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Abstract: Imatinib is one of the most used therapeutic agents to treat leukemia, which specifically
inhibits the activity of tyrosine kinases. This polytopic molecule has been structurally characterized
only in the form of its piperazin-1-ium salt (mesylate, picrate, citrate, fumarate or malonate). Herein
we present the crystal structure of the freebase Imatinib which precipitated from a 1:10 mixture
with arginine. The molecule realizes an extended conformation and forms infinite H-bonded chains
through its amide, amine and pyrimidine groups.

Keywords: active pharmaceutical ingredient; H-bond propensity; Imatinib; single-crystal X-ray
diffraction

1. Introduction

Imatinib commercially available as Gleevec (Figure 1a) is the first therapeutic agent
to treat chronic myelogenic leukemia [1,2]. A series of structural studies elucidated that
Imatinib specifically binds to an inactive Abelson tyrosine kinase domain characteristic
for this gene through numerous hydrogen bonds, hydrophobic C–H . . . π and π . . . π
interactions [3,4]. Golzarroshan et al. compared its conformations in single crystals and
ligand–protein complexes, and revealed that this flexible molecule realizes in crystals two
main conformations, an extended with the pyridylpyrimidine moiety in trans position
towards the methylbenzene ring and a folded with the pyridylpyrimidine moiety cis
situated to the methylbenzene ring [5]. Analysis of contributions of various types of
intermolecular interactions to the molecular surface revealed that π . . . π stacking is more
typical for the folded conformation of Imatinib [6], while the contribution of hydrophilic
interactions does not affect molecular conformation.
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Figure 1. (a) Schematic representation of a freebase Imatinib. Q1–Q8 denote torsion angles.
(b) Modules of Q1-Q8 angles of Imatinib in previously reported (black) and freebase (red) compounds
in the extended conformation.
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Both in crystals, and in ligand–receptor complexes Imatinib is present in the form of a
mono- or a dication. Its commercial form contains Imatinib mesylate which exists in two
polymorph modifications [7]. Besides mesylate, it readily forms salts with picrate [5,8],
citrate [9], fumarate [9] or malonate [9] anions. Hybrid materials of Imatinib with nanodis-
persed MoS2 sheets were obtained as well [10]. However, the crystal structure of the neutral
freebase remained unknown to date, although its powder XRD solution was mentioned
recently by Kabova et al. [11]. In this report we present the characterization of freebase
Imatinib using single crystal X-ray diffraction.

2. Results and Discussion

In our study of novel solid forms of known active pharmaceutical ingredients [12], the
potential of Imatinib to co-crystallize with amino acids was attested. A solution of Imatinib
mesylate in ethanol was added to a solution of alanine, arginine, asparagine, glycine, iso-
leucine, methionine, tyrosine, serine or valine in ethanol in 1:10 molar ratio. A few drops
of HNO3 or heating were applied to make the solution transparent. After several days of
standing in air at r.t., white precipitate formed in all cases. Typically, precipitate contained
initial reagents; however, from Imatinib: arginine mixture, single crystals of the freebase
Imatinib were obtained suitable for X-ray diffraction using synchrotron radiation.

The molecular structure of the freebase is represented on Figure 2. All hydrogen
atoms were visible on difference Fourier maps; thus, one can conclude from both bond
distances and residual density maps that only N4 amine and N5 amide nitrogen atoms
are protonated. The values Q1–Q8 of torsion angles are equal to 178.72(1), 170.66(5),
59.7(3), 166.76(7), 176.72(2), 152.3(1), 59.7(4) and 176.83(3)◦, respectively. With an excep-
tion of Q3 (C9-N4-C10-C11 angle) and Q7 (C21-C20-C23-N6 angle) the values of angles
are typical for experimentally-obtained conformations of Imatinib in an extended confor-
mation (Figure 1b, [5,6]). Particularly, pyridine and pyrimidine or 4-methylphenyl and
amide fragments are almost coplanar (Q1 or Q4–Q5 torsion angles are close to 180◦). The
Q2 = 170.66(5)◦ angle (N2-C9-N4-C10) between the pyridylpyrimidine and the methylben-
zene moieties confirms the extended molecular conformation which was predicted to be
21.39 kJ/mol more stable than the folded one for a freebase [6].
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Figure 2. Molecular view of Imatinib in representation of atoms with thermal ellipsoids (p = 50%).

It was previously demonstrated that molecular conformation of Imatinib correlates
well with peculiarities of its intermolecular interactions [6]. Particularly, high (up to 25%)
contribution of C . . . C and C . . . N interactions to the Voronoi molecular surface was
found to favor realization of the folded conformation. In this solid, the Voronoi molecular
volume and area are equal to 646 Å3 and 629 Å2, respectively, which is in accord with
the average values of 677(51) Å3 and 661(37) Å2 previously obtained for 6 structurally
characterized salts and 21 ligand–receptor Imatinib complexes [6]. However, despite the
extended conformation, high contribution of C . . . C and C . . . N interactions to the
molecular surface (5.5% in sum) was observed. Contribution of N . . . H and O . . . H
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hydrogen bonds to the surface (80 and 30 Å2 as compared with previously observed 26–71
and 82–206 Å2) is also unusual.

