
Citation: Efimova, J.A.; Shetnev,

A.A.; Baykov, S.V.; Petzer, A.; Petzer,

J.P. 3-(3,4-Dichlorophenyl)-5-(1H-

indol-5-yl)-1,2,4-oxadiazole. Molbank

2023, 2023, M1552. https://doi.org/

10.3390/M1552

Academic Editor: Ge Meng

Received: 12 December 2022

Revised: 7 January 2023

Accepted: 11 January 2023

Published: 13 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molbank

Short Note

3-(3,4-Dichlorophenyl)-5-(1H-indol-5-yl)-1,2,4-oxadiazole
Julia A. Efimova 1,2 , Anton A. Shetnev 1,* , Sergey V. Baykov 3, Anél Petzer 4 and Jacobus P. Petzer 4

1 Pharmaceutical Technology Transfer Center, Yaroslavl State Pedagogical University Named after K.D.
Ushinsky, Yaroslavl 150000, Russia

2 Department of Organic Chemistry, Russian State University Named after A. N. Kosygin,
Moscow 115035, Russia

3 Institute of Chemistry, Saint Petersburg State University, Saint Petersburg 199034, Russia
4 Pharmaceutical Chemistry and Centre of Excellence for Pharmaceutical Sciences, North-West University,

Potchefstroom 2520, South Africa
* Correspondence: a.shetnev@list.ru

Abstract: 3-(3,4-Dichlorophenyl)-5-(1H-indol-5-yl)-1,2,4-oxadiazole was synthesized via the con-
densation of 3,4-dichlorobenzamidoxime and methyl 1H-indole-5-carboxylate using a superbasic
medium (NaOH/DMSO). The compound was tested as a potential inhibitor of human monoamine
oxidase (MAO) A and B. It demonstrated a notable inhibition with an IC50 value of 0.036 µM for the
MAO-B and isoform specificity. The product was characterized by 1H-NMR, 13C-NMR, and HRMS.
In conclusion, the new active MAO-B inhibitor may serve as a candidate for the future discovery of
therapeutic agents for neurodegenerative disorders such as Parkinson’s disease.
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1. Introduction

Parkinson’s disease (PD) is an age-related neurodegenerative disorder of the central
nervous system (CNS), currently affecting over 8% of individuals aged 65 years and older
worldwide. PD results in the chronic, irreversible, and progressive neuronal degradation of
specific areas in the human brain and is caused by complex pathophysiological processes,
including oxidative stress, neuro-inflammation, excitotoxicity, mitochondrial dysfunction,
and proteolytic stress [1–3].

Monoamine oxidases (MAOs) are mitochondrial flavoenzymes that play a key role in
the metabolism of monoaminergic neurotransmitters. The selective inhibition of MAO-B
is a well-established approach in the treatment of PD [4–6]. For example, the irreversible
MAO-B inhibitor, selegiline, and the reversible inhibitor, safinamide, have been approved
for the treatment of PD [4–6] (Figure 1a).

Despite the diversity of MAO-B inhibitors that has been described in the literature,
the discovery of novel inhibitors with good potencies and isoform specificities is still of
interest. Recently, indole and indazole derivatives have been reported to be highly potent
and specific MAO-B inhibitors (Figure 1b) [7]. However, the amide bond in the central
fragment of these compounds may be metabolically labile and could lead to the rapid
inactivation of future drugs in this class.

Our research group has reported a variety of new lead compounds for the discovery
of isoform-specific MAO-B inhibitors such as imidazolines, benzenesulfonamides, and
pyrazolo[1,5-a]quinoxalin-4-ones [8–10]. Based on our interest in the discovery of novel
MAO-B inhibitors, in this work, we used our previously developed synthetic approach to
synthesize a new indole-derivative where the amide functionality has been replaced by
a bioisostere.

Molbank 2023, 2023, M1552. https://doi.org/10.3390/M1552 https://www.mdpi.com/journal/molbank

https://doi.org/10.3390/M1552
https://doi.org/10.3390/M1552
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molbank
https://www.mdpi.com
https://orcid.org/0000-0003-3027-0223
https://orcid.org/0000-0002-4389-461X
https://doi.org/10.3390/M1552
https://www.mdpi.com/journal/molbank
https://www.mdpi.com/article/10.3390/M1552?type=check_update&version=1


Molbank 2023, 2023, M1552 2 of 5

According to the data of the Swiss Institute of Bioinformatics, the central amide
group of the molecule can be replaced without a loss of biological activity by the 1,2,4-
oxadiazole heterocyclic fragment. This substitution should have a favorable effect on the
in vivo metabolic stability of drug leads due to the greater stability of the fragments of
five-membered heterocycles compared to the amide bond.
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Figure 1. (a) Structures of MAO-B-specific inhibitors; (b) the series of indole and indazole derived
MAO inhibitors.

In addition, indole- and oxadiazole-based building blocks and their composition and
complexes are popular chemical tools for the creation of new biologically active compounds
with anti-infective [11], anticancer [12], cytoprotective activity [13], and other biological
properties [14].

Thus, we hypothesize that the novel 1,2,4-oxadiazole/indole hybrid framework de-
scribed below may appeal to scientists as a starting point for the new drug candidate devel-
opment.

