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Abstract: Herein, we report a bisoxazole derivative as well as a bromo-substituted oxazole derivatives
via a simple approach. The synthesis begins with an inexpensive and readily available starting mate-
rial, such as 2,5-dimethoxybenzaldehyde, hydroquinone, and p-toluenesulfonylmethyl isocyanide
(TosMIC). This approach relies on the Van Leusen oxazole method and electrophilic aromatic bromi-
nation. The structures of bisoxazole and bromosubstituted aryloxazoles were fully supported by
spectroscopic methods (IR, NMR, and HRMS) and further established using single crystal X-ray
diffraction studies.

Keywords: heterocycles; 1,3-oxazole motifs; TosMIC; Van Leusen reaction; bisoxazole; electrophilic
aromatic bromination

1. Introduction

The synthesis and structural modification of N,O-heteroarenes have attracted a large
amount of attention from the synthetic community due to their many latent applica-
tions, which lead to additional research activity toward expanding new pharmaceuticals.
Additionally, these heteroaryl and aryl bromides are valuable intermediates in organic
synthesis. Heterocycles are considered as useful scaffolds that induce physicochemical
properties, such as lipophilicity, polarity and hydrogen bonding, which lead to the en-
hanced pharmacological and pharmacokinetic properties of molecules. Among hetero-
cycles, the five-membered heteroaromatic oxazole scaffolds exhibit significant medicinal
and pharmacological applications. The presence of heteroatoms in their core structure is
involved in hydrogen bonding, pi–pi stacking and their interactions with various enzymes
and receptors of biological systems. These are relatively stable, active moieties in many
pharmaceutical ingredients and extensively observed in nature [1–5]. Additionally, these
heterocyclic cores have shown potent activity against drug-susceptible, drug-resistant and
multidrug-resistant cancer cell lines [6]. These motifs are capable of binding with various
enzymes and receptors, such as histone deacetylase (HDAC), cyclooxygenase-2 (COX-2),
and human epidermal growth factor receptor (EGFR) kinase in cancer cells through various
non-covalent interactions [7–9]. Furthermore, oxazoles are identified as valuable synthons
and have and therapeutic potential for the development of NCEs (new chemical entities)
to cure many diseases of clinical importance [10]. Additionally, heterocycles containing
oxazole motifs have many applications, particularly for pharmaceuticals [11]. Therefore,
the synthesis of heterocycles bearing oxazole moieties is an intriguing aspect in the scientific
community.

Oxazole derivatives are found to be an essential constituents in some drugs and further
considered as beneficial in modern drug design. Due to their structural and chemical
diversity, along with their abundance in natural oxazole motifs, they are considered as
a potentially suitable template for the development of anti-cancer research and drug
discovery [12,13]. Some representative examples of biologically relevant compounds, such
as 1, 2, 5, and 6 bearing an oxazole framework [13–16], are depicted in Figure 1. These
compounds [13–16] serve as antibacterial inhibitors of FtSz, COX-inhibitors, antiviral
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activity against HCV and CVB, as well as act as potent and selective agonists of free fatty
acid receptor 1 (GPR 40).
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Figure 1. Representative examples of biological relevant compounds (1–6) bearing an oxazole
framework.

For example, diaryl oxazole-based compound 3 (Figure 1) was reported as a potential
agent for the treatment of pancreatic cancer [17]. 2-Anilino-5-aryloxazole derivative 4 was
identified as a novel class of potent VEGFR2 kinase inhibitor with good enzymatic and
cellular activities [18]. Several compounds containing oxazole moieties have served as
clinical drugs or candidates and display a key role in the treatment of various types of
diseases, such as antibacterial, antidepressant, antifungal, anti-inflammatory, antimicrobial,
antiviral, antitubercular, anticancer, antiparasitic, and antidiabetic roles, and act as adrener-
gic receptor ligands, T-type calcium channel blockers, prostacyclin receptor antagonists,
and transthyretin amyloid fibril inhibitors [19–21]. Therefore, considerable effort has been
exerted to construct this privileged heterocyclic motif [22,23].

