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Abstract: Pentabromobenzoate is a useful fragment in organic synthesis and in coordination chem-
istry. Among known synthetic approaches to pentabromobenzoic acid (PBA), we have assessed and
identified exhaustive bromination of benzoic acid by using 1.3-dibromoisocyanuric acid in concen-
trated H2SO4 solution as the most efficient method for the preparation of PBA on a multigram scale.
As the crude bromination product is typically contaminated with 3,4,5,6-tetrabromobenzoic acid
(TBA) and pentabromobenzene, C6Br5H, a simple purification protocol for preparation of analytically
pure PBA has been developed. The molecular structure and crystal packing of PBA established
by single-crystal X-ray diffractometry suggests a pattern of H-bonding and halogen bonding in
solid state.

Keywords: perbromination; benzoic acid; dibromoisocyanuric acid; electrophilic bromination;
perhalogenated benzoic acids

1. Introduction

Perhalogenated benzoic acids are important compounds which have a variety of
practical applications. Perfluorobenzoic acid, for example, owing to its availability and
low cost, is most commonly used as a building block in coordination chemistry [1,2],
physiologically active compounds [3,4], luminescence [5], optical materials [6,7], and
numerous other applications [8]. In contrast, other perhalogenated benzoic acids are poorly
studied, despite the fact that these compounds were described in the literature [9–11] a few
decades ago. This is likely due to limited industrial applications and poor availability of
chloro-, bromo-, and idodo-derivatives due to their relatively difficult syntheses.

In continuation of our work on the design of new lanthanide luminescent coordination
compounds [11–14], we have tested PBA and found that it is a promising ligand. One may
expect the corresponding complexes to be highly luminescent due to two simultaneous
effects: one is the «heavy atom» effect, and another is due to multi-photon relaxation
suppression. As for the other possible points of interest, the occurrence of halogen-bonding
in such complexes, is potentially appealing from the viewpoints of both supramolecular
and structural chemistry.

The synthesis of PBA, described in 1969 by Gottardi [15], did not work well: upon
numerous trials, we failed to obtain PBA of appropriate purity due to insufficient detail in
relation to purification reported in the published procedure. The material was typically
contaminated with 3,4,5,6-tetrabromobenzoic acid and other impurities; sadly, our repeated
attempts to purify it by using suggested protocols [15] failed.

In this communication, we report a reliable straightforward synthetic protocol for
the preparation of PBA from benzoic acid, as well as the key bromination reagent dibro-
moisocyanuric acid (1,3-dibromo-1,3,5-triazinane-2,4,6-trione, DBI). Additionally, we have
developed an effective purification procedure, which allows us to obtain analytically pure
PBA in an acceptable yield.
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2. Results and Discussion

The first historical synthesis of PBA (1) was described in 1869 by Reinecke [16], who
discovered that extended heating of 3,4,5,-tribromobenzoic acid with an excess of bromine
at 200 ◦C led to the formation of a small amount of 1. As most of the acid 1 undergoes
decarboxylation under such conditions, pentabrombenzene (4) was isolated as a major
product, making this method unsuitable for practical preparation of target PBA.

The first practical preparative synthesis of 1 was developed by W.Gottardi [17], who
introduced dibromoisocyanuric acid (DBI) as a powerful electrophilic brominating agent
for deactivated aromatic compounds (Scheme 1). Benzoic acid (2) was brominated by
2.5 equivalents of DBI in concentrated H2SO4 at room temperature for 1 h, affording
the target compound 1 in 92% isolated yield after a simple work-up. This method was
slightly improved upon and reported a year later [15]. Both publications by Gottardi
feature a melting point for compound identification without providing other types of
characterization data.
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Scheme 1. Known synthetic pathways to PBA, 1.

