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Abstract: 8-Aminoquinoline amides of 3-oxo-olean-12-en-28-oic acid and 3-oxo-urs-12-en-28-oic
acid were obtained and characterized by 1H, 13C-NMR and single crystal X-ray analysis. The used
triterpenoic acids are oxidized forms of naturally occurring oleanolic acid and ursolic acids. Such
types of derivatives are known for their anticancer and antiviral activities. On the other hand,
8-aminoquinoline amides are frequently used for transition metal complexation that is applicable for
both C-H activation processes and biological activity studies.
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1. Introduction

Many naturally occurring pentacyclic triterpenoids are known as important secondary
metabolites, which exhibit significant biological activities. The most representative com-
pounds of this family are oleanolic, ursolic and betulinic acids, which are present in many
medicinal plants [1,2]. These triterpenoic acids show remarkable antitumor [3–6], antidi-
abetic [7,8], anti-inflammatory [9,10] and antiviral [11] properties. Oleanolic and ursolic
acids’ structure contains two functional groups that can be easily modified: hydroxyl group
at C(3) and carboxyl group at C(28). A possible option of further functionalization of
the carboxylic moiety is amidation. In the last few decades, several dozen new ursolic
and oleanolic acid amides containing alkyl, aromatic and heteroaromatic moieties have
been reported [12–19]. Typically, synthesis of secondary amides of triterpenoic acids is
based on the conversion of triterpenoic acid to corresponding acyl chloride in the pres-
ence of oxalylchloride in DCM and following addition of amine in the presence of base
(e.g., triethylamine).

Czuk’s group discovered few triterpenoic acid 4-aminoisoquinoline and 5-aminoquinoline
amide derivatives, which exhibit high cytotoxicity for human tumor cell lines, but remain
significantly less cytotoxic for the mouse fibroblasts NIH 3T3 [20]. Such a high selectivity can be
explained by the presence of isoquinoline and quinoline moiety, which are known biologically
active heterocycles [21,22].

On the other hand, oxidation of the hydroxyl group to ketone can significantly improve
several biological properties of triterpenoic acids. Thus, ursonic acid is more efficient
towards a wide spectrum of biological targets than ursolic acid [23]. Nevertheless, amides
of ursonic and oleanonic acid have not been widely studied. Wang’s group reported several
aniline amides of ursonic acid as potential apoptosis inhibitors [24].

Hence, we decided to assemble novel ursonic and oleanonic acid 8-aminoquinoline
amides. This arrangement of the quinoline ring could improve not only biological appli-
cations of triterpenoid derivatives, but also could become a directing auxiliary and open
up new potential opportunities for functionalization of unreactive sites at the triterpenoid
core [25]. The placement of 8-aminoquinoline amide moiety in these compounds is highly
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favorable also for formation of stable complexes with transition metals; thereby, it may
increase the biological and synthetic application of target molecules.

2. Results and Discussion

The hydroxyl group at C(3) of triterpenoic acid can be easily converted to ketone
using selective oxidants such as Jones reagent, Dess–Martin periodinane or pyridinium
chlorochromate (PCC). For that purpose, PCC was chosen due to the mild reaction condi-
tions and the most convenient purification procedure. The obtained ketoacids [26] 1a and
1b were converted into corresponding acyl chlorides 2 by a treatment with oxalyl chloride.
After full conversion of the starting material (HPLC analysis), oxalyl chloride excess was
removed from the reaction mixture by full evaporation. Further addition of freshly pre-
pared triterpenoic acid chloride to a cooled solution of 8-aminoquinoline, triethylamine
and DMAP led to the formation of the desired products 3a and 3b with yields of 80% and
84%, respectively (Scheme 1).
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Scheme 1. Synthesis of target compounds 3a and 3b.