2. Results and Discussion

To design various heterocycles, we established new synthetic approaches toward a
sequence of heterocycles, such as C3-symmetric-based heterocycles including carbocyclic
cages via the Van Leusen oxazole protocol, through the usage of Toluenesulfonylmethyl
isocyanide (TosMIC) as a key reagent [24–28]. TosMIC is a stable, odorless, and colorless
solid at room temperature, and it was introduced by the Dutch professor Van Leusen in
1972, named Van Leusen’s reagent, and applied in organic synthesis. It is well known as
one of the most common building blocks in organic synthesis and is successfully used in the
preparation of pyrrole-, imidazole-, and oxazole-based five-membered heterocycles [29,30].
Due to the considerable interest in oxazole motifs as an important structural core in many
marketed drugs and its pharmaceutical importance in the new millennium, herein, we
conceived a short synthetic sequence to bisoxazole, as well as bromo-oxazoles, under Van
Leusen reaction conditions (Schemes 1 and 2).

In view of its importance in diverse fields, we prepared a bisoxazole derivative
starting with an inexpensive and readily accessible starting material, such as hydro-
quinone 7 (Scheme 1). In this context, compound 8 was prepared in excellent yields
in two steps (80–90%) through methylation in the presence of CH3I and KOH followed
by bromomethylation with paraformaldehyde in 30% HBr in AcOH. Further, dibromo
compound 8 [31,32] was treated with NaHCO3 at 115 ◦C in DMSO to produce the 2,5-
dimethoxyterephthalaldehyde 9 [31] in a 61% yield. Finally, dialdehyde 9 was exposed to
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TosMIC in the presence of K2CO3 in methanol at reflux (Van Leusen oxazole conditions) to
afford bisoxazole 10 in a 78% yield. The bisoxazole compound 10 was fully characterized
via spectroscopic parameters (1H NMR, 13C NMR, DEPT-135 NMR, and HRMS data).
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Scheme 2. Synthesis of bromo-substituted-oxazole motifs 12–14.

Next, we extended our strategy to prepare a different substituted bromo aryloxazoles.
In this context, dimethoxy oxazole compound 11 [26] was subjected to bromination. The
electrophilic aromatic bromination of oxazole 11 in the presence of NBS in THF at room
temperature for 4 h to deliver the different substituted bromooxazoles 14, 12, and 13 in
19, 22, and 24% yields, respectively. The structures of bromo-substituted oxazoles 12–14
were established based on the spectral data. The tribromo oxazole compound 12 was
unambiguously characterized through single-crystal X-ray diffraction analysis (Figure 2).
These brominated oxazole scaffolds can be modified further as polyoxazoles useful as a
biologically relevant molecules via a well-known cross-coupling protocol. These substituted
oxazoles are also of interest in the polymers, agrochemicals, drug discovery research, and
aryl bromides are useful intermediates in organic synthesis.
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The 1H NMR spectrum of bisoxazole 10 revealed the presence of two singlets (two
oxazolic protons) at δ 7.91 (1H) indicates the neighboring proton of nitrogen and oxygen
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and δ 7.61 (1H) represents the adjacent proton of quaternary carbon and nitrogen for the
heteroaryl ring system. In addition, the 13C NMR spectrum of 10 showed three characteristic
peaks at δ 149.7, 147.6, and 126.5 of the oxazole ring system, which represents the –CH
and quaternary carbon of the oxazole contiguous to N & O atoms (Figure 3). The 1H
NMR spectrum of compound 13 displayed three typical aromatic and heteroaromatic
chemical shifts at δ 7.16, 7.20, and 7.48 as singlets. Similarly, compound 14 also showed
three singlets at δ 7.06, 7.21, and 7.90. We clearly identified the substitution pattern of
bromine in the oxazole moiety based on chemical shift values (1H and 13C), such as δ 7.48,
129.0, 7.90, and 150.5, which are adjacent to N, O and N, and the quaternary center of both
aryl and heteroaryl systems, respectively. Further, we support the substitution pattern with
the DEPT/HMBC method (Figure 3). The NMR spectra of these all are provided in the
Supplementary Material.
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3. Materials and Methods
3.1. General Information

