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Abstract: We describe here the palladium hydrogenation of ethyl 5-(benzoyloxymethyl)isoxazole-3-
carboxylate. The presence of two reducible sites in the molecule, namely the benzylic-like position
and the isoxazole N–O bond, creates a possible competition. The results show that under the ap-
plied conditions, ethyl (Z)-2-amino-4-oxo-2-pentanoate is obtained as the only product. Accordingly, a
domino process occurs, consisting of deoxygenation to the 5-methylisoxazole derivative followed by
reductive opening of the isoxazole ring. The isoxazole substrate was prepared by NaOH-catalyzed
cycloaddition-condensation of ethyl nitroacetate and propargyl benzoate in water. Complete charac-
terizations of the isoxazole and Z-enaminone derivatives are reported.

Keywords: isoxazoles; cycloaddition; hydrogenation; nitro compounds; alkynes; β-enamino-ketoesters;
benzyl-like; deoxygenation

1. Introduction

We have developed an efficient synthetic protocol for the selective preparation of 3,5-
disubstituted isoxazoles starting from activated primary nitro compounds and alkynes. The
reaction is usually conducted in water or chloroform and involves the use of a simple and
inexpensive catalyst, such as sodium hydroxide or 1,4-diazabicyclo[2.2.2]octane (DABCO)
[Equation (1)] [1,2].
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1. Introduction 
We have developed an efficient synthetic protocol for the selective preparation of 3,5-

disubstituted isoxazoles starting from activated primary nitro compounds and alkynes. 
The reaction is usually conducted in water or chloroform and involves the use of a simple 
and inexpensive catalyst, such as sodium hydroxide or 1,4-diazabicyclo[2.2.2]octane 
(DABCO) [Equation (1)] [1,2]. 

Before this innovation, nitro compounds and alkynes involved in this process were 
combined with a dehydrating agent, the most popular of which was phenyl isocyanate 
[3]. The dehydrating agent was used in a stoichiometric amount and the process was 
intrinsically incompatible with water. 

Our catalyzed reaction has been studied with a wide range of functionalized and 
non-functionalized terminal alkynes [4]. Extension of the protocol to the synthesis of 5-
methylisoxazoles and the corresponding open derivatives, 2-acethyl enamines, would 
involve the use of volatile propyne (b.p. = −23 °C) [R = Me, Equation (1)]. In this case, the 
thermal reaction, which can be performed in a sealed tube, would present safety and 
scalability difficulties. Thus, for practical reasons, we planned to use a potential synthetic 
equivalent of propyne, such as propagylbenzoate [R = CH2OC(O)Ph, Equation (1)]). 

The retrosynthetic approach is based on catalytic hydrogenation to convert the 
primary adduct, isoxazol-5-ylmethyl benzoate, to the desired 5-methylisoxazole (Scheme 
1). This protocol presents two challenges: (i) the use of the methyleneisoxazole group [i.e., 
an isoxazole ring attached to a methylene (–CH2) moiety] as a benzyl-like group; and (ii) 
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Before this innovation, nitro compounds and alkynes involved in this process were
combined with a dehydrating agent, the most popular of which was phenyl isocyanate [3].
The dehydrating agent was used in a stoichiometric amount and the process was intrinsi-
cally incompatible with water.

Our catalyzed reaction has been studied with a wide range of functionalized and
non-functionalized terminal alkynes [4]. Extension of the protocol to the synthesis of
5-methylisoxazoles and the corresponding open derivatives, 2-acetyl enamines, would
involve the use of volatile propyne (b.p. = −23 ◦C) [R = Me, Equation (1)]. In this case,
the thermal reaction, which can be performed in a sealed tube, would present safety and
scalability difficulties. Thus, for practical reasons, we planned to use a potential synthetic
equivalent of propyne, such as propagylbenzoate [R = CH2OC(O)Ph, Equation (1)]).

The retrosynthetic approach is based on catalytic hydrogenation to convert the pri-
mary adduct, isoxazol-5-ylmethyl benzoate, to the desired 5-methylisoxazole (Scheme 1).
This protocol presents two challenges: (i) the use of the methyleneisoxazole group [i.e.,
an isoxazole ring attached to a methylene (–CH2) moiety] as a benzyl-like group; and
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(ii) performing selective hydrogenolysis of the benzyl-like group in the presence of a
reducible isoxazole N–O bond.
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Scheme 2. Synthesis and hydrogenation of isoxazole (3). 