The molecular structure of compound 3a was unambiguously established by single-
crystal X-ray diffraction analysis (Figure 1). The X-ray analysis revealed two possible
conformations of compound 3b in its solid state. They both exhibit previously known
geometry of ursane and oleane aliphatic polycycles. However, the location of the het-
eroaromatic part differs by a torsion angle C18A-C17A-C28A-N9A′, which is −12.37(2)◦

for conformation I and −4.53(2) ◦ for conformation II. For both conformers, the planar
quinoline moiety is situated almost perpendicularly (80–83◦) against the least squares of
the aliphatic polycyclic skeleton (C/D cycles). X-ray analysis of product 3a also showed
that 8-aminoquinoline amide moiety occupies conformation, which can affect the NMR
chemical shift of protons at C(11) and methyl group protons at C(8) due to anisotropic
shielding by the aromatic system. Indeed, further solution NMR studies showed that
H-C(11) and H3C-C(8) are shielded if compared with starting materials 1a,b that do not
contain such an aromatic system. On the other hand, H-C(12) is deshielded as it points
nearly perpendicularly to H-C(11). Such an average conformation in the solution is proved
also by both 2D-NOESY (mixing time 300 ms) and 1D-NOE interactions that clearly indicate
the trough–space interaction of the indicated aromatic system and H-C(11) and H3C-C(8)
(Figure 1). This was further supported by 1D-NOEDIFF spectra as the relative values of
the observed NOE effects correlate with the intensity of cross peaks in the 2D-NOESY
spectrum (Figure 1A). Thus, the 1D-NOEDIFF spectrum was acquired with presaturation
at 8.81 ppm for H-C(2′) (6 s, 50 dB; on-resonance) and 4.50 ppm (off-resonance reference),
and the intensity difference for the H-C(11) signal at 1.97 ppm was calculated as 1.3%. Next,
the presaturation at 0.54 ppm for H3C-C(8) (8 s, 40 dB; on-resonance) and 4.50 ppm (off-
resonance reference) revealed intensity differences for the H-C(2′) signal at 8.81 ppm (0.6%)
and the H-C(7′) signal at 8.85 ppm (1.6%). In addition to that, the 8-aminoquinoline sub-
stituent shows typical chemical shifts for both the Daugulis-directing group (heteroaromatic
signals)25 and triterpenoid-derived quinoline amides (amide NH signal) [20].
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Figure 1. Comparison of NOE effects observed in solution (A) and molecular structure obtained by 
single-crystal X-ray analysis (B) of compound 3a. 
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Figure 1. Comparison of NOE effects observed in solution (A) and molecular structure obtained by
single-crystal X-ray analysis (B) of compound 3a.

3. Materials and Methods

Dichloromethane for the reactions was dried over CaH2 and freshly distilled prior to
use. All purchased chemicals (Angene, Fluorochem, Hadfield, UK) were used as received.
All reactions were followed by TLC on E. Merck Kieselgel 60 F254 (Merck & Co., Inc.,
Kenilworth, NJ, USA) and visualized by using UV lamp. Column chromatography was
performed on silica gel (60 Å, 40–63 µm, UPAG-AG). 1H and 13C-NMR spectra were
recorded on a Bruker Avance 500 MHz (Bruker Corporation, Billerica, MA, USA), in CDCl3
at 25 ◦C. Chemical shift (δ) values are reported in ppm. The residual solvent peaks are used
as an internal reference (CDCl3 7.26 ppm for 1H-NMR, CDCl3 77.16 ppm for 13C-NMR),
s (singlet), d (doublet), t (triplet), m (multiplet); J in hertz.

To a solution of known ketocarboxylic acid26 1a or 1b (1.300 g, 2.86 mmol, 1 eq.)
in anhydrous DCM (14 mL), oxalyl chloride (0.370 mL, 4.29 mmol, 1.5 eq.) was added
dropwise at 0–5 ◦C and stirred for 10 min. The resulting mixture was allowed to warm up
to room temperature and left stirring for 2 h. The solvent and the residual oxalyl chloride
were removed under reduced pressure. The obtained residue was dissolved in anhydrous
DCM (14 mL), and then it was added dropwise to a solution of 8-aminoquinoline (0.452 g,
3.14 mmol, 1 eq.), DMAP (0.003 g, 0.029 mmol, 0.01 eq.) and triethylamine (0.516 mL,
3.72 mmol, 1.3 eq.) in anhydrous DCM (14 mL) at 0–5 ◦C. The resulting reaction mixture
was allowed to warm up to room temperature and stirred overnight.