A completely different approach to 1 was proposed by G. Deacon et al. [18,19]. Ben-
zoic acid (2) was first mercurated exhaustively via heating with the excess of molten
Hg(CF3COO)2, and the resulting permercurated compound C6(HgCF3COO)5COOH was
digested by heating with KBr/Br2 in aqueous solution. In this way, the overall yield of
compound 1 was moderate, and considerable amounts of other less brominated byprod-
ucts were also isolated. Obviously, due to the toxicity of mercury compounds and the
unfavorable stoichiometry of mercury cleavage reaction, this atom-wasteful approach
is impractical.

Other attempts to brominate benzoic acid (2) directly in the presence of Hg2+ catalyst
were made [20]. Heating of benzoic acid in 30% oleum at 45–50 ◦C in the presence of
HgSO4 and Br2 for 2.5 h afforded, after laborious workup, acid 1 in 66% isolated yield.
The most valuable part of this report is a detailed description of isolation and purification
procedure, which was very useful for the development of our improved synthesis of PBA.
The information on other more exotic approaches to acid 1 can be found elsewhere [21].

When we assessed various options for the preparation of PBA, bromination by
DBI was identified as the most suitable alternative. Unfortunately, when following
Gottardi’s method [15,17] the acid 1 obtained was impure. As the impurities, identified
by mass-spectroscopy, were mainly cyanuric acid, acid 3 and the bromide 4 a simple
separation technique leading to pure 1 was adopted. In the first step, the by-product
cyanuric acid was removed due to its insolubility in diethyl ether Et2O, as follows: crude
mixture of the products including brominated acids 1 and 3 was obtained by quenching
the reaction mixture. Excess ice was air-dried on a glass sintered filter and extracted by
small portions of Et2O. Three extractions are usually sufficient to dissolve all brominated
products while cyanuric acid remains on the filter. The ether extracts, upon evaporation,
gave a crude mixture of acids which was boiled with an excess of 5% Na2CO3 aqueous
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solution. The suspension was filtered quickly while hot, and the insoluble matter (mainly
4) was discarded. The clear solution was cooled down, and a crystalline precipitate of
sodium 2,3,4,5,6-pentabromobenzoate was filtered off. At this stage, most of acid 3 was
removed in the form of its water-soluble sodium salt. Since it was established that traces
of 4 co-precipitate with sodium 2,3,4,5,6-pentabromobenzoate, this salt was acidified
with HCl and the slightly impure acid 1 was finally recrystallized from toluene. After
cooling, analytically pure X-ray-quality crystals of the target product 1 were obtained
in good yield: 61%. This practical preparation of 1 can easily be reproduced on a multi-
gram scale; if required, multiple batches of crude acid can be combined and then purified
in one run.

The purity of the acid 1 was confirmed by a number of analytical methods, including
mass-spectroscopy, elemental analysis and 13C-NMR. Single crystals of 1 suitable for X-ray
crystallography were obtained via slow crystallization from toluene. The molecular struc-
ture of 1 is presented in Figure 1, whereby molecules of 1 form pseudo-centrosymmetric
dimers, as shown in Figure 2, such that a dihedral angle between the two aromatic rings is
about 1.5 degrees. Remarkably, in the structure of 1, the C1–C2 distance is 1.52 (Table 1), i.e.,
somewhat longer than the mean CPh-CCOO

− distance of 1.498 Å, deduced by an analysis of
all structures of phenyl-substituted carboxylic acids and ethers published in the Cambridge
Structural Base (CCDC) to date. This may suggest significant steric hindrance caused
by the bulky bromines [22] in the ortho-positions and the O-H. . . O H-bonding (Table 2).
Moreover, the analysis of crystal packing reveals the presence of a weak Br. . . O interaction
(the Br1. . . O4 distance is 3.25 Å; the Br9. . . O2 distance is 3.36 Å), as illustrated in Figure 3.
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Table 1. List of bond lengths for 1.

