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Abstract: For the first time, 5-formyl-1-(pyridin-3-yl)-1H-1,2,3-triazole-4-carboxylate was synthesized
via a two-step scheme. The molecular structure of the compound was determined by a single-crystal
X-ray diffraction analysis. The Hirshfeld surface analysis was used to study various intermolecular
interactions. The crystalline structure is marked by the presence of three types of π-interactions
(n→π*, lp···π, and π···π) between the -C(H)=O group and triazole rings. The compound is a versatile
polyfunctional building block for construction of annulated 1,2,3-triazoles.

Keywords: 5-formyl-1-(pyridin-3-yl)-1H-1,2,3-triazole-4-carboxylate; 1,2,3-triazoles; ortho-formyl
acid; crystal structure; hydrogen bond; intermolecular interaction

1. Introduction

Ortho-Formyl acids serve as useful building blocks for numerous classes of important
molecules. Different electrophilicities of aldehyde and acid (ester) function groups make it
possible to convert them independently for a unique variation of the structure in the molecular
design of practically useful compounds. Thus, aiming for the application of ortho-formyl
acids, in recent years, a number of works have been published. For example, new proto-
cols for the synthesis of 3-difluoroalkyl phthalides [1], 3-benzylphthalides [2], 3-(1′-indolyl)-
phthalides [3], and electrochemical protocol for isoindolinones [4] were developed. Syntheses of
(+)-Rubellin C [5], benzo[f]pyrrolo[1, 2-a][1,4] diazepines [6], fluorinated isocoumarines [7],
furo[2,3-d]pyridazines [8], furo[3,4-c]pyridines [9], 1-oxo-9H-thiopyrano[3,4-b]indoles [10],
pyrazoloisoindoles [11], phthalazines [12] and isothiocoumarines [13] were studied. ortho-
Formyl acids were used for the synthesis of biologically active compounds with anti-
cancer potential [14]; PROTACs E3 ubiquitin ligase inhibitor [15] and MDM2 [16] degrades;
STING [17] and PKM2 [18] modulators; inhibitors of Eg5 [19], SIRT1 and SIRT2 [20], 15-
lipoxygenase-1 [21] and pyruvate kinase activators [22].

5-Formyl-1,2,3-triazole-4-carboxylic acids are one of the least studied triazole derivatives,
although the first representative of this series was obtained in 1989 by L’Abbe, Gerrit et al. [23].
Afterwards, 5-formyl-1,2,3-triazole-4-carboxylic acids were mentioned in the synthesis of
purine nucleoside analogues for treating flaviviruses diseases [24] and cyclic amine derivatives
as platelet activation inhibitors [25]. In addition, 5-formyl-triazoles were used as valuable start-
ing materials for unsymmetrically substituted bi-1,2,3-triazoles [26]. Recently, we developed
a convenient synthetic protocol to ethyl 1-aryl-5-formyl-1H-1,2,3-triazole-4-carboxylates [27]
and prepared several new [1,2,3]triazolo[4,5-d]pyridazin-4-ones [28] based on it. To our
knowledge, 1-hetaryl-5-formyl-1,2,3-triazole-4-carboxylic acid derivatives are still unknown.
Therefore, the synthesis of such derivatives is relevant for expansion of chemical space.
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2. Results and Discussion

A recent program in our laboratory has been dedicated to the synthesis of poly-
functional 1-hetaryl-1,2,3-triazole systems. In this context, we have reported; on the
first synthetic use of π-deficient heterocyclic azides [29,30]. It should be noted that
previously, 3-azidopyridine was studied in the reaction with ethyl acetoacetate to pro-
vide ethyl 5-methyl-1-(pyridin-3-yl)-1H-1,2,3-triazole-4-carboxylate in the presence of
sodium methoxide [31] or 1,8-diazabicyclo[5.4.0]-undec-7-ene (DBU) [32] as bases. In
the current work, 3-azidopyridine 1 was examined in the reaction with ethyl 4,4-diethoxy-
3-oxobutanoate 2 using K2CO3 as the base and DMSO as the solvent. Under the se-
lected protocol, 1-(pyridin-3-yl)-1H-1,2,3-triazole-4-carboxylate 3 with 4,4-diethoxymethyl
moiety in position 5 was obtained in high yield. The last one was readily converted
to 5-formyltriazole-4-carboxylate 4 in quantitative yield by heating with hydrochloric
acid (Scheme 1).
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Scheme 1. Synthesis of ethyl 5-formyl-1-(pyridin-3-yl)-1H-1,2,3-triazole-4-carboxylate 4.

