Figure S1. The 1H-NMR spectrum corresponding to newly synthesized compound 4, recorded in DMSO-d_6 at 297 K. A better visualization of the aromatic signals is presented in the insert. The signal resonating around 13 ppm, assigned to OH proton, is included in the left-side insert.
Figure S2. The 13C-NMR spectrum corresponding to newly synthesized compound 4, recorded in DMSO-d_6 at 333 K. A better visualization of the aromatic signals is presented in the insert.
Figure S3. The H,H-TOCSY spectrum corresponding to newly synthesized compound 4, recorded at 333 K.
Figure S4. The H,C-HSQC spectrum corresponding to newly synthesized compound 4, recorded at 333 K.
Figure S5. The H,C-HMBC spectrum corresponding to newly synthesized compound 4, recorded at 333 K.
Figure S6. HRMS-ESI spectrum with isotopic pattern in negative mode for compound 4. Upper trace (red) – simulated pattern, lower trace (black) – experimental spectrum for C_{54}H_{35}I_{4}N_{4}O_{8} [M-H].

Figure S7. FT-IR spectrum of compound 4.
Figure S8. The 1H-NMR spectrum corresponding to synthesized compound 5, recorded in DMSO-d$_6$.
Figure S9. The 13C-NMR spectrum corresponding to synthesized compound 5, recorded in DMSO-d$_6$.
Figure S10. FT-IR spectrum of compound 5.