2,5-Dimethoxybenzaldehyde, TosMIC, hydroquinone, NBS, and other essential reagents,
chemicals, and necessary solvents were used as received and directly obtained from com-
mercial suppliers without any further purifications. Thin-layer chromatography (TLC)
plates were made on 10 × 5 cm glass plates layered with commercial-grade Acme’s silica
gel (GF-254) containing 13% CaSO4, which acts as a binder. Reaction progress was ana-
lyzed using a chromatographic technique (TLC analysis) with suitable solvent systems
(EtOAc/Pet ether), and observation was performed using UV, iodine spray and immersion
in KMnO4 solution. Column purification was performed using 100–200 mesh silica gel
in all cases with suitable solvent systems. The boiling range of petroleum ether used in
column purification was around 60–80 ◦C. All IR samples were recorded using DCM and
chloroform as solvents on a Nicolet Impact-400 FTIR spectrometer. Nuclear magnetic
resonance (NMR) spectra (1H, 13C and DEPT 135) were recorded on 400 and 500 MHz
spectrometers (Bruker) with CDCl3 solvent, and chemical shifts (δ ppm) were reported
relative to internal standards, such as TMS. The J values (coupling constants) are given
in Hz. Mass spectra (HRMS) were recorded under positive ion electrospray ionization
(ESI, Q-TOF) mode. Compounds 8 [32], 9 [31], and 11 [26] were prepared according to the
literature, and the data were consistent with the reported values.

3.2. Synthesis and Characterization
3.2.1. 5,5′-(2,5-Dimethoxy-1,4-phenylene)Bis(oxazole) (10)

TosMIC (220 mg, 1.13 mmol, 1.1 equiv. for each formyl group) and K2CO3 (568 mg,
4.11 mmol, 4 equiv for each formyl group) in MeOH (10 mL) were added to a stirred
solution 2,5-dimethoxyterephthalaldehyde (9) [31] (100 mg, 0.51 mmol, 1.0 equiv.). Later,
the resulting reaction mixture was heated to 70 ◦C for 2 h. At the end of the reaction,
which was monitored using TLC, methanol was removed under vacuum conditions, and
an additional crude reaction mixture was purified via column chromatography with a
100–200 mesh silica gel column. Elution of the silica gel column with 40% ethyl acetate in
petroleum ether gave the desired dimethoxy oxazole 10 in pure form as colorless needles;
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TLC Rf = 0.57 (petroleum ether/ethyl acetate = 50:50); yield: 115 mg (82%); Mp: 239–241 ◦C;
IR (neat, cm−1): υmax = 3115, 2932, 2847, 1696, 1503, 1456, 1376, 1330, 1403, 1229, 1210,
1114, 1051, 1032, 944, 851, 638; 1H NMR (500 MHz, CDCl3):δ (ppm) = 7.91 (s, 2H), 7.61 (s,
2H), 7.35 (s, 2H), 3.98 (s, 6H); 13C NMR (125.7 MHz, CDCl3): δ (ppm) = 150.0, 149.7, 147.6,
126.5, 117.0, 108.6, 56.1; HRMS (ESI, Q-ToF): m/z calcd. for C14H13N2O4 [M + H]+ 273.0870,
found: 273.0864.

3.2.2. Synthesis of Bromo-Oxazoles 12–14

NBS (690 mg, 3.80 mmol) was added to a stirred solution of dimethoxy oxazole 11 [26]
(500 mg, 2.43 mmol) in THF (20 mL). Afterward, the resulting mixture was stirred at room
temperature for 4 h. The solvent was evaporated under reduced pressure, and the crude
product was purified via silica gel column chromatography using 0–1% ethyl acetate in
petroleum ether as an eluent to deliver the bromo-substituted aryloxazoles 12, 13, and 14 in
22%, 24%, and 19% yields, respectively.

3.2.3. 2,4-Dibromo-5-(4-Bromo-2,5-Dimethoxyphenyl)oxazole (12)

Colorless needles; TLC Rf = 0.92 (petroleum ether); yield: 237 mg (22%); Mp: 164–166 ◦C;
IR (neat, cm−1): υmax = 3250, 2905, 2827, 2803, 1690, 1498, 1488, 1388, 1285, 1242, 1215, 1195,
1070, 1041, 1025, 997, 856, 771, 568; 1H NMR (500 MHz, CDCl3): δ (ppm) = 7.20 (s, 1H),
7.00 (s, 1H), 3.88 (s, 3H), 3.83 (s, 3H); 13C NMR (125.7 MHz, CDCl3): δ (ppm) = 151.5, 150.1,
149.3, 133.1, 117.5, 115.6, 115.0, 114.2, 113.7, 57.1, 56.5; HRMS (ESI, Q-ToF): m/z calcd. for
C11H10Br2NO3 [M + H]+ 361.9004, found: 361.9022.