The reaction mixture was quenched with 2% aqueous hydrochloric acid (50 mL). Or-
ganic layer was separated and washed with 2% aqueous hydrochloric acid (2 × 50 mL),
brine (40 mL) and dried over anhydrous Na2SO4. Then, it was filtered and the solvent
was removed under reduced pressure. Crude product was purified by column chro-
matography (eluent 20% DCM/hexanes→ 100% DCM) to obtain pure triterpenoic acid
8-aminoquinoline amides 3a and 3b.

3-Oxo-olean-12-en-28-oic acid 8-aminoquinoline amide 3a. Yield of 80% (1.321 g) as a white
amorphous solid. Single crystals of amide 3a, which are suitable for X-ray analysis,
were obtained by slow evaporation from DCM/hexane’s mixture with m.p. 238–239 ◦C.
Rf = 0.42 (Hex/EtOAc 4:1). 1H-NMR (500 MHz, CDCl3) δ 10.37 (s, 1H, H-N), 8.85 (dd,
3J = 7.7 Hz, 4J = 1.7 Hz, 1H, H-C(7′)), 8.81 (dd, 3J = 4.2 Hz, 4J = 1.7 Hz, 1H,H-C(2′)), 8.15 (dd,
3J = 8.2 Hz, 4J = 1.7 Hz, 1H, H-C(4′)), 7.52 (dd, 3J = 8.3, 7.7 Hz, 1H, H-C(6′)), 7.47 (dd,
3J = 8.3 Hz, 4J = 1.7 Hz, 1H, H-C(5′)), 7.45 (dd, 3J = 8.2 Hz, 3J = 4.2 Hz, 1H, H-C(3′)), 5.73 (t,
3J = 3.7 Hz, 1H, H-C(12)), 3.01 (dd, 3J = 12.9 Hz, 4J = 3.7 Hz, 1H, H-C(18)), 2.50 (ddd,
2J = 15.9 Hz, 3J = 11.1, 7.3 Hz, 1H, Ha-C(2)), 2.34 (ddd, 2J = 15.9 Hz, 3J = 6.8, 3.7 Hz, 1H, Hb-
C(2)), 2.16 (td, 2J = 13.5 Hz,3J = 3.7 Hz, 1H, Ha-C(16)), 1.97 (m, 2H, H2-C(11)), 1.92–1.79 (m,
5H, Hb-C(16), Ha-C(1), Ha-C(19), H2C(22)), 1.74 (ddd, 2J = 14.1 Hz, 3J = 13.3, 4.2 Hz, 1H,
Ha-C(15)), 1.66 (dd, 3J = 9.0, 8.6 Hz, 1H, H-C(9)), 1.52–1.23 (m, 9H, H-C(5),H2C(7), Hb-
C(1), H2-C(6), Hb-C(19), H2C(21)), 1.22 (s, 3H, H3-C(27)), 1.13 (ddd, 2J = 14.1 Hz, 3J = 6.7,