The compound was fully characterized with NMR spectra and X-ray diffractometry.
1H and 13C-NMR spectra data are in good agreement with the proposed structures of
products 3 and 4. In the proton NMR spectrum of compound 3, the non-equivalence
of protons of CH2 groups of acetal motif was observed. The CH2 groups have ap-
peared as a “two doublet” of quartets at 3.45 and 3.62 ppm. The acetal C-H proton is
present as a singlet at 6.2 ppm. In the 13C-NMR spectrum of compound 3, the charac-
teristic acetal carbon signal appeared at 94.75 ppm. After the cleavage of acetal (com-
pound 4), the characteristic aldehyde carbon signal appeared at 180.7 ppm (for more de-
tails see Supplementary Materials). What is noteworthy is that, in some related ethyl
1-aryl-5-formyl-1H-1,2,3-triazole-4-carboxylates studied before, the formation of stable
aldehyde hydrates was found by NMR spectra [28]. However, in compound 4, only
aldehyde form is observed.

The compound 4 was crystallized in the monoclinic acentric space group Cc, with one
triazole molecule in the asymmetric unit (Figure 1, Table 1). The triazole ring and its bound
with the pyridin-3-yl ring were twisted relative to each other by 74.02(8)◦ because of the
steric hindrance of the formyl group attached to C5. The above angle between the planes
is higher than the angle between the analogous planes in ethyl 5-methyl-1-(pyridin-3-yl)-
1H-1,2,3-triazole-4-carboxylate (50.3(3)◦) [33] or between the triazole and phenyl planes in
structures of 4-t-butyl-, 4-trimethylsilyl-, 4-trimethylgermyl-1-(4-nitrophenyl)-1,2,3-triazol-
5-carbaldehydes (52.5(3)◦, 62.3(2)◦, 64.5(5)◦, correspondingly) [34]. For comparison, in
the structure of triazoles, (4-methylphenyl)[1-(pentafluorophenyl)- 5-(trifluoromethyl)-1H-
1,2,3-triazol-4-yl]methanone, 5-cyclopropyl-N-(2-hydroxyethyl)-1-(4-methylphenyl)-1H-
1,2,3-triazole-4-carboxamide, N-(4-chlorophenyl)-5-cyclopropyl-1-(4-methoxyphenyl)-1H-
1,2,3-triazole-4-carboxamide, 5-methyl-1-(4-nitrophen)-1H-1,2,3-triazol-4-yl-phosphonate
previously studied by us, the phenyl ring and the heterocyclic ring were twisted relative to
each other by 62.3 (2)◦, 32.75 (7)◦, 87.77 (7)◦, 45.35 (6)◦, correspondingly [35–38].
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Figure 1. The molecular structure of 4 (derived from a single-crystal XRD experiment) with dis-
placement ellipsoids drawn at the 50% probability level. Intramolecular hydrogen bond and n→π*
interaction are shown as dashed lines.

Table 1. Selected bond lengths (Å) and angle values (◦) in the structure of 4.

Bond Å Angles ◦

C11–O11 1.199(3) N1–C5–C11 124.5(2)
C5–C11 1.478(4) O1–C11–C5 123.7(3)
N1–C6 1.444(3) O2–C12–C4 125.0(3)
N1–N2 1.358(3) N1–C5–C11–O1 −3.5(4)
C12–O3 1.191(3) C5–C4–C12–O2 −3.3(4)

The carbaldehyde group in 4 is almost coplanar to the plane of the triazole ring (the
N1–C5–C11–O1 torsion angle is−3.5(4)◦) and its oxygen atom is oriented toward the neigh-
boring pyridyl ring, while the aldehyde H11 atom is involved into weak intramolecular
bonding with O2 atom of the ester group (Table 2). Thus, the O2 atom is involved in the
intramolecular n→π*Ar interaction [39–41] with the aromatic system of the 1-(pyridin-3-yl)
substituent (the O1–C6 bond distance is 2.952(4) Å). We should note that, in 4-t-butyl-,
4-trimethylsilyl-, 4-trimethylgermyl-1-(4-nitrophenyl)-1,2,3-triazol-5-carbaldehydes, the
orientation of the -C(H)=O group is the opposite to that in compound 4 and corresponding
torsion angles (N–C–C–O) are 168.7(3), −177.9(2), −179.5(5)◦. Noteworthy, compound 4
is only the second (after 5-methyl-1-(pyridin-3-yl)-1H-1,2,3-triazole-4-carboxylate) known
structurally studied 1-(pyridin-3-yl)-1H-1,2,3-triazole derivative.

Table 2. Geometry of hydrogen bonds in the structure of 4.