This fact can be rationalized by analysis of particular intermolecular interactions in
the solid. The molecules are connected by N–H . . . O and N–H . . . N hydrogen bonds
between amine and amide, and amide and pyrimidine atoms to infinite chains (Figure 3a).
The values of r(N . . . O) and r(N . . . N) are equal to 2.963(2) and 3.167(3) Å, respectively;
the NHO and NHN angles are 166.7 and 166.1 Å. Note that none of these interactions
are the most expected for amide and amine groups. The H-bond propensity tool [13,14]
indicates that both amine and amide groups are more inclined to form hydrogen bonds
with a nitrogen atom of pyridine ring [6]. Thus, one can propose that a metastable poly-
morph of pure Imatinib was obtained by us. It is also worth mentioning that the formation
of two N–H . . . N hydrogen bonds also fixes carbamoylbenzyl fragments of neighboring
molecules in parallel positions at 3.3 Å which makes the formation of π . . . π interactions
possible. In addition, two pyridylpyrimidine fragments also take part in stacking inter-
actions with the interplanar distance between their parallel meanplanes as short as 3.5 Å
and the shortest interatomic distance equal to 3.459(3) Å (Figure 3b). Thus, the significant
contribution of stacking interactions to the molecular surface was observed in this solid.
The strength of the pairwise interaction in staking dimer in terms of energy frameworks
formalism (CrystalExplorer 17.5 program [15]) is −134.2 kJ/mol while in dimer formed
by N–H . . . O bond, the corresponding value is −97.2 kJ/mol. In turn, the value of lattice
energy is −489.4 kJ/mol.
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Figure 3. Fragment of crystal packing: (a) fragment of H-bonded chains parallel with the crystal-
lographic a-axis; (b) stacking interactions between two pyridylpyrimidine (red and blue) and two
carbamoylbenzyl (red and green) fragments.

Finally, it is worth mentioning that the observed hydrogen bonding is in accord
with distribution of the molecular electrostatic potential (MEP) depicted on Figure 4.
NoSphereA2 [16] instead of usual IAM refinement of X-ray diffraction data was used in
order to obtain experimental MEP distribution. It allowed not only the decrease of R1 and
wR2 convergence factors but also gave H(C) and H(N) distances (1.11–1.16 and 1.02–1.03 Å,
respectively) close to the average values from neutron diffraction data (1.08–1.10 and
1.01–1.03 Å) as obtained by Allen and Bruno [17]). The most electropositive molecular
regions (shown in red) are situated in the region of the amide and amine groups. The regions
of electronegative potential are situated close to the oxygen atom and near the nitrogen atom
of the pyrimidine ring. Electronegative regions close to the 4-methylpiperazine are absent.
This fact is in accord with theoretical calculation of low H-bond propensity of the nitrogen
atom connected with the methyl group to take part in H-bonding. Experimentally-observed
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H-bonding with this nitrogen in previously studied Imatinib salts and ligand–receptor
complexes are absent as well.
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3. Materials and Methods

A solution of Imatinib mesylate (0.012 g, 0.05 mmol) in 1 ml of ethanol was added to a
solution of arginine (0.087 g, 0.5 mmol) in 2 ml of ethanol. The mixture was heated, and the
solution was cooled in air. After 2 days of standing at r.t. white precipitate formed. Single
crystals of C29H31N7O were obtained from this precipitate. Tmelt = 484–486 K coincides with
that given in Ref. [18]. The intensities of 19559 reflections were collected at “Belok/XSA”
beamline of the Kurchatov Synchrotron Radiation Source [19,20]. Diffraction patterns
were collected using 1-axis MarDTB goniometer equipped with Rayonix SX165 CCD 2D
positional sensitive CCD detector (λ = 0.745 Å, ϕ-scanning in 1.0◦ steps) in the direct
geometry with a detector plane perpendicular to its beam. Approximately 120 diffraction
frames were collected for each data set. Thus obtained data were indexed and integrated
using the XDS software suite [21]. At 100 K crystal system is triclinic, space group P1:
a = 8.5780(17), b = 10.467(2), c = 14.872(3) Å, α = 79.78(3), β = 82.55(3), γ = 81.94(3)◦,
V = 1293.6(5) Å3, Z = 2, µ = 0.089 mm−1, Dcalc = 1.267 g cm−3, F(000) = 524.

The structure was solved by the dual-space algorithm [22] and refined by full-matrix
least squares against F2 using the NoSpherA2 algorithm [16] implemented within the
Olex2 package [23]. Non-hydrogen atoms were refined in an anisotropic approximation.
Hydrogen atoms were located on difference Fourier maps and included in the refinement
in isotropic appoximation and unfixed bond distances. Refinement converged to R1 = 0.057
(for 3907 observed reflections and 459 parameters), wR2 = 0.158 and GOF = 1.01 (for
7004 independent reflections, Rint = 0.098). Crystallographic data in Crystallographic
Information File (CIF) format can be downloaded online at Supplementary Materials.

Peculiarities of the Voronoi molecular polyhedra were calculated using the ToposPro
package [24].

Supplementary Materials: Crystallographic data in Crystallographic Information File (CIF) format
can be downloaded online.

Author Contributions: Conceptualization, A.A.K.; methodology, A.V.V.; investigation, A.V.V. and
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the published version of the manuscript.
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