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Abstract: 2,2-Bis(phenylselanyl)-1-(p-tolyl)vinyl 2-oxo-2-(p-tolyl)acetate was synthesized via the
reaction of p-tolylacetylene with diphenyl diselenide and benzoyl peroxide in benzene under at-
mospheric conditions. The molecular structure of the synthesized compound was evaluated using
single-crystal X-ray analysis and spectral analyses. The process reported here provides a rare ex-
ample of the direct and selective transformation of a terminal alkyne to the corresponding geminal
diseleno-substituted alkene.
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1. Introduction

Atomically efficient and selective addition reaction of heteroatom compounds to
carbon−carbon unsaturated bonds is one of the most valuable synthetic reactions [1–12].
The addition of heteroatom compounds to alkynes affords the corresponding alkenyl
heteroatoms, which are typically present not only in synthetic intermediates but also in a
variety of natural products and functional molecules [13–18].

During the course of our study on the simultaneous introduction of different het-
eroatom groups into alkynes [19–26], we successfully developed a binary system composed
of benzoyl peroxide [(PhCOO)2; BPO] and diphenyl diselenide [(PhSe)2] for the selective
selenation of alkynes [26]. Specifically, in the case of internal alkynes, the stereoselective
benzoyloxyselenation reaction yielded the corresponding β-(benzyloxy)alkenyl selenides,
whereas terminal alkynes were converted to alkynyl selenides via a C(sp)–H substitution
reaction with (PhSe)2 (Scheme 1). Herein, we report a unique multi-coupling reaction of a
terminal alkyne (p-tolylacetylene, 1a), BPO, and (PhSe)2 to produce a novel 1,2-diketone
compound (2a) containing a geminal diseleno-substituted alkene moiety (see, Scheme 2).
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1. Introduction 
Atomically efficient and selective addition reaction of heteroatom compounds to car-

bon−carbon unsaturated bonds is one of the most valuable synthetic reactions [1–12]. The 
addition of heteroatom compounds to alkynes affords the corresponding alkenyl heteroa-
toms, which are typically present not only in synthetic intermediates but also in a variety 
of natural products and functional molecules [13–18]. 

During the course of our study on the simultaneous introduction of different het-
eroatom groups into alkynes [19–26], we successfully developed a binary system com-
posed of benzoyl peroxide [(PhCOO)2; BPO] and diphenyl diselenide [(PhSe)2] for the se-
lective selenation of alkynes [26]. Specifically, in the case of internal alkynes, the stereose-
lective benzoyloxyselenation reaction yielded the corresponding β-(benzyloxy)alkenyl 
selenides, whereas terminal alkynes were converted to alkynyl selenides via a C(sp)–H 
substitution reaction with (PhSe)2 (Scheme 1). Herein, we report a unique multi-coupling 
reaction of a terminal alkyne (p-tolylacetylene, 1a), BPO, and (PhSe)2 to produce a novel 
1,2-diketone compound (2a) containing a geminal diseleno-substituted alkene moiety 
(see, Scheme 2). 
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Scheme 1. Selective selenation of alkynes based on a BPO/(PhSe)2 binary system. 
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Scheme 1. Selective selenation of alkynes based on a BPO/(PhSe)2 binary system.
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Scheme 2. Synthesis of 2a through the reaction of 1a with (PhSe)2 and BPO. 

2. Results and Discussion 
During the reaction of p-tolylacetylene (1a) with (PhSe)2 (1 equiv) and BPO (2 equiv) 

in benzene, the title coupling product, 2a, was formed in 60% yield. The structure of this 
product was determined using X-ray diffraction (Scheme 2 and Figure 1) and several spec-
tral analyses (the 1H, 13C{1H} and 77Se{1H} NMR spectra of 2a are included in the Supple-
mentary Materials). As indicated in Scheme 2, the molecular structure of 2a consists of 
one molecule of (PhSe)2 and two molecules of the terminal alkyne 1a. 

