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Abstract: Herein, we report the synthesis of N-(3-chlorophenethyl)-4-nitrobenzamide in the reaction
between 2-(3-chlorophenyl)ethan-1-amine and 4-nitrobenzoyl chloride. The newly obtained bio-
functional hybrid molecule was fully characterized via 1H, 13C NMR, UV, and mass spectral data.
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1. Introduction

2-Phenylethylamine (PEA), holds significant importance in the realm of neuroscience
and pharmacology [1]. As a naturally occurring compound in the human body, PEA
acts as a neuromodulator, influencing mood, cognition, and behavior. Its role extends
to the regulation of neurotransmitter levels, particularly dopamine and norepinephrine,
contributing to feelings of euphoria and alertness. Beyond its endogenous functions,
PEA also serves as a precursor to various neurotransmitters, and plays a vital role in the
synthesis of catecholamines [2]. Moreover, PEA’s pharmacological properties have garnered
attention in drug discovery, with researchers exploring its potential therapeutic applications,
including in the treatment of mood disorders and attention deficit hyperactivity disorder
(ADHD) [3]. Thus, 2-phenylethylamine stands as a molecule of considerable importance,
both in understanding neural functions and as a target for therapeutic intervention.

Chlorine atoms have a proven, important role in various natural products [4]. Through
empirical observation, researchers have noted that strategically incorporating chlorine
into specific positions of biologically active molecules can notably enhance their inherent
biological activity [5].

In addition, the nitro group represents a versatile and valuable functional group in
drug design, contributing to a wide range of therapeutic agents with applications in antimi-
crobial therapy, cancer treatment, and beyond. Its diverse pharmacological effects make it
a compelling target for further exploration and innovation in medicinal chemistry [6].

Linking 2-phenylethan-1-amine and 4-nitrobenzoyl chloride is crucial for their joint
application in organic synthesis and pharmaceutical development. The former contributes
a versatile building block, while the latter enhances bioactivity with its nitro group. This
connection facilitates the synthesis of hybrid materials, crucial in medicinal chemistry. Un-
derstanding the mutagenic risks of nitroarenes is vital in drug design, underscoring the im-
portance of connecting these compounds for comprehensive pharmaceutical development.

Potent neurokinin-2 antagonists, like SR 48,968 and racemic 4-hydroxy-4-phenyl-
piperidine derivative of SR 48,968 (Figure 1), own the structure of N-(3-chlorophenethyl)
-4-nitrobenzamide without the nitro group [7].

Compounds sharing a similar structure are of great interest to the scientific com-
munity, due to their utility as convenient intermediates for synthesizing diverse cyclic
compounds [8,9]. Moreover, other compounds exhibiting a similar structure demonstrate
antitumor [10] and neurotropic [11] activities, among others.
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Figure 1. Highly effective neurokinin-2 antagonists include: SR 48,968 and its racemic 4-hydroxy-4-
phenyl piperidine derivative. 

Compounds sharing a similar structure are of great interest to the scientific commu-
nity, due to their utility as convenient intermediates for synthesizing diverse cyclic com-
pounds [8,9]. Moreover, other compounds exhibiting a similar structure demonstrate an-
titumor [10] and neurotropic [11] activities, among others. 

2. Results and Discussion 
Here, we present the successful synthesis of N-(3-chlorophenethyl)-4-nitroben-

zamide 3, as illustrated in Scheme 1. To achieve this, 4-nitrobenzoyl chloride 2 (1 mmol) 
was introduced into a solution of 2-(3-chlorophenyl)ethan-1-amine 1 (1 mmol) in dichloro-
methane. The resulting mixture was stirred for ten minutes, followed by the careful addi-
tion of an excess of trimethylamine (1.5 mmol). Within 30 min, TLC analysis confirmed 
the formation of the desired product 3. This reaction, known as the Schotten–Baumann 
reaction, provides a facile and rapid method for synthesizing amide bonds from amines 
and acyl chlorides. 