Bond Length, Å Bond Length, Å

Br1–C3 1.877 (8) Br10–C14 1.871 (8)
Br2–C4 1.875 (10) Br9–C13 1.883 (9)
Br3–C5 1.892 (9) Br8–C12 1.904 (9)
Br4–C6 1.865 (9) Br7–C11 1.874 (9)
Br5–C7 1.889 (10) Br6–C10 1.870 (9)
O1–C1 1.316 (11) O3–C8 1.319 (12)
O2–C1 1.189 (11) O4–C8 1.215 (11)
C1–C2 1.525 (13) C8–C9 1.486 (13)
C2–C3 1.389 (12) C9–C14 1.381 (12)
C2–C7 1.389 (13) C9–C10 1.404 (12)
C3–C4 1.388 (13) C14–C13 1.407 (13)
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Table 1. Cont.

Bond Length, Å Bond Length, Å

C4–C5 1.376 (13) C13–C12 1.395 (12)
C5–C6 1.401 (14) C12–C11 1.366 (13)
C6–C7 1.375 (14) C11–C10 1.408 (13)
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The IR spectrum of 1 (Figure 4) contains bands of OH vibrations (broad band
3400–2900 cm−1), strong band ν C=O (1711 cm–1, lit. 1715 cm−1 [18]), ν (C–O) 1249 (lit.
1241) cm–1, C=C (benzene ring) 1553–1317 cm−1.
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In conclusion, we have shown that PBA prepared via bromination of benzoic acid
with 1.3-dibromoisocyanyric acid in H2SO4 is impure. A reliable purification protocol for
PBA has been developed. The molecular structure and intermolecular interaction in solid
2,3,4,5,6-pentabromobenzoic acid have been confirmed via X-ray crystallography.

3. Materials and Methods

All reagents were purchased from Aldrich (St. Louis, MO, USA) and were used with-
out further purification. Concentrated sulfuric acid, 98% (d = 1.84 g/mL) was purchased
from Component-Reactive (Moscow, Russian Federation). DBI was prepared and identi-
fied according procedure described in SI (Scheme 1, Figure S1). Elemental analysis was
performed by the Laboratory of Microanalysis of Nesmeyanov Institute of Organoelement
compounds (Moscow, Russian Federation). The melting points were determined on a Kofler
hot-stage apparatus and are uncorrected. 1H and 13C-NMR spectra were acquired using a
Bruker AV-300 instrument (Bruker AXS Handheld Inc., Kennewick, WA, USA) operated
at 300 and 75.5 MHz, respectively, in DMSO-d6 solution. Mass-spectra were recorded on
a Bruker Maxis TOF instrument (Bruker Daltonic GmbH, Bremen, Germany), operated
in negative mode, with ESI ionization. FTIR spectra were recorded in KBr pellets on a
Perkin Elmer Spectrum One instrument (Santa Barbara, CA, USA). Single X-ray diffraction
analysis was carried out on a Bruker D8 Quest diffractometer (Bruker AXS Handheld Inc.,
Kennewick, WA, USA), MoKα radiation, ω and ϕ-scan mode. The structure was solved
with direct methods and refined via a least-squares method in the full-matrix anisotropic ap-
proximation on F2. All hydrogen atoms were located from an electron-difference map and
refined within a riding model. All calculations were performed using the SHELXTL [23,24]
and Olex2 [25] software packages. Crystal Data for C7HBr5O2 (M = 516.63 g/mol): or-
thorhombic, space group Pna21 (no. 33), a = 17.288(5) Å, b = 15.298(3) Å, c = 8.315(2) Å,
α = β = γ = 90◦, V = 2198.9(10) Å3, Z = 8, T = 115(2) K, µ(MoKα) = 18.244 mm−1,
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Dcalc = 3.121 g/cm3, 16949 reflections measured (3.56◦ ≤ 2Θ ≤ 54.00◦), 4797 unique
(Rint = 0.0840, Rsigma = 0.0861), which were used in all calculations. The final R1 was
0.0449 (I > 2σ(I)) and wR2 was 0.1043 (all data). Atomic coordinates, bond lengths, angles,
and thermal parameters have been deposited at the Cambridge Crystallographic Data
Centre with the deposition number CCDC 2196019, which is available free of charge at
www.ccdc.cam.ac.uk (accessed on 12 August 2022).