Molbank 2022, 2022, M1361 4 of 6

3.7 Hz, 1H, Hb-C(15)), 1.04 (s, 3H, H3-C(23)), 0.99 (s, 3H, H3-C(29)), 0.96 (s, 3H, H3-C(30)),
0.95 (s, 3H, H3-C(24)), 0.85 (s, 3H, H3-C(25), 0.54 (s, 3H, H3-C(26)). 13C-NMR (125.6 MHz,
CDCl3) δ 217.71 (C3), 176.95(O=C-NH), 147.84(C2′) 143.25 (C13), 139.02(C8a′), 136.23 (C4′),
134.94 C(8′), 127.98 (C4a′), 127.56(C6′), 123.87(C12), 121.44 (C3′), 121.13 (C5′), 116.38(C7′),
55.25 (C5), 48.13 (C17), 47.42 (C4), 46.89 (C9), 46.77 (C19), 42.27 (C18), 41.98 (C14), 39.43 (C8),
39.19 (C1), 36.63 (C10), 34.32 (C21), 34.15 (C2), 33.11 (C30), 32.97 (C22), 31.96 (C7), 30.81 (C20),
27.58 (C15), 26.40 (C23), 25.88 (C27), 24.15 (C16), 23.70 (C29), 23.61 C(11), 21.40 (C24),
19.47 (C6), 16.23 (C26), 15.00 (C25). IR (FTIR): 3436 (s), 3333 (s), 2942 (s), 2863 (m), 1702 (s),
1673 (s), 1532 (s), 1487 (m), 1462 (m), 1424 (m), 1384 (m), 1326 (m), 1261 (w), 1164 (m),
1074 (w), 999 (w), 826 (m), 792 (m), 771 (w), 678 (w) cm−1. HRMS (ESI): m/z calcd. for
[C39H52N2O2+H]+ 581.4107; found 581.4116.

3-Oxo-urs-12-en-28-oic acid 8-aminoquinoline amide 3b. Yield of 84% (1.385 g) as a white amor-
phous solid. Rf = 0.40 (Hex/EtOAc 4:1). 1H-NMR (500 MHz, CDCl3) δ 10.30 (s, 1H,N-H),
8.85 (dd, 3J = 7.7 Hz, 4J = 1.5 Hz, 1H,H-C(7′)), 8.82 (dd, 3J = 4.0 Hz, 4J = 1.5 Hz, 1H, H-C(2′)),
8.15 (dd, 3J = 8.2 Hz, 4J = 1.5 Hz, 1H, H-C(4′)), 7.53 (dd,3J = 8.1, 7.7 Hz, 1H, H-C(6′)), 7.49 (dd
3J = 8.1 Hz, 4J = 1.5 Hz, 1H, H-C(5′), 7.47 (dd, 3J = 8.2, 4.0 Hz, 1H, H-C(3′)), 5.70 (t, 3J = 3.8 Hz,
1H, H-C(12)), 2.51 (ddd, 2J = 15.9 Hz 3J = 10.9, 7.3 Hz, 1H, Ha-C(2)), 2.41–2.34 (m, 2H, Hb-
C(2), H-C(18)), 2.17 (td, 2J = 13.7 Hz, 3J = 4.3 Hz, 1H, Ha-C(16)), 2.09–1.81 (m, 6H, Ha-C(1),
Ha-C(15), Hb-C(16), H2C-(11), Ha-C(22)), 1.70 (ddd, 2J = 13.8 Hz, 3J = 13.5, 4.1 Hz, 1H,
Hb-C(22)), 1.67–1.26 (m, 10H, Hb-C(1), H-C(5), H2-C(6), H2-C(7), H2-C(21), H-C(19), H-
C(9)), 1.18 (s, 3H, H3-C(27)), 1.17–1.08 (m, 2H, Hb-C(15), H-C(20)), 1.07 (s, 3H, H3-C(23)),
1.03 (s, 3H, H3-C(30)), 1.01 (s, 3H, H3-C(29)), 0.97 (s, 3H, H3-C(24)), 0.83 (s, 3H, H3-C(25)),
0.54 (s, 3H, H3-C(26)). 13C-NMR (125.6 MHz, CDCl3) δ 217.65(C3), 176.74 (O=C-NH),
147.70(C1′), 138.94 (C8a′), 137.75(C13), 136.14(C4′), 134.89 (C8′), 127.87(C4a′), 127.46 (C6′),
126.89 (C3′), 121.31 (C12), 120.96 (C5′), 116.31 (C7′), 55.09 (C5), 53.70 (C18), 49.43 (C17),
47.27 (C4), 46.68 (C9), 42.21 (C14), 39.81 (C19), 39.44 (C8), 39.19 (C1), 38.94 (C20), 37.38 (C22),
36.45 (C10), 34.04 (C2), 32.10 (C7), 30.95 (C21), 27.89 (C15), 26.39 (C23), 25.08 (C16),
23.45 (C27), 23.29 (C11), 21.29 (C24), 21.15 (C23), 19.36 (C6), 17.17 (C29), 16.19 (C26),
15.03 (C25). IR (FTIR): 3367 (s), 2927 (s), 2868 (s), 1705 (s), 1668 (s), 1526 (s), 1486 (s),
1458 (m), 1424 (m), 1383 (s), 1324 (m), 826 (m), 792 (m), 671(w), 663 (w) cm−1. HRMS (ESI):
m/z calcd. for [C39H52N2O2+H]+ 581.4107; found 581.4124.