With isoxazole (3) in hand, a series of palladium-catalyzed hydrogenations were 
carried out using different amounts of Pd (from 10 to 30 mol%) and various solvents with 
different polarities (ethyl acetate, tetrahydrofuran, and ethanol) (Table S1). The reactions 
were conducted at room temperature over a pressure of one atmosphere of hydrogen. 
Enaminone (5) was the only product obtained in all cases, with varying degrees of 
conversion of 3. 

The 1H and 13C NMR spectra in CDCl3 of 5 showed the presence of only one isomer. 
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Numerous examples of catalytic hydrogenation of isoxazole derivatives are reported
in the literature. Among them, in most cases the isoxazole ring is not affected by hy-
drogenolysis under mild conditions using palladium as a metal catalyst (for representative
examples of debenzylation, nitro group reduction, and double bond hydrogenation see
page 2297 of [5], page 5/6 of [6], and page S14 of [7]), and only in some cases the ring opens
to give an enaminone [8].

Concerning the benzyl-like properties of the methyleneisoxazole group with respect
to hydrogenolysis, only one example is described in the literature. In particular, a 5-
(acetamidomethyl)isoxazole is converted into a 2:1 mixture of denitrogenated enaminone
and 5-methyl-isoxazole derivatives by treatment with H2 in the presence of 5% Pd/C [9]
(p. 770).

We describe here the hydrogenation over Pd/C of ethyl 5-(benzoyloxymethyl)isoxazole-
3-carboxylate. The benzyl-like behavior of the methyleneisoxazole group was confirmed
because only a deoxygenated product was observed. Notably, with this substrate it was
not possible to isolate the intermediate 5-methylisoxazole since a domino process of two
sequential reductions occurred.

2. Results and Discussion

To verify the above idea, we first prepared the undescribed isoxazole (3) via cycloaddition-
condensation of propargyl benzoate (2) with ethyl nitroacetate (1). The reaction was
conducted in water at a temperature of 60 ◦C using sodium hydroxide as a catalyst. The
cycloadduct (3) was easily purified by standard silica gel chromatography and was obtained
in high yield (Scheme 2).
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Scheme 2. Synthesis and hydrogenation of isoxazole (3).

With isoxazole (3) in hand, a series of palladium-catalyzed hydrogenations were
carried out using different amounts of Pd (from 10 to 30 mol%) and various solvents
with different polarities (ethyl acetate, tetrahydrofuran, and ethanol) (Table S1). The
reactions were conducted at room temperature over a pressure of one atmosphere of
hydrogen. Enaminone (5) was the only product obtained in all cases, with varying degrees
of conversion of 3.
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The 1H and 13C NMR spectra in CDCl3 of 5 showed the presence of only one isomer.
The configurations of E- and Z-enaminones are commonly assigned considering

that a strong hydrogen bond between N–H and the carbonyl occurs in Z diastereomers,
causing the 1H–N shift to move to a higher frequency [10]. For E-isomers, an analogous
intramolecular hydrogen bond is not possible. Accordingly, the presence of two distinct
1H–N broad singlets at 5.77 and 8.97 ppm in the 1H NMR spectrum proved that 5 was
formed as a Z isomer with complete diastereoselectivity. As expected, the two N–H protons
in the E isomer were isochronous and resonated at 6.25 ppm as a single broad singlet [11].
Interestingly, the 13C NMR spectra of 5 and its E isomer were also quite different (Table 1).
In particular, the resonance of the methyl carbon in 5 was shifted downfield by 7.5 ppm
(30.3 vs. 22.8 ppm of 5 compared to E-enaminone), and the alkene carbons resonated at 96.8
and 145.5 ppm for Z-enaminone 5 and at 94.2 and >160 ppm for E-enaminone. Furthermore,
Mitani et al. [11] reported that they isolated E-enaminone as an oil, while 5 was a solid with
a melting point of 38.5–39.5 ◦C. On the contrary, the 1H and 13C NMR spectra of 5 and the
corresponding Z methyl ester reported by Terent’ev et al. [12] were identical except for the
carbinol signals (Table 1).