Synthesis of pentabromobenzoic acid (1).
Benzoic acid (1.5 g, 12.4 mmol) was dissolved in 30 g (16.5 mL) of conc. H2SO4 with

vigorous magnetic stirring. Separately, DBI (9 g, 34.4 mmol) solution in 150 g (81.5mL)
of conc. H2SO4 was prepared. It is important to dissolve all solid material in both flasks
without external heating. Sometimes it takes 20-30 min to obtain a clear solution at room
temperature. The DBI solution then was added to a well-stirred solution of benzoic acid
rather quickly (1–2 min), and the resulting mixture was stirred at room temperature for
an additional 30 min with protection from moisture (CaCl2 drying tube). The mixture
gradually transformed into a light-yellow paste due to the formation of thick precipitate;
some heat was also evolved, but external cooling was not necessary for small uploads.
The reaction mixture was poured on 500 g of crushed ice, stirred for 30 min and filtered
of a glass frit. White precipitate was washed using cold water (3 × 20 mL) with suction
and dried in air (1–2 days) directly in the filtering funnel. The coarsely ground cake was
extracted on filter with 4 portions of ether (30 mL each). The clear filtrate was evaporated
under diminished pressure (10 torr), and yielded white crystalline solid. The residue on
filter consists mainly of isocyanuric acid, which is insoluble in ether, and was discarded.

Crude 2,3,4,5,6-pentabromobenzoic acid was heated to boiling point with 20 mL of
5% Na2CO3 aqueous solution; the alkali (pH~ 8–9) hot solution was filtered rapidly from
insoluble salt of tetrabromobenzoic acid and hexabromobenzene and cooled in an ice bath.
Thick paste of sodium pentabromobenzoate was filtered, and crystals were washed with
a small amount (5 mL) of cold 5% Na2CO3 solution and dried in air. A suspension of
the sodium salt in 10 mL of water was acidified with 35% HCl solution until pH~1 was
achieved. Precipitate of free acid was filtered, and it was washed with 5 mL of cold water
and dried in air. Finally, the acid was recrystallized from hot toluene (35 mL on 4 g of the
crude product). The yield was 3.1 g (61%) of pure 2,3,4,5,6-pentabromobenzoic acid as
colorless crystals.

Mp 265–266 ◦C (lit. 265–268 ◦C, [15]). Anal. calcd. for C7HBr5O2 (516.60): C, 16.27; H,
0.20; Br 77.35. Found: C, 16.31; H, 0.23; Br 77.98%. IR spectrum, ν, cm–1: 3400–2900 (broad),
3420 (vw), 2923 (vw), 2858 (vw), 2735 (vw), 2635 (vw), 2552 (vw), 2479 (vw), 1711 (vs),
1688 (sh), 1553 (w), 1523 (m), 1435 (vw), 1409 (w), 1376 (w), 1317 (s), 1285 (vw), 1249 (vs),
1179 (vw), 1165 (vw), 1061 (w), 1043 (vw), 887 (vw), 867 (m), 776 (vw), 761 (vw), 720 (m),
617 (w), 552 (s), 493 (vw), 440 (vw). 1H-NMR (ppm): δ 13.89 (v. broad, 1H, –COOH).
13C-NMR (ppm): δ 165.62, 140.45, 129.29, 128.51, 120,51. HRMS (ESI-TOF), m/z: calcd. for
C7HBr5O2 [M]+, 516.6016, found, 516.5748. (See also Figures S2 and S3).

Supplementary Materials: Detailed procedure for preparation DBI; Scheme S1: Preparation of
1,3 -dibromoisocyanuric acid (DBI); Figure S1: FT-IR spectrum of DBI; Figure S2: 13C-NMR spectrum
of compound 1; Figure S3: HR mass-spectrum of the compound 1 [26–29].
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