Atoms Involved Symmetry Distances, Å Angle, Deg

D–H···A D–H H···A D···A D–H···A
C10–H10···O1 x, −y + 2, z + 0.5 0.95 2.55 3.267(4) 132
C10–H10···N2 x, y + 1, z 0.95 2.79 3.562(4) 139

C14–H14B···O3 x, y + 1, z 0.98 2.67 3.592(4) 157
C8–H8···O3 x + 0.5, y + 0.5 0.95 2.69 3.617(4) 164
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In absence of classical H-bonding, the structure of 4 is covered by a variety of weak
intermolecular interactions (Figure 2, Table 2). Hydrogen atom H11 of the pyridin-3-yl
ring is involved in C–H···O bonding with the aldehyde group O1 atom and into weak
C–H···N bonding with triazole N2 atom of nearest molecules, while another pyridin-3-yl
H8 atom participates in C–H···O bonding with the O3 atom of the ester group of another
neighboring molecule. The H14 atom of the ethyl group is also involved in C–H···O
bonding with the ester group O3 atom. The most intriguing feature of the structure of 4
is the presence of three types of π-interactions, n→π* (Type A), lone-pair···π (lp···π) [42]
(Type B), and π···π (Type C) interactions between the -C(H)=O group and triazole rings of
the nearest molecules (see Figure 3). The above C–N distances are shorter than the sum of
the corresponding VdW radii of C and N (3.25 Å by Bondi [43]; 3.43 Å by Alvarez [44]), the
O–N distance is shorter than the sum of the corresponding VdW radii O and N (3.07 Å by
Bondi [43]; 3.16 Å by Alvarez [44]).
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The Hirshfeld surface analysis was used to analyze various intermolecular interac-
tions in the title compound by mapping the normalized contact distance (dnorm) using Crys-
talExplorer (Turner et al., 2017; Spackman and Jayatilaka, 2009) [45,46]. The most promi-
nent interactions (n→π* interactions) can be seen in the Hirshfeld surface plot as the 
strongly red areas (Figure 4). Poorly red and white areas in the surface plot of triazole 
molecule correspond to the mentioned above C–H···O and C–H···N hydrogen bonds be-
tween neighboring molecules. The π···π and lp···π interactions are very weak and can be 
seen only as white areas. Fingerprint plots were produced to show the intermolecular sur-
face bond distances with the regions highlighted for O···H/H···O and N···H/H···N contacts 
interactions (Figure 4). The contributions to the surface area for such contacts are 20.6% 
and 19.9%, respectively. Despite the presence of the strongly red areas in the Hirshfeld 
surface plot, the contribution to the surface area for n→π* as well as for the π···π and lp···π 
interactions is only 11.8% in total. The contribution for H···H contacts is 27.3%. 

Figure 3. Three types (n→π* (Type A, C11–N3viii 3.020(4) Å; symmetry code: (viii) x, −y + 1, z − 0.5),
lp···π (Type B, 3.077(4) Å, O1–N1vii 3.117(4) Å; symmetry code: (vii) x, −y + 2, z − 0.5) and π···π
(Type C, ~3.24 Å; C11–N3i 3.304(4) Å; (i) x, y + 1, z)) of π-interactions between -C(H)=O group and
triazole rings in crystal structure of 4.

The Hirshfeld surface analysis was used to analyze various intermolecular interac-
tions in the title compound by mapping the normalized contact distance (dnorm) using
CrystalExplorer (Turner et al., 2017; Spackman and Jayatilaka, 2009) [45,46]. The most
prominent interactions (n→π* interactions) can be seen in the Hirshfeld surface plot as
the strongly red areas (Figure 4). Poorly red and white areas in the surface plot of tria-
zole molecule correspond to the mentioned above C–H···O and C–H···N hydrogen bonds
between neighboring molecules. The π···π and lp···π interactions are very weak and can
be seen only as white areas. Fingerprint plots were produced to show the intermolecular
surface bond distances with the regions highlighted for O···H/H···O and N···H/H···N
contacts interactions (Figure 4). The contributions to the surface area for such contacts
are 20.6% and 19.9%, respectively. Despite the presence of the strongly red areas in the
Hirshfeld surface plot, the contribution to the surface area for n→π* as well as for the π···π
and lp···π interactions is only 11.8% in total. The contribution for H···H contacts is 27.3%.
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The energy framework calculations [47] discussed in this paper were performed on
the DFT/B3LYP/6-31G(d, p) level of theory. All calculations were provided for the cluster
of molecules within a radius of 3.8 Å, which were generated around a single fragment. The
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values of interaction energy calculated between the molecules in 4 are tabulated in Table 3
and visualized in Figure 5. The cylinders in the energy framework represent the relative
strengths—interaction energies are proportional to the thickness of cylinders joining the
centroids of molecules.