Table 1. 1H and 13C data (δ, ppm) for enaminones *.

Compound Config. 1H2N 1H3CCO 1HC=C 13CH3CO 13C=CH Lit.
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Z 5.77, 8.94 2.17 5.91 30.4 145.3 [12]

* NMR data recorded in CDCl3.

The experimental data confirmed that the methyleneisoxazole group indeed acted as a
benzyl-like group because the deoxygenation by hydrogenolysis was complete. Under the
applied conditions, 5-methylisoxazole (4) spontaneously undergoes N–O bond opening to
enaminone (5). Since the formation of the benzoyloxy enaminone was never observed, we
can conclude that hydrogenolysis of the methyleneisoxazole group was faster than opening
of the isoxazole ring.

3. Materials and Methods

Melting points were determined in open capillary tubes using a Stuart Scientific
SMP3 melting point apparatus. Chromatographic separations were performed on silica
gel 60 (40–6.3 mm) with analytical grade solvents, driven by a positive pressure of air;
Rf values refer to TLC (visualized with UV light and/or by dipping the plates into an
acidic solution of vanillin followed by heating with a heat gun). TLC was carried out
on alumina-backed plates coated with 25 mm silica gel (Merck F254) with the same elu-
ant as indicated for the column chromatography. The notation PE refers to petroleum
ether fraction boiling between 40 and 60 ◦C. Solvent removal was performed by evapo-
ration under reduced pressure at room temperature. 1H NMR spectra were recorded on
a Varian Mercury Plus 400 spectrometer operating at 400 MHz. 13C NMR spectra were
recorded on a Varian Gemini 200 spectrometer operating at 50.3 MHz. The 1H NMR data
are reported as s = singlet, d = doublet, t = triplet, m = multiplet or unresolved, and
br = broad signal, coupling constant(s) in Hz, integration. Multiplicity of the 13C NMR
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signals and assignments were determined by means of gHMQC and gHMBC experiments.
Chemical shifts were determined relative to the residual solvent peak (CHCl3: 7.24 ppm
for 1H NMR and 77.0 ppm for 13C NMR); ESI (electrospray ionization) mass spectra were
recorded (infusing the sample solution directly into the ESI chamber by syringe pump)
on a Thermo Fisher LCQ-Fleet ion-trap instrument, and spectra were recorded using
the ESI+ technique. Ion mass/charge ratios (m/z) are reported as values in atomic mass
units followed by the intensities relative to the base peak in parentheses. IR spectra were
recorded on an IRAaffinity-1S Shimadzu spectrophotometer; bands are characterized as
broad (br), strong (s), medium (m), and weak(w). Elemental analyses were performed with
a Thermo Scientific FlashSmart CHNS/O Elemental Analyzer. Propargyl benzoate (2) was
prepared from propargyl alcohol with benzoylchloride in the presence of triethyl amine
following a described procedure [13]. Palladium on charcoal was purchased from Merck
(Darmstadt, Germany).

Synthesis of ethyl 5-(benzoyloxymethyl)isoxazole-3-carboxylate (3): A solution of NaOH
(4.24 M, 0.040 mL, 0.170 mmol) was added to a mixture of propargyl benzoate (2) (272 mg,
1.70 mmol), ethyl nitroacetate (1) (564 mg, 4.24 mmol), water (4160 mg), and ethanol
(1280 mg), and the mixture was vigorously stirred in a sealed tube at 60 ◦C for 16 h. The
reaction mixture was concentrated and the residue was subjected to flash chromatography
on silica gel (eluant PE/AcOEt = 5:1 containing 3% of Et3N) to give isoxazole 3 (Rf = 0.36)
as clear oil (402 mg, 86% yield). 1H NMR (CDCl3, Figure S1): δ = 1.39 (t, J =7.2 Hz,
3 H, CH3CH2), 4.43 (q, 2 H; J =7.2 Hz; CH3CH2), 5.45 (s; 2 H, CH2O), 6.78 (s, 1 H; 4-H),
7.42 (tm, 2 H, J =7.8 Hz, Ph-H), 7.58 (t, 1 H, J = 7.8 Hz, Ph-H), 8.02 ppm (dm, 2 H, J = 7.8 Hz,
Ph-H); 13C NMR (CDCl3, Figure S1): δ = 14.0 (q, CH2CH3), 56.5 (t, CH2), 62.3 (t, CH3CH2),
104.7 (d, C-4), 128.5 (d, 2 C, Ph-C), 128.8 (s, Ph-C), 129.8 (d, 2 C, Ph-C); 133.6 (d, Ph-C), 156.5
(s, C-3), 159.5 (s, CO), 165.6 (s, CO), 168.6 ppm (s, C-5); IR (KBr): ν 3142 (w), 2983 (w), 1728
(s) [C=O], 1600 (m) [C=N], 1471 (m), 1452 (m), 1249 (s), 1201 (s), 1095 (s), 1070 (s), 1026 (s),
779 (m), 711 (s) cm−1; MS (ESI+, MeOH): m/z (%) = 276 (100) [M+1]+; Elemental analysis
calcd (%) for C14H13NO5 (275.26): C 61.09, H 4.76, N 5.09; found: C 60.91, H 4.61 N 4.82.

