA) AV instrument at 300 MHz (1H) and a Bruker AV III instrument at 125.8 MHz
(13C) in CDCl3 with chemical shifts given with respect to Me4Si and coupling constants in
Hz. HRMS was recorded using a Thermo Fisher Exactive Orbitrap instrument in ESI mode.

2,6-Dimethoxybenzyl Bromide (1)

A solution of 2,6-dimethoxybenzyl alcohol [21] (1.0 g, 6.53 mmol) in dry diethyl ether
(20 mL) was stirred at 0 ◦C while PBr3 (0.21 mL, 2.18 mmol) was added dropwise. After
stirring for 1 h, methanol (2 mL) was added, followed by water (20 mL). The organic later
was separated and the aqueous layer extracted with Et2O (20 mL). The combined organic
extracts were dried (MgSO4) and evaporated under reduced pressure to give the product
(1.32 g, 87%) as colourless crystals, mp 65–67 ◦C, which were stored at 5 ◦C in the dark;
UV/Vis (MeCN): λmax (log ε) 291 (3.39), 278 (3.50), 246 (3.86) nm; IR (ATR): 3273, 1734,
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1593, 1474, 1433, 1258, 1150, 1107, 1088, 1032, 781, 735, 590, 523 cm−1; 1H-NMR (300 MHz,
CDCl3): 7.24 (1H, t, J = 8.4 Hz, 4-CH), 6.54 (2H, d, J = 8.4 Hz, 3,5-H), 4.70 (2H, s, CH2Br),
3.89 (6H, s, 2 OCH3); 13C-NMR (126 MHz, CDCl3): 158.5 (2C, C-2,6), 130.1 (CH, C-4), 114.4
(C, C-1), 103.7 (2CH, C-3,5), 55.9 (2 OCH3), 23.7 (CH2); HRMS (ESI): Calcd. for C9H11O2
(M–Br): 151.0759. Found: 151.0752.

The structure was determined on a Rigaku XtaLAB 200 diffractometer using graphite
monochromated Mo Kα radiation λ = 0.71075 Å.

Crystal data for C9H11BrO2, M = 231.09 g mol−1, colourless prism, crystal dimensions
0.18 × 0.10 × 0.02 mm, orthorhombic, space group Pna21 (No. 33), a = 13.297 (8), b = 5.033
(3), c = 13.789 (9) Å, α = β = γ = 90.00◦, V = 922.8 (10) Å3, Z = 4, Dcalc = 1.663 g cm−3, T = 93 K,
R1 = 0.0269, Rw2 = 0.0654 for 1554 reflections with I > 2σ (I), and 111 variables, Rint 0.0537,
goodness of fit on F2 1.084. Data have been deposited at the Cambridge Crystallographic
Data Centre as CCDC 2097451. The data can be obtained free of charge from the Cambridge
Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/getstructures. The structure
was solved by direct methods and refined by full-matrix least-squares against F2 (SHELXL
Version 2018/3 [30]).

Supplementary Materials: The following are available online, Figure S1: UV spectrum of 1; Figure S2:
IR spectrum of 1; Figure S3: 1H-NMR spectrum of 1; Figure S4: 13C-NMR spectrum of 1; Figure S5:
HRMS measurement on 1.
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