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Abstract: The present study investigated the effects of glycyrrhizin (GRZ) on 
neuroinflammation and memory deficit in systemic lipopolysaccharide (LPS)-treated 
C57BL/6 mice. Varying doses of GRZ was orally administered (10, 30, or 50 mg/kg) once 
a day for 3 days before the LPS (3 mg/kg) injection. At 24 h after the LPS injection, GRZ 
significantly reduced TNF-α and IL-1β mRNA at doses of 30 and 50 mg/kg. COX-2 and 
iNOS protein expressions were significantly reduced by GRZ at doses of 30 and 50 mg/kg. 
In the Morris water maze test, GRZ (30 mg/kg) significantly prolonged the swimming time 
spent in the target and peri-target zones. GRZ also significantly increased the target 
heading and memory score numbers. In the hippocampal tissue, GRZ significantly reduced 
the up-regulated Iba1 protein expression and the average cell size of Iba1-expressing 
microglia induced by LPS. The results indicate that GRZ ameliorated the memory deficit 
induced by systemic LPS treatment and the effect of GRZ was found to be mediated 
through the inhibition of pro-inflammatory mediators and microglial activation in the  
brain tissue. This study supports that GRZ may be a putative therapeutic drug on 
neurodegenerative diseases associated with cognitive deficits and neuroinflammation such 
as Alzheimer’s disease. 
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1. Introduction 

Glycyrrhizin (GRZ), a triterpenoid saponin compound, is the main constituent of Glycyrrhiza glabra 

and is composed of a molecule of glycyrrhetinic acid and two molecules of glucuronic acid [1,2]. GRZ 

given orally is absorbed into the bloodstream as 18β-glycyrrhetinic acid (GA), then GA reaches the 

brain through the brain-blood barrier [3]. GRZ has been reported to have various pharmacological 

effects, including anti-inflammatory and neuroprotective effects. Its anti-inflammatory outcome is by 

suppressing the expression of pro-inflammatory cytokine genes through the inhibition of nuclear 

factor-κB (NF-κB) and phosphoinositide-3-kinase (PI3K) activity [4], and by attenuating excessive 

nitric oxide (NO) and reactive oxygen species (ROS) production [4,5]. GRZ also suppresses inducible 

nitric oxide synthase (iNOS) expression and reduces prostaglandin E2 (PGE2) release through the 

inhibition of cyclooxygenase-2 (COX-2) [6,7]. It is suggested that the inhibitory action of GRZ on NF-κB 

and PI3K activities protect neurons from glutamate-induced excitotoxicity and ischemic injury [8,9]. 

Recently, a line of in vivo studies reported that GRZ exerted neuroprotective effects against cerebral 

ischemia, intracerebral hemorrhage, and ischemic spinal cord injury via its anti-inflammatory 

effects [10–13]. These reports suggested that GRZ plays an inhibitory role on high mobility group 

box 1 (HMGB1) protein. HMGB1 behaves like an early pro-inflammatory cytokine to promote 

inflammation [14] and serves as a risk factor for memory impairment, neurodegeneration, and 

progression of neuroinflammation [15]. Moreover, previous reports exhibited that GRZ has  

spatial memory enhancing effect [1] and ameliorating effect on cognitive impairment induced by  

beta-amyloid (Aβ) injection into the hippocampus [16]. The cognitive ameliorating effect of GRZ was 

supported by its suppressing effect on Aβ-induced microglial activation and inflammation in vitro and 

in vivo [17]. 

Neuroinflammation, the inflammation associated with the brain, is characterized by the activation of 

microglia and expression of major inflammatory mediators without typical features of peripheral 

inflammation such as edema and neutrophil infiltration [18]. Neuroinflammation causes cognitive 

impairment, even if it is acutely stimulated by immunostimulatory component such as lipopolysaccharide 

(LPS) [19]; and its chronic state contributes to progression of neurodegenerative diseases including 

Alzheimer’s disease (AD) [20]. Systemic treatment of LPS stimulates the inflammatory responses in 

the brain through the toll-like receptor-4 mediated signaling pathway [21]. Upon exposure to LPS, 

microglia are activated and produce pro-inflammatory mediators such as cytokines, chemokines, 

prostanoids, and reactive oxygen species [22]. Microglia are the primary cellular source of  

pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α) and interleukin (IL)-1β, 

detected in the brain [23]. Pro-inflammatory cytokines disrupt hippocampal neuronal functions such as 

long-term potentiation (LTP) and working memory consolidation [24,25]. Consequently, LPS induces 

a complex array of behaviors known as “sickness behaviors” [26] and leads to alterations in central 

processes involved in learning and memory [19,27]. Therefore, systemic or intraventricular LPS 

injection into rodents is popularly used as a model for studying the interaction between inflammation, 

brain functions, and memory deficits [19,24,25,27]. 