Synthesis of ethyl (Z)-2-amino-4-oxo-2-pentanoate (5): Pd/C (10%, 79 mg), 3 (102 mg,
0.37 mmol), and anhydrous EtOH (8 mL) were placed in a flask. Then, the reaction mixture
was placed under an atmosphere of hydrogen using a balloon.

The suspension was stirred at ambient temperature until starting enaminone (3) dis-
appeared on a TLC control (6 h, eluant: PE/AcOEt = 2:1, Rf = 0.67). After filtration
and evaporation of EtOH, the residue was subjected to column chromatography on sil-
ica gel (eluant: PE/AcOEt = 7:1 containing 3% of Et3N, then MeOH) to afford 5 (41 mg,
Rf = 0.42, 71% yield) as white solid and then benzoic acid triethylammonium salt (6·Et3N,
59 mg, 70%).

5: m.p. 38.5–39.5 ◦C (Lit. [14] m. p. 39 ◦C); 1H NMR (CDCl3, Figure S2): δ = 1.34 (t,
J = 7.2 Hz, 3 H, CH3CH2), 2.16 (s, 3 H, CH3CO), 4.30 (q, J = 7.2 Hz, 2 H, CH3CH2), 5.77 (br
s, 1 H, NH), 5.89 (s, 1 H, C=CH), 8.97 ppm (br s, 1 H, NH); 13C NMR (CDCl3, Figure S2):
δ 14.2 (q, CH2CH3), 30.3 (q, COCH3), 62.5 (t, CH3CH2), 96.8 (d, C=CH), 145.5 (s, C=CH),
163.9 (s, CO2Et), 199.6 ppm (s, COCH3); IR (KBr): ν 3431 (s) [N–H], 3287 (m) [N–H], 3172
(w) [=C–H], 3115 (w) [=C–H], 2997 (w) [C–H], 2974 (w) [C–H], 2941 (w) [C–H], 1716 (s)
[C=O], 1645 (m) [C=O], 1589 (m), 1539 (m), 1361 (m), 1278 (s), 1024 (m), 768 (m) cm−1; MS
(ESI+, MeOH): m/z (%) = 180 (100) [M + Na]+; Elemental analysis calcd (%) for C7H11NO3
(157.169): C 53.49, H 7.05, N 8.91; found: C 53.64, H 6.99 N 8.64.

6·Et3N: 1H NMR (CDCl3): δ = 1.30 (t, J = 7.4 Hz, 9 H, 3 × CH3CH2), 3.10 (q, J = 7.4 Hz,
6 H, 3 × CH3CH2), 7.38 (m, 3 H, Ph-H), 8.04 ppm (dd, J = 8.2 and 1.2 Hz, 2 H, Ph-H).

4. Conclusions

5-(Benzoyloxymethyl)isoxazole (3) was prepared by NaOH-catalyzed cycloaddition-
condensation in water. Hydrogenation of 3 in the presence of palladium on charcoal under
mild conditions afforded the deoxygenated Z-enaminonic compound through a domino
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double hydrogenolysis. Accordingly, propargylbenzoate (2) was successfully used as a
synthetic equivalent of propyne to prepare 2-acetyl enamine (5).

Supplementary Materials: Table S1: hydrogenation screening of 3; Figure S1: NMR spectra of
compound 3; Figure S2: NMR spectra of compound 5.
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