Table 3. The intermolecular interaction energies (kJ/mol) in crystal structure of 4.

No a Symmetry Codes R b E_ele E_pol E_dis E_rep E_tot c

MI
(i) x, y + 1, z

(vi) x, y − 1, z 5.35 −18.7 −4.8 −35.2 24.1 −39.1

MII
(v) x, −y + 1, z + 0.5

(viii) x, −y + 1, z − 0.5 5.11 −17.9 −7.1 −32.5 21.8 −39.1

MIII
(ix) x + 0.5, −y + 1.5, z + 0.5
(x) x − 0.5, −y + 1.5, z − 0.5 12.25 −1.7 −0.9 −10.7 6.8 −7.6

MIV
(ii) x, −y + 2, z + 0.5

(vii) x, −y + 2, z − 0.5 5.31 −10.1 −3.8 −35.9 23.5 −30.3

MV
(iii) x + 0.5, y + 0.5, z;
(iv) x − 0.5, y − 0.5, z 12.19 −3.9 −1.7 −7.9 6.0 −8.6

MVI
(xi) x + 0.5, y − 0.5, z
(xii) x − 0.5, y + 0.5, z 12.19 −4.2 −1.6 −9.0 5.7 −10.0

MVII
(xiii) x + 0.5, −y + 2.5, z + 0.5
(xiv) x − 0.5, −y + 2.5, z − 0.5 13.44 1.9 −0.5 −3.9 2.6 −0.2

a No is the numbering of the neighboring two molecules (MI–MVII) involved into the same interactions with
the selected molecule (M). b R is the distance between molecular centroids (mean atomic position) in Å. c Each
“energy” should be multiplied by the conversion factors kele = 1.057, kpol = 0.740, kdis = 0.871, krep = 0.618 to obtain
the total energy (Etot).
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According to the calculation results (Figures 4 and 5, Table 3), the strongest inter-
molecular interactions correspond to binding of the selected molecule to the three pairs
of molecules, MI, MII and MIV (Figure 6). The interactions of the selected molecule with
MII correspond to n→π* interactions and cover the total energy of −39.1 kJ/mol. The
energy value of interactions with MI (by value is the same as with MII) is related to the
discussed π···π interaction, to weak C–H···N bonding of the pyridyl H10 atom with the
triazole N atom as well, as to weak C14–H14B···O3 bonding (Table 2) of the methyl group
with the carboxylate O3 atom. Interactions of the main molecule with two dimers MIV,
which correspond to the C10–H10···O1 hydrogen bonding and lp···π interactions, cover
the total energy of –30.3 kJ/mol and also with significant influence of dispersion forces.
The energy value of interaction C8–H8···O3 with MVI is −8.6 kJ/mol. The total energy of
all interactions between the molecules in 1 is −134.9 kJ/mol.
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3. Experimental Section
1H and 13C-NMR spectra were recorded on Bruker Avance 500 (500 and 126 MHz,

respectively) spectrometers in DMSO-d6 solutions using the solvent line as internal ref-
erence. Mass spectral analyses were performed using an Agilent 1100 series LC/MSD
with an API-ES/APCI mode (200 eV) instrument. Elemental analyses were accomplished
using a Carlo Erba 1106 instrument. Melting points were determined on a Boetius melting
point apparatus. Progress of reactions and purity of the synthesized compounds were
examined by TLC on Silufol UV-254 plates, and visualization was performed using a
UV lamp (254 nm). Diffraction data were collected on a Gemini+ diffractometer with
Cu Ka radiation (λ = 1.54184 Å) and Atlas CCD detector. The 3-pyridyl azide 1 [31] and
4,4-diethoxy-3-oxobutanoate 2 [48] were prepared according to literature procedures.