 
Scheme 1. Synthesis of N-(3-chlorophenethyl)-4-nitrobenzamide 3. 

The novelty of molecule 3 is confirmed through the Reaxys online platform, estab-
lishing it as a new compound. Extensive characterization, including determination of its 

Figure 1. Highly effective neurokinin-2 antagonists include: SR 48,968 and its racemic 4-hydroxy-4-
phenyl piperidine derivative.

2. Results and Discussion

Here, we present the successful synthesis of N-(3-chlorophenethyl)-4-nitrobenzamide
3, as illustrated in Scheme 1. To achieve this, 4-nitrobenzoyl chloride 2 (1 mmol) was intro-
duced into a solution of 2-(3-chlorophenyl)ethan-1-amine 1 (1 mmol) in dichloromethane.
The resulting mixture was stirred for ten minutes, followed by the careful addition of an
excess of trimethylamine (1.5 mmol). Within 30 min, TLC analysis confirmed the formation
of the desired product 3. This reaction, known as the Schotten–Baumann reaction, provides
a facile and rapid method for synthesizing amide bonds from amines and acyl chlorides.
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Scheme 1. Synthesis of N-(3-chlorophenethyl)-4-nitrobenzamide 3.

The novelty of molecule 3 is confirmed through the Reaxys online platform, estab-
lishing it as a new compound. Extensive characterization, including determination of
its melting point and analysis using 1H-, 13C-NMR, UV spectroscopy, and detailed mass
spectral analysis, is conducted to thoroughly understand its properties. Additionally,
the fragmentation of this unique amide molecule 3 is observed through cleavage of the
amide bond.
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The amide molecule 3 undergoes fragmentation through two pathways: one involves
cleaving the amide bond (pathway 1), while the other pathway involves breaking the
sigma bond between the amide bond and the αC-atom (pathway 2), as illustrated in
Figure 2. These pathways result in the formation of characteristic ions representing the
nitrophenylacyl fragment. For instance, pathway 1 yields the (4-nitrobenzylidyne)oxonium
cation with m/z 150, while pathway 2 produces the 4-nitrobenzamidic cation with m/z 167.
Furthermore, pathway 2 yielded the 2-(3-chlorophenyl)ethan-1-ylium cation with m/z
139, as depicted in Figure 2 and Figure S2. The (4-nitrobenzylidyne)oxonium cation,
which forms as a result, exhibits resonance stability and displays the highest intensity.
Under ESI-MS conditions, it undergoes an N-rearrangement, accompanied by the cleavage
of the NO• radical (resulting in a loss of 30 Da), giving rise to a resonance-stabilized
radical cation C7H4O2

+• with m/z 120, as illustrated in Figure 2 and Figure S2. Following
this, the identical cation sheds a neutral CO molecule, leading to an ion with m/z 92.
Upon thorough scrutiny of the mass spectrum, a notable observation emerges: an ion
with m/z 103 is obtained, prompting the identification of two pathways for its formation
(pathway A and pathway B). Under ESI-MS conditions, the 2-(3-chlorophenyl)ethan-1-
ylium cation experiences the removal of a neutral HCl molecule, resulting in the generation
of the 2-(cyclohexa-1,5-dien-3-yn-1-yl)ethan-1-ylium cation (C8H7

+), as part of pathway A.
Moreover, it is likely that the identical ion can also be generated through cleavage of the
NH-C(O) bond (pathway 1), resulting in the formation of the 2-(3-chlorophenyl)ethan-1-
aminium (C8H11NCl+) cation as part of pathway B. The same cation undergoes the loss of
a neutral NH3 molecule, resulting in the generation of a 2-(3-chlorophenyl)ethen-1-ylium
(C8H6Cl+) cation, followed by the subsequent loss of HCl, ultimately yielding the cation
with m/z 103 as described in pathway B, as illustrated in Figure 2 and Figure S2.
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3. Materials and Methods