 
Figure 1. Crystal structure of 2a with numbered atoms. Ellipsoids are shown at the 50% probability 
level. Selected interatomic distances (Å) and angles (deg): Se1−C1, 1.9178(17); Se1−C10, 1.916(2); 
Se2−C1, 1.9021(19); Se2−C16, 1.9188(19); O1−C2, 1.420(2); O1−C22, 1.360(2); O2−C22, 1.195(2); 
O3−C23, 1.215(2); C1−C2, 1.338(3); C2−C3, 1.482(3); C22−C23, 1.546(3); C23−C24, 1.478(3); 
C1−Se1−C10, 99.28(8); C1−Se2−C16, 101.23(8); C2−O1−C22, 116.88(14); Se1−C1−Se2, 120.61(10); 
Se1−C1−C2, 120.87(14); Se2−C1−C2, 118.38(13); O1−C2−C1, 119.30(16); O1−C2−C3, 111.41(15); 
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O3−C23−C22, 117.29(16); O3−C23−C24, 123.59(17); C22−C23−C24, 119.09(16). 

The multi-coupling reaction of 1a, BPO, and (PhSe)2 was further evaluated under 
various reaction conditions (Table 1). Increasing the amount of (PhSe)2 did not induce a 
significant increase in the yield of 2a, whereas byproducts 3a and 4a were formed (entry 
1 vs. entry 2). Prolonging the reaction time was also ineffective in improving the yield of 
2a (entry 1 vs. entry 3). When the amount of (PhSe)2 was reduced to 0.10 mmol and an 
excess amount (0.60 mmol) of BPO was introduced, 3a was formed as the primary reaction 
product (entry 4). Among the solvents used, benzene produced the most encouraging re-
sults (entry 1 vs. entries 5−7). The yield of 2a was slightly improved by reducing the 
amount of the benzene solvent used (entry 8). When the reaction was conducted using 
concentrated benzene solvent (heated at 80 °C without cooling water), the yield of 2a was 
improved to 63% (entry 9). However, a further increase in the reaction temperature to 100 
°C decreased the yield of 2a (entries 10 and 11). 

  

Scheme 2. Synthesis of 2a through the reaction of 1a with (PhSe)2 and BPO.

2. Results and Discussion

During the reaction of p-tolylacetylene (1a) with (PhSe)2 (1 equiv) and BPO (2 equiv)
in benzene, the title coupling product, 2a, was formed in 60% yield. The structure of
this product was determined using X-ray diffraction (Scheme 2 and Figure 1) and several
spectral analyses (the 1H, 13C{1H} and 77Se{1H} NMR spectra of 2a are included in the
Supplementary Materials). As indicated in Scheme 2, the molecular structure of 2a consists
of one molecule of (PhSe)2 and two molecules of the terminal alkyne 1a.
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Figure 1. Crystal structure of 2a with numbered atoms. Ellipsoids are shown at the 50% prob-
ability level. Selected interatomic distances (Å) and angles (deg): Se1−C1, 1.9178(17); Se1−C10,
1.916(2); Se2−C1, 1.9021(19); Se2−C16, 1.9188(19); O1−C2, 1.420(2); O1−C22, 1.360(2); O2−C22,
1.195(2); O3−C23, 1.215(2); C1−C2, 1.338(3); C2−C3, 1.482(3); C22−C23, 1.546(3); C23−C24, 1.478(3);
C1−Se1−C10, 99.28(8); C1−Se2−C16, 101.23(8); C2−O1−C22, 116.88(14); Se1−C1−Se2, 120.61(10);
Se1−C1−C2, 120.87(14); Se2−C1−C2, 118.38(13); O1−C2−C1, 119.30(16); O1−C2−C3, 111.41(15);
C1−C2−C3, 129.04(17); O1−C22−O2, 125.80(17); O1−C22−C23, 109.00(15); O2−C22−C23,
125.14(17); O3−C23−C22, 117.29(16); O3−C23−C24, 123.59(17); C22−C23−C24, 119.09(16).