3.1. Synthesis of Ethyl 5-(Diethoxymethyl)-1-(pyridin-3-yl)-1H-1,2,3-triazole-4-carboxylate 3

Anhydrous K2CO3 (5.53 g, 40 mmol) and ethyl 4,4-diethoxy-3-oxobutanoate 2 (2.18 g,
10 mmol) were added to a solution of 3-pyridyl azide 1 (1.2 g, 10 mmol) in DMSO (4 mL).
The suspension was stirred at 40–50 ◦C until TLC (eluent hexane–EtOAc, v/v 5:1) indicating
that all starting materials were consumed (approximately 7 h). The reaction mixture was
cooled to 5 ◦C, diluted with H2O (15 mL), and then extracted with CH2Cl2 (3 × 10 mL).
The combined organic layers were concentrated under reduced pressure to afford product
3. Yield 89%; slight yellow oil; 1H-NMR (500 MHz, DMSO-d6) δH 8.83 (s, 1H, HPy-2), 8.76
(d, 3JH,H = 4.6 Hz, 1H, HPy-6), 8.13–8.08 (m, 1H, HPy-4), 7.64 (dd, 3JH,H = 8.0, 4.8 Hz, 1H,
HPy-5), 6.20 (s, 1H, CH), 4.39 (q, 3JH,H = 7.0 Hz, 2H, CH2), 3.62 (dq, 2,3JH,H = 14.0, 7.0 Hz,
2H, CH2), 3.45 (dq, 2,3JH,H = 14.0, 7.0 Hz, 2H, CH2), 1.35 (t, 3JH,H = 7.1 Hz, 3H, CH3), 0.96
(t, 3JH,H = 7.0 Hz, 6H, 2xCH3); 13C-NMR (126 MHz, DMSO-d6) δC 160.8 (O=C-O), 151.2
(CHPy-6), 146.8 (CHPy-2), 139.8 (CTriazole-5), 137.1 (CTriazole-4), 134.3 (CPy-3), 134.2 (CHPy-4),
124.1 (CHPy-5), 94.8 (CH), 64.1 (2xCH2O), 61.7 (CH2O), 15.1 (2xCH3), 14.5 (CH3); MS (CI,
200 eV), m/z (Irel, %): 321 (M+ + 1). Found, %: C, 56.21; H, 6.27; N, 17.43. C15H20N4O4
(320.3490). Calculated, %: C, 56.24; H, 6.29; N, 17.49.

3.2. Synthesis of Ethyl 5-Formyl-1-(pyridin-3-yl)-1H-1,2,3-triazole-4-carboxylate 4

Concentrated HCl (0.5 mL) was added to a solution of compound 3 640 mg (2 mmol)
in 1,4-dioxane (5 mL). The mixture was heated under reflux for 1 min and cooled to 0 ◦C.
Anhydrous K2CO3 (approximately 400 mg) was slowly added to neutrality. The mixture
was concentrated under reduced pressure. The residue was extracted with boiling hexane
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(3 × 15 mL) for a short time and then the hexane solution was quickly separated by decanta-
tion. Concentration and cooling of the hexane extracts gave crystals of the product. Yield
91%; white solid; mp 112–114 ◦C; 1H-NMR (500 MHz, DMSO-d6) δH 10.26 (s, 1H, CHO), 8.81
(s, 1H, HPy-2), 8.78 (d, 3JH,H = 4.7 Hz, 1H, HPy-6), 8.09 (d, 3JH,H = 8.1 Hz, 1H, HPy-4), 7.65 (dd,
3JH,H = 7.6, 5.2 Hz, 1H, HPy-5), 4.43 (q, 3JH,H = 6.9 Hz, 2H, CH2), 1.34 (t, 3JH,H = 7.0 Hz, 3H,
CH3); 13C-NMR (126 MHz, DMSO-d6) δC 180.7 (O=C-H), 160.1 (O=C-O), 151.8 (CHPy-6),
146.7 (CHPy-2), 141.8 (CTriazole-4), 136.0 (CTriazole-5), 134.2 (CHPy-4), 133.4 (CPy-3), 124.5
(CHPy-5), 62.4 (CH2O), 14.5 (CH3); MS (CI, 200 eV), m/z (Irel, %): 247 (M+ + 1). Found, %: C,
53.70; H, 4.07; N, 22.70. C11H10N4O3 (246,2260). Calculated, %: C, 53.66; H, 4.09; N, 22.75.
Single-crystal X-ray diffraction: monoclinic crystal system, space group Cc, Z = 4, unit cell di-
mensions: a = 23.7940(11), b = 5.3470(3), c = 8.9367(5) Å, β = 96.216(4)◦, V = 1130.30(10) Å3 at
200 K; ρcalcd = 1.447 g/cm3, R[F2 > 2σ(F2)] = 0.0332 for 2015 reflections and wR(F2) = 0.0904
for all 2090 reflections, flack parameter is 0.02(17). Data were deposited at the Cambridge
Crystallographic Data Centre, as CCDC 2130866 contains the supplementary crystallo-
graphic data for this paper. These data can be obtained free of charge from the Cambridge
Crystallographic Data Centre via https://www.ccdc.cam.ac.uk/structures/ (accessed on
3 February 2022).

Supplementary Materials: The following supporting information, containing NMR spectra of new
synthesized compounds 3, 4, can be downloaded online.
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