Single-crystal diffraction data for oleanolic derivative 3a were collected on an Xta-
LAB Synergy-S Dualflex diffractometer (Rigaku Corporation, Tokyo, Japan) equipped
with a HyPix6000 detector and micro-focus-sealed X-ray tube using Cu Kα radiation
(λ = 1.54184 Å). Single crystals were fixed with oil in a nylon loop of a magnetic CryoCap
and set on a goniometer head. The samples were cooled down to 150 K, andω-scans were
performed with a step size of 0.5◦. Data collection and reduction were performed with
the CrysAlisPro 1.171.40.35a software (Oxford Diffraction Ltd., Abingdon, UK). Structure
solution and refinement were performed with SHELXT and SHELXL software that are
parts of the CrysAlisPro and Olex2 suites.

Full crystallographic data for compound 3a were deposited with the Cambridge
Crystallographic Data Center as a supplementary publication No. CCDC-2159312 (See
the Supplementary Materials). These data can be obtained free of charge via http://www.
ccdc.cam.ac.uk/conts/retrieving.html (or from the CCDC, 12 Union Road, Cambridge
CB2 1EZ, UK; Fax: +44-1223-336033; E-mail: deposit@ccdc.cam.ac.uk). Crystal data for
compound 3a (C39H52N2O2; M = 580.83 g/mol): monoclinic, space group P21 (no. 4),
a = 7.3438(1) Å, b = 25.6051(3) Å, c = 17.3123(3) Å, β = 100.256(1) ◦, V = 3203.37(8) Å3, Z = 4,
T = 150.0(2) K, µ(CuKα) = 0.56 mm−1, Dcalc = 1.204 g/cm3, 30,249 reflections measured
(5.2◦ ≤ 2Θ ≤ 153.2◦), 10,724 unique (Rint = 0.042, Rsigma = 0.044) which were used in all
calculations. The final R1 was 0.035 (I > 2σ(I)) and wR2 was 0.090 (all data).

http://www.ccdc.cam.ac.uk/conts/retrieving.html
http://www.ccdc.cam.ac.uk/conts/retrieving.html
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4. Conclusions

Oleanonic acid (3-oxo-olean-12-en-28-oic acid 8-aminoquinoline amide 3a) and ursonic
acid (3-oxo-urs-12-en-28-oic acid 8-aminoquinoline amide 3b) were successfully synthe-
sized from the corresponding acyl chlorides and fully characterized by 1H-NMR and
13C-NMR spectroscopy. Combined-solution NOESY spectroscopy and single-crystal X-ray
analysis of amide 3a revealed that the aminoquinoline moiety leans over the pentacyclic
core and is located closer to the C/D cycles than to the E cycle.

Supplementary Materials: The following supporting information are available online. Figure S1:
1H-NMR spectrum of 3a; Figure S2: 13C-NMR spectrum of 3a; Figure S3: IR spectrum of 3a; Figure S4:
Mass spectrum of 3a; Figure S5: 1H-NMR spectrum of 3b; Figure S6: 13C-NMR spectrum of 3b;
Figure S7: IR spectrum of 3b; Figure S8: Mass spectrum of 3b. CheckCIF report and *.cif file for
compound 3a as separate files.
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