3.2.4. 2-Bromo-5-(4-Bromo-2,5-Dimethoxyphenyl)oxazole (13)

Colorless needles; TLC Rf = 0.85 (petroleum ether); yield: 215 mg (24%); Mp: 137–139 ◦C;
IR (neat, cm−1): υmax = 2911, 2664, 2413, 2315, 1501, 1491, 1369, 1290, 1247, 1217, 1186, 1161,
1117, 1061, 1032, 961, 949, 868, 768; 1H NMR (400 MHz, CDCl3): δ (ppm) = 7.48 (s, 1H), 7.20
(s, 1H), 7.16 (s, 1H), 3.92 (s, 3H), 3.90 (s, 3H); 13C NMR (125.7 MHz, CDCl3): δ (ppm) = 151.5,
150.5, 149.9, 132.2, 129.0, 116.7, 115.8, 112.4, 109.1, 57.1, 56.3; HRMS (ESI, Q-ToF): m/z calcd.
for C11H10Br2NO3 [M + H]+ 361.9022, found: 361.9021.

3.2.5. 4-Bromo-5-(4-Bromo-2,5-Dimethoxyphenyl)oxazole (14)

Colorless needles; TLC Rf = 0.76 (petroleum ether); yield: 175 mg (19%); Mp: 123–125 ◦C;
IR (neat, cm−1): υmax = 3132, 2969, 2840, 2325, 1490, 1386, 1369, 1315, 1290, 1217, 1180, 1161,
1115, 1061, 1029, 986, 861, 766; 1H NMR (500 MHz, CDCl3): δ (ppm) = 7.90 (s, 1H), 7.21 (s,
1H), 7.06 (s, 1H), 3.88 (s, 3H), 3.83 (s, 3H); 13C NMR (125.7 MHz, CDCl3): δ (ppm) = 151.6,
150.6, 150.1, 145.2, 117.5, 115.1, 114.4, 114.2, 114.0, 57.1, 56.6; HRMS (ESI, Q-ToF): m/z calcd.
for C11H10Br2NO3 [M + H]+ 361.9022, found: 361.9027.

3.3. Data Collection and Refinement Details

The X-ray structure of compound 12 was determined using single-crystal X-ray diffrac-
tion. Single crystals of compound 12 were obtained from ethyl acetate in hexane solvent at
room temperature. Crystal data were collected with graphite monochromatized M0Kα radi-
ation (λ = 0.71073) on a Rigaku Saturn 724+ diffractometer usingω scans at a temperature of
293 K. The structures were solved via direct methods using Olex-2 [33] and ShelXL-97 [34]
and refined using full-matrix least-square minimization based on F2. ORTEPs were drawn
using the Mercury program [35]. X-Ray crystallographic data and refinement parameters
for compound 12 were tabulated in an SI file and deposited with the Cambridge Crystallo-
graphic Data Centre as supplementary publication no. CCDC No: CCDC-1984197. These
data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif (accessed
on 15 February 2020). Selected X-ray data of 12: C11H8Br3NO3, M = 441.91, orthorhom-
bic space group = Pca21, unit cell: a = 20.626 (8) Å3, b = 9.0594 (5) Å3, c = 7.1357 (3)
Å3, α = 90◦, β = 90 ◦, γ = 90◦, Z = 4, ρcald = 2.201 mg/m3, F(000) = 840, λ = 0.71073 Å,

www.ccdc.cam.ac.uk/data_request/cif


Molbank 2022, 2022, M1440 6 of 7

µ = 9.074 mm−1, total/unique reflections = 6776/2346, final R indices [I > 2sigma (I)]:
R1 = 0.0293,ωR2 = 0.0572, R indices (all data): R1 = 0.0345,ωR2 = 0.0598.

4. Conclusions

In summary, we successfully synthesized a bisoxazole derivative and various bromo-
substituted aryloxazoles in good yields. These compounds were synthesized through
the combination of Van Leusen reaction and bromination with NBS used as key steps.
Finally, the structures of these oxazoles were confirmed using NMR, HRMS, and X-ray
diffraction. It is worth noting that the oxazole frameworks may become valuable candidates
for applications in medicinal/pharmaceutical and drug delivery.

Supplementary Materials: The following are available online, 1H, 13C, and DEPT NMR spectra of
compounds 8, 9, 10, 11, 12, 13, and 14. Check CIF report and cif file for the title compound 12.
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