The multi-coupling reaction of 1a, BPO, and (PhSe)2 was further evaluated under
various reaction conditions (Table 1). Increasing the amount of (PhSe)2 did not induce a
significant increase in the yield of 2a, whereas byproducts 3a and 4a were formed (entry 1
vs. entry 2). Prolonging the reaction time was also ineffective in improving the yield of
2a (entry 1 vs. entry 3). When the amount of (PhSe)2 was reduced to 0.10 mmol and an
excess amount (0.60 mmol) of BPO was introduced, 3a was formed as the primary reaction
product (entry 4). Among the solvents used, benzene produced the most encouraging
results (entry 1 vs. entries 5−7). The yield of 2a was slightly improved by reducing the
amount of the benzene solvent used (entry 8). When the reaction was conducted using



Molbank 2021, 2021, 1283 3 of 6

concentrated benzene solvent (heated at 80 ◦C without cooling water), the yield of 2a was
improved to 63% (entry 9). However, a further increase in the reaction temperature to
100 ◦C decreased the yield of 2a (entries 10 and 11).

Table 1. Optimization of the reaction conditions for the synthesis of 2a.
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3 0.20/0.2/0.40 Benzene 80 ◦C, 24 h 40 23 2
4 0.30/0.10/0.60 Benzene 80 ◦C, 24 h Trace 48 –

5 b,c 0.20/0.20/0.40 Et2O 80 ◦C, 16 h 22 7 21
6 0.20/0.20/0.40 Toluene 80 ◦C, 16 h 9 – –
7 0.20/0.20/0.40 THF 80 ◦C, 16 h N.D. 11 16
8 0.20/0.20/0.40 Benzene (1 mL) 80 ◦C, 16 h 51 N.D. 6
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a Determined by 1H-NMR; b no cooling water used; c majority of the solvent was distilled out during the initial
stages of the reaction, and the reaction proceeded under essentially neat conditions.

To evaluate the formation mechanism of 2a, the reaction of alkynyl selenide 3a was
attempted using equimolar amounts of (PhSe)2 and BPO to produce the coupling product
2a in a 61% yield (Scheme 3). The result suggests that alkynyl selenide 3a acts as an interme-
diate during the formation of 2a. It should be noted that 2a possesses an α-keto ester moiety,
which may be formed during the oxidation of the alkynyl ether moiety using molecular
oxygen (O2). Wille et al. previously reported the oxidation of alkynes (e.g., PhC≡CPh) to
produce 1,2-diketones (e.g., PhC(=O)–C(=O)Ph) in the presence of O2, in a process initiated
by the thiyl radical (PhS•). More specifically, the thiylperoxyl radical (PhSOO•), derived
from PhS• and O2, acted as an initiator during the oxidation reaction [27]. Therefore, we
assume that the C≡C triple bond in the alkynyl ether intermediate 6a (or 4a), a precursor
to 2a, underwent oxidation with O2 in the presence of the selenoperoxyl radical PhSeOO•,
which acts as an initiator. Although this process has several potential reaction routes, one
of the most promising is given in Scheme 4. The thermal decomposition of BPO generates
a benzoyloxy radical, which attacks 3a to produce alkynyl benzoate, 4a. The subsequent
electrophilic reaction of 3a with 4a in the presence of 5a produced 6a along with benzoic
acid anhydride. Notably, this reaction provides a rare example of the direct and selective
transformation of a terminal alkyne to the corresponding geminal diseleno-substituted
alkene [28–30].
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3. Experimental
3.1. General

1H-NMR spectra were obtained using a JEOL JMN-ECX400 (400 MHz) FT NMR
system (JEOL, Tokyo, Japan), in which CDCl3 was employed as the deuterated solvent
and Me4Si was used as an internal standard. 13C{1H} NMR spectra were obtained using a
JEOL JNM-ECX400 (100 MHz) FT NMR system (JEOL, Tokyo, Japan). The 77Se{1H} NMR
spectrum was obtained using a JEOL JNM-ECX400 (76 MHz) FT NMR system (JEOL,
Tokyo, Japan). Unless otherwise stated, all reagents and solvents were purchased from
chemical companies and used without further purification.

