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Abstract: Electron-withdrawing heterocyclic units are found in most organic optoelectronic materials.
Benzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole) is an interesting new heterocyclic system, the chemical
properties of which are much less studied than other fused thiadiazoles. Cyano derivatives of
electron-accepting heterocycles are known as potential components of photoluminescent materials. In
this communication, benzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole)-4-carbonitrile was successfully obtained
via the cyanation of 4-bromobenzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole) with copper(I) cyanide in DMF.
The structure of the newly synthesized compound was established by means of elemental analysis,
high-resolution mass spectrometry, 1H and 13C NMR, and IR spectroscopy.
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1. Introduction

Electron-accepting heterocycles play an important role in the design of organic chro-
mophores due to their ability to reduce the band gap by promoting intramolecular charge
transfer [1]. Strong electron-withdrawing building blocks containing thiadiazole rings
containing low LUMO energy have attracted much attention [2–5] because they can be used
in the development of various optoelectronic devices such as dye-sensitized solar cells,
organic light-emitting diodes and organic field-effect transistors [6]. In recent years, we
found that benzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole) possesses promising electron-accepting
properties; its unsubstituted and bromo derivatives successfully participate in aromatic nu-
cleophilic substitution, palladium-catalyzed cross-coupling, and direct C-H arylation [7,8].
The selective synthesis of 4-bromobenzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole) 1 [9] and the suc-
cessful selective substitution of bromine or hydrogen atoms [10] made it possible to lay the
foundation for the efficient synthesis of unsymmetrical derivatives of this heterocyclic sys-
tem. Cyano derivatives of electron-accepting heterocycles, namely 2,1,3-benzothiadiazole,
are shown to have interesting physical properties for the design of push–pull dyes [11],
thermally activated delayed fluorescence sensitizers [12], mediators for electrocatalytic
hydrogen evaluation on glassy carbon electrodes [13], and others. In continuation of our
study of the reactivity of 4-bromobenzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole) 1, we report its
cyanation reaction to benzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole)-4-carbonitrile 2.

2. Results and Discussion

The cyanation of bromo-benzo-bis-thiadiazoles has not been described in the literature.
A search of the literature on the Reaxys and SciFinder databases for the cyanation of 4-
bromo-2,1,3-benzothiadiazoles showed that the most common methods are heating at high
temperature with copper(I) cyanide in DMF [14,15] or in NMP [16–18]. We have shown
that bromide 1 reacted with copper (I) cyanide in both solvents under heating (Scheme 1).
It turned out that the nature of the solvent, as well as the reaction temperature, significantly
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affected the course of chemical transformation. The use of NMP as a solvent in the reaction
with copper(I) cyanide led to the complete decomposition of the starting bromide 1 (Table 1,
entries 1,2). The treatment of bromide 1 with CuCN in DMF at a temperature of 80 ◦C
gave the cyanation product 2 in trace amounts due to its very slow formation (Table 1,
entry 3). An increase in the reaction temperature led to an increase in the yield of the target
product 2; the highest yield was achieved at 140 ◦C (Table 1, entry 5). Other attempts to
improve the yield of cyanide 2 were unsuccessful; a reaction with potassium cyanide in
DMF or with zinc(II) cyanide in the presence of a tetrakis(triphenylphosphine)palladium
catalyst (Pd(PPh3)4) in NMP [19] only led to a slow decomposition of the starting bromide 1
(Table 1, entries 6,7).
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Table 1. Cyanation of 4-bromobenzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole) 1.

Entry Reagent Solvent Conditions
Yield, %

2 1

1 CuCN NMP 100 ◦C, 24 h 0 0
2 CuCN NMP 130 ◦C, 24 h 0 0
3 CuCN DMF 80 ◦C, 24 h 4 70
4 CuCN DMF 120 ◦C, 24 h 40 32
5 CuCN DMF 140 ◦C, 24 h 65 0
6 KCN DMF 120 ◦C, 24 h 0 82
7 Zn(CN)2 NMP Pd(PPh3)4, 120 ◦C, 24 h 0 60

The structure of benzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole)-4-carbonitrile 2 was con-
firmed by means of elemental analysis, high-resolution mass spectrometry, 1H, 13C NMR,
and IR spectroscopy. The presence of a cyano group in compound 2 was evidenced by
the appearance of a band at 2233 cm–1 in the IR spectrum and an intense signal in the 13C;
NMR spectrum (δ = 119.3 ppm).

In conclusion, benzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole)-4-carbonitrile 2 was synthe-
sized via the cyanation of 4-bromobenzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole) 1 with copper(I)
cyanide in DMF. The compound obtained may serve as a precursor for the preparation
of unsymmetrical 4,7-disubstituted benzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazoles) containing
a cyano group as organic optoelectronic materials via palladium-catalyzed C–H direct
arylation reactions with aryl and thienyl halogenides [10].

3. Materials and Methods

4-Bromobenzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole) 1 was prepared according to the pub-
lished method [9]. The solvents and reagents were purchased from commercial sources and
used as received. Elemental analysis was performed on a 2400 Elemental Analyzer (Perkin
Elmer Inc., Waltham, MA, USA). The 1H and 13C NMR spectra were determined with a
Bruker AM-300 machine (Bruker AXS Handheld Inc., Kennewick, WA, USA) (at frequencies
of 300 and 75 MHz) in CDCl3 solution. The high-resolution MS spectrum was measured
on a Bruker micrOTOF II instrument (Bruker Daltonik GmbH, Bremen, Germany) using
electrospray ionization (ESI). The IR spectrum was measured with a Bruker “Alpha-T”
instrument (Bruker Corporation, Billerica, Massachusetts, USA) in a KBr pellet.

Synthesis of benzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole)-4-carbonitrile 2 (Supplemen-
tary Materials).
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CuCN (161 mg, 1.81 mmol) was added to a solution of 4-bromobenzo[1,2-d:4,5-
d′]bis([1,2,3]thiadiazole) 1 (500 mg, 1.81 mmol) in anhydrous DMF (20 mL). The resulting
mixture was degassed with argon in a sealed vial and then stirred at 140 ◦C for 24 h. On
completion (monitored using TLC), water (80 mL) was added to the reaction mixture, and
the organic layer was extracted with CH2Cl2 (3 × 70 mL), dried with MgSO4 and then
concentrated in vacuo. The residue was purified via column chromatography on silica gel
(Silica gel Merck 60, eluent hexane–CH2Cl2, 1:1, v/v). Yield 257 mg (65%), red solid, Rf = 0.3
(hexane–CH2Cl2, 1:1, v/v). Mp = 186–187 ◦C. IR spectrum, ν, cm–1: 3077 and 2923 (CH),
2233 (CN), 1337, 1289, 1235, 1212, 880, 846, 815, 678, 551, 523. 1H NMR (ppm): δ 9.59 (s, 1H,
CH). 13C NMR (ppm): δ 157.7, 157.1, 143.8, 140.3, 119.3 (CN), 113.8, 98.7. HRMS (ESI-TOF),
m/z: calcd for C7HN5S2Ag [M+Ag]+, 325.8719, found, 325.8726. Anal. calcd. for C7HN5S2
(219.25): C, 38.35; H, 0.46; N, 31.94. Found: C, 38.20; H, 0.43; N, 31.82%.

Supplementary Materials: The following are available online: copies of 1H, 13C NMR, IR, and HR
mass spectra for compound 2.
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