2. Results
2.1. Chemistry

3-(3,4-Dichlorophenyl)-5-(1H-indol-5-yl)-1,2,4-oxadiazole (4) was synthesized by the
condensation of amidoxime 2 with carboxylic acid ester 3 in the superbasic medium
(NaOH/DMSO) (Scheme 1), as described in our previous work [15]. The amidoxime 2 was
synthesized from the corresponding nitrile 1, as described in the literature [16].
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2.2. MAO Inhibition

The MAO inhibition potency of 3-(3,4-dichlorophenyl)-5-(1H-indol-5-yl)-1,2,4-oxadiazole
was investigated using recombinant human MAO-A and MAO-B, following the same protocol
as described for the previous investigation of 1,3,4-oxadiazol-2-ylbenzenesulfonamides [8].
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The results of the MAO inhibition studies are presented in Table 1. Compound 4 inhibited
MAO-B with an IC50 value of 0.036 µM, whereas a weak inhibition was recorded for MAO-A.

Table 1. The inhibition of human MAO-A and MAO-B by 3-(3,4-dichlorophenyl)-5-(1H-indol-5-yl)-
1,2,4-oxadiazole 4.

Structure
IC50 (µM ± SD) 1

MAO-A MAO-B
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3. Discussion

This study reports the MAO inhibition potency of 3-(3,4-dichlorophenyl)-5-(1H-indol-
5-yl)-1,2,4-oxadiazole (4). This compound inhibited MAO-B with an IC50 value of 0.036 µM,
while the MAO-A isoform was inhibited with an IC50 value of 150 µM. The discovery
of this active MAO-B inhibitor paves the way for the future discovery of potent MAO-B
inhibitors among indole derivatives, which may find an application in the treatment of
neurodegenerative disorders such as PD.

4. Materials and Methods
4.1. General

All the reagents and solvents were obtained from commercial sources and were used
without purification. The reactions were monitored by analytical thin layer chromatography
(TLC) using Silufol-254 plates. The visualization of the developed plates was performed
by fluorescence quenching at 254 nm. 1H-NMR and 13C-NMR spectra were recorded on
a Varian 400 Unity Plus instrument (400 MHz for 1H and 100 MHz for 13C, respectively).
Chemical shifts (δ) are given in parts per million (ppm) and were referenced to the solvent
signal for DMSO-d6 (2.50 for proton and 39.52 for carbon), while the coupling constants (J)
are reported in hertz (Hz). Multiplicities are abbreviated as follows: s = singlet, d = doublet,
dd = doublet of doublets, t = triplet, q = quartet, and m = multiplet. The melting points
were determined on an Electrothermal IA 9300 series digital melting point apparatus. The
mass spectra were recorded on microTOF spectrometers (ESI ionization).

4.2. Synthesis and Characterization of 3-(3,4-Dichlorophenyl)-5-(1H-indol-5-yl)-1,2,4-oxadiazole 4

To a solution of 3,4-dichlorobenzamidoxime 2 (0.0015 mol, 1 equiv.) and methyl 1H-
indole-5-carboxylate 3 (0.0015 mol, 1 equiv.) in DMSO (1 mL), powdered NaOH (0.002 mol,
1.3 equiv.) was rapidly added. The reaction mixture was stirred at room temperature for
the required time (TLC). The reaction mixture was diluted with cold water (30–50 mL). The
resulting precipitate was collected by filtration, washed with water (30 mL), and air-dried
at 50 ◦C. The yield was 0.391g, 79%, beige solid, mp 193–195 ◦C; 1H-NMR (400 MHz,
DMSO) δ 11.64 (s, 1H), 8.45 (s, 1H), 8.21 (d, J = 2.1 Hz, 1H), 8.03 (dd, J = 8.4, 2.0 Hz, 1H),
7.91–7.82 (m, 2H), 7.62 (d, J = 8.5 Hz, 1H), 7.54 (d, J = 3.2 Hz, 1H), 6.66 (d, J = 3.2 Hz,
1H); 13C-NMR (101 MHz, DMSO) δ 178.05, 167.05, 139.17, 134.86, 132.79, 132.32, 129.32,
128.49, 127.74, 122.09, 121.25, 114.51, 113.17, 103.41; MS (ESI+): m/z [M + H]+. Anal. Calcd
for C16H10Cl2N3O: 330.0196. Found: 330.0182. 1H-NMR, 13C-NMR of compound 4 are
presented in Supplementary Materials.
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4.3. Synthesis and Characterization of 3,4-Dichlorobenzamidoxime 2

To a suspension of 3,4-dichlorobenzonitrile (0.012 mol, 1 equiv.) and NH2OH·HCl
(0.018 mol, 1.5 equiv.) in ethanol (15 ml), NaHCO3 (0.018 mol, 1.5 equiv.) was added. The
reaction mixture was heated under reflux for 2 h (TLC). The solvent was subsequently
evaporated under a reduced pressure, and the reaction mixture was diluted with cold
water. The resulting precipitate was collected by filtration, washed with water (30 mL), and
air-dried at 50 ◦C. The yield was 86%, white solid, mp 143–145 ◦C; 1H-NMR (400 MHz,
DMSO) δ 9.87 (s, 1H), 7.89 (d, J = 1.9 Hz, 1H), 7.71–7.60 (m, 2H), 5.95 (s, 2H). [18]

4.4. MAO Inhibition Studies

The measurement of the IC50 values for the inhibition of human MAO-A and MAO-B
was carried out according to the previously reported protocols [8,19]. Recombinant human
MAO-A and MAO-B were obtained from Sigma-Aldrich (St. Louis, MO, USA) and the
fluorescence measurements were rescored with a SpectraMax iD3 Multi-Mode microplate
reader (Molecular Devices). The measurement of the MAO activity was based on the
fluorescence signal generated when the substrate, kynuramine, is oxidized by the MAOs to
yield 4-hydroxyquinoline.

Supplementary Materials: The following supporting information can be downloaded online, Copies
of 1H- and 13C-NMR spectra.
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