3.2. Synthesis of 2,2-Bis(phenylselanyl)-1-(p-tolyl)Vinyl 2-Oxo-2-(p-tolyl)Acetate (2a)

Initially, BPO (0.20 mmol), (PhSe)2 (0.20 mmol), p-tolylacetylene (1a) (0.20 mmol), and
benzene (3 mL) were added to a 10 mL round-bottomed flask. The resultant mixture was
then heated at 80 ◦C for 16 h in the dark, under atmospheric conditions. Once the reaction
was complete, the reaction mixture was treated with saturated aqueous sodium thiosulfate.
The product was then extracted using ethyl acetate, and the resultant combined organic
layer was washed using saturated aqueous sodium bicarbonate. The organic layer was
neutralized with aqueous HCl (0.1 N). Subsequently, the combined extracts were dried
using MgSO4. Filtration and concentration in vacuo yielded the crude product, which
was subsequently purified using GPC (eluent CHCl3) to obtain 2a (35.4 mg, 60% yield)
as a pale-yellow solid. Mp 65.0–66.0 ◦C; 1H-NMR (CDCl3) δ 7.97 (d, J = 8.2 Hz, 2H), 7.52
(d, J = 7.8 Hz, 2H), 7.37 (dd, J = 8.5, 1.1 Hz, 2H), 7.27–7.17 (m, 12H), 2.41 (s, 3H), 2.36 (s,
3H); 13C{1H} NMR (CDCl3) δ 184.4, 160.9, 150.8, 146.4, 139.9, 134.8, 132.3, 131.4, 131.1,
130.5, 130.0, 129.9, 129.6, 129.2, 128.81, 128.77, 128.7, 128.0, 127.3, 113.7, 21.9, 21.5; 77Se{1H}
NMR (CDCl3) δ 452, 431; IR (KBr, cm−1): 2360, 2331, 1748, 1683, 1604, 1577, 1475, 1438,
1151, 954, 735; MS (FAB): m/z = 592 [M]+. HRMS (ESI) analysis of 2a also showed m/z
468.9585 attributed to the sodium ion adduct of (PhSe)2CHC(=O)(C6H4-p-CH3) (calcd m/z:
468.9586) generated via decomposition of the thermally unstable 1,2-diketone moiety of 2a
during the analysis, which supports the identification of 2a.
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3.3. X-ray Diffraction Studies

An X-ray crystallographic measurement was carried out on a Rigaku RAXIS-RAPID
diffractometer with Mo-Kα radiation at 123 K. Of 39479 reflections collected, 5743 were
unique (Rint = 0.0465). An empirical absorption correction was applied, which resulted in
transmission factors ranging from 0.513 to 0.942. The data were corrected for Lorentz and
polarization effects. The structure of 2a was solved by direct methods and expanded using
Fourier techniques. The non-hydrogen atoms were refined anisotropically, and hydrogen
atoms were refined using the riding model. All calculations were performed with the
CrystalStructure [31] crystallographic software package except for refinements, which was
performed using SHELXL Version 2014/7 [32].

Crystallographic data: formula weight = 590.44; monoclinic; space group P21/n;
a = 9.62321(17) Å, b = 5.73648(10) Å, c = 45.1254(8) Å; V = 2490.50(8) Å3; Z = 4;
ρcalcd = 1.575 g cm−3; total reflections collected = 39479; GOF = 1.054; R1 = 0.0264; wR2 = 0.0672.
Crystallographic data have been deposited with Cambridge Crystallographic Data Centre
(CCDC-2104238). These data can be obtained free of charge via http://www.ccdc.cam.ac.
uk/conts/retrieving.html (accessed date: 19 August 2021) (or from the CCDC, 12 Union
Road, Cambridge CB2 1EZ, UK; Fax: +44 1223 336033; E-mail: deposit@ccdc.cam.ac.uk).

4. Conclusions

A unique multi-coupling reaction of the terminal alkyne 1a, (PhSe)2, and BPO was
observed, the mechanism of which was based on an oxidation process. We believe that
the results presented here provide a novel and facile route for the synthesis of geminal
diseleno-substituted alkenes.

Supplementary Materials: The following are available: Figure S1. 1H-NMR spectrum (CDCl3,
400 MHz) of compound 2a. Figure S2. 13C{1H} NMR spectrum (CDCl3, 100 MHz) of compound 2a.
Figure S3. 77Se{1H} NMR spectrum (CDCl3, 76 MHz) of compound 2a.
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