All reagents and chemicals were sourced from commercial suppliers (Sigma-Aldrich
S.A., St. Louis, MO, USA and Riedel-de Haën, Sofia, Bulgaria) and utilized without
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additional purification. NMR spectral data were collected on a Bruker Avance Neo
400 spectrometer (BAS-IOCCP—Sofia, Bruker, Billerica, MA, USA) operating at 400 MHz
for 1H NMR and 101 MHz for 13C NMR. Spectra were acquired in DMSO-d6, with chemical
shifts referenced in relative ppm to tetramethylsilane (TMS) (δ = 0.00 ppm) as an internal
standard, and coupling constants reported in Hz. Measurements were conducted at room
temperature (approximately 295 K). Melting points were determined using a Boetius hot
stage apparatus, and are reported without correction. Absorbance measurements were car-
ried out using a Camspec M508 spectrophotometer, Leeds, UK. MS analysis was performed
on a Q Exactive Plus high-resolution mass spectrometer (HRMS) with a heated electrospray
ionization source (HESI-II) from Thermo Fisher Scientific, Inc., Bremen, Germany, coupled
with a Dionex Ultimate 3000RSLC ultrahigh-performance liquid chromatography (UHPLC)
system (Thermo Fisher Scientific, Inc., Waltham, MA, USA). TLC was conducted on 0.2 mm
Fluka silica gel 60 plates (Merck KGaA, Darmstadt, Germany).

Synthesis of N-(2,2-diphenylethyl)-4-nitrobenzamide

A solution of 2-(3-chlorophenyl)ethan-1-amine 1 (1 mmol, 0.155 g) in 30 mL of
dichloromethane was prepared, to which an equivalent amount of 4-nitrobenzoyl chloride
2 (1 mmol, 0.185 g) was added. After 10 min, triethylamine (1.2 mmol, 0.121 g) was intro-
duced into the solution. Following 30 min, the solution underwent sequential washing
with diluted hydrochloric acid, a saturated solution of Na2CO3, and brine. The combined
organic layers were subsequently dried over anhydrous Na2SO4, and the solvent was
evaporated under reduced pressure. The purification of the novel hybrid molecule was
achieved by passing it through short-column chromatography using neutral Al2O3.

N-(3-chlorophenethyl)-4-nitrobenzamide 3: white solid (m.p. 147–149 ◦C), yield 90%
(0.275 g), Rf = 0.51 (chloroform/diethyl ether/n-hexane = 6/3/1), 1H NMR (400 MHz,
DMSO) δ 8.95 (t, J = 5.6 Hz, 1H), 8.40–8.33 (AA’BB pattern, 2H), 8.13–8.04 (AA’BB’ pat-
tern, 2H), 7.40–7.36 (m, 2H), 7.32 (ddd, J = 8.0, 2.1, 1.3 Hz, 1H), 7.27 (dt, J = 7.4, 1.5 Hz,
1H), 3.59 (ddd, J = 7.5, 6.7, 5.6 Hz, 2H), 2.94 (t, J = 7.2 Hz, 2H). 13C NMR (101 MHz,
DMSO) δ 165.05 (C=O), 149.43 (Ar), 142.44 (Ar), 140.59 (Ar), 133.39 (Ar), 130.59 (Ar),
129.06 (Ar), 129.03 (Ar), 127.96 (Ar), 126.62 (Ar), 124.00 (Ar), 41.09 (CH2-CH2-NH), 34.81
(Ph-CH2-CH2). UV λmax, MeOH: 239 (ε = 14,100) nm, 290 (ε = 11,700) nm. HRMS Electro-
spray ionization (ESI) m/z calcd for [M+H]+ C15H14N2O3Cl+ = 305.0688, found 305.0683
(mass error ∆m = −1.31 ppm).

Supplementary Materials: The following supporting information can be downloaded online.
Figure S1: 1H-NMR spectrum of compound 3; Figure S2: 13C-NMR spectrum of compound 3;
Figure S3: UV spectrum of compound 3; Figure S4: ESI-HRMS of compound 3; Figure S5: Mass
spectrum of compound 3 obtained by positive ion ESI-MS/MS.
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