To better understand anti-neuroinflammatory effect of GRZ, the present study investigated its 

effects on TNF-α, IL-1β, COX-2, and iNOS expression in the brain tissue; microglial activation in the 

hippocampus; and on learning and memory deficits induced by systemic LPS treatment in mice. 
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2. Results and Discussion 

2.1. Effects on TNF-α and IL-1β Expressions in the Brain Tissue of LPS-Treated Mice 

Systemic treatment of LPS stimulates pro-inflammatory cytokines, including TNF-α and IL-1β, in 

the brain. Compared to serum, the brain showed significantly higher levels of TNF-α and IL-1β, 28 h 

post a single systemic injection of LPS [28]. Additionally, mRNA/protein expression of inflammatory 

mediators in the brain appeared within 4–8 h and subsided in 1–3 days after a single LPS injection [29,30]. 

In this study, TNF-α and IL-1β mRNA levels were measured 24 h after LPS (3 mg/kg) injection.  

LPS induced robust increases of TNF-α and IL-1β mRNA in the brain tissue compared to the  

normal group. GRZ treatment significantly reduced TNF-α mRNA level at all doses of 10, 30 and  

50 mg/kg (p < 0.05; respectively) and decreased IL-1β mRNA level at doses of 30 and 50 mg/kg  

(p < 0.05; respectively) compared to the LPS group (Figure 1). In addition, TNF-α expression was 

observed with immunohistochemistry in the brain tissue of the mice which performed the Morris water 

maze test. The LPS group showed significant increases of relative density of TNF-α expression in the 

cerebral cortex (p < 0.001) and dentate gyrus (DG) region of the hippocampus (p < 0.001) compared to 

that of the normal group. The LPS+GRZ group (30 mg/kg) demonstrated significant reductions in 

relative densities of TNF-α expression in the cerebral cortex (p < 0.05) and DG region of the 

hippocampus (p < 0.01) compared to that of the LPS group (Figure 2A,B). The results in this study 

indicate that GRZ reduced the over-expression of TNF-α and IL-1β induced by systemic LPS 

treatment in the brain tissue. Previous reports have demonstrated that GRZ effectively suppressed 

TNF-α and IL-1β expression in ulcerative colitis [31], in post ischemic brain [10], and in spinal cord 

injuries [12,13]. The results suggest that GRZ exerts anti-neuroinflammatory effects. 

Figure 1. Effects of GRZ on TNF-α and IL-1β mRNA in the brain tissue. GRZ 

significantly attenuated the up-regulation of brain TNF-α mRNA at all doses of 10, 30 and 

50 mg/kg (A) IL-1β mRNA was attenuated at 30 and 50 mg/kg of GRZ; and (B) Data are 

represented by mean ± SEM (n = 6 in each group; * p < 0.05 compared to the LPS group). 
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Figure 2. Effect of GRZ on TNF-α, COX-2, and iNOS expression in brain tissue 

immunohistochemistry. Representative TNF-α-, COX-2- and iNOS-expressing cells in the 

brain tissue of mice which performed the Morris water maze test. Scale bars are 100 μm 

(A,C,E) GRZ (30 mg/kg) significantly attenuated the relative immune-densities of TNF-α 

(B) COX-2 (D) and iNOS; and (F) in the cerebral cortex or in the dentate gyrus of 

hippocampus. Data are represented by mean ± SEM (n = 6 in each group; * p < 0.05;  

** p < 0.01; *** p < 0.001 compared to the LPS group). 

 

2.2. Effects on COX-2 and iNOS Expressions in the Brain Tissue of LPS-Treated Mice 

COX-2 plays a central role in the inflammatory cascade by producing prostaglandin in acute and 

chronic inflammatory conditions [32]. NO is a major pleiotrophic mediator produced by iNOS and 

reacts with superoxide to form the powerful oxidant peroxynitrite [33]. In this study, COX-2 and iNOS 

expressions were measured 24 h post LPS injection using a western blotting method. GRZ treatment 

significantly reduced the increase of COX-2 expression at all doses of 10, 30 and 50 mg/kg  

(p < 0.01, p < 0.001, p < 0.001; respectively) and also reduced the increase of iNOS expression at 

doses of 30 and 50 mg/kg (p < 0.05, p < 0.01; respectively) compared to the LPS group (Figure 3). In 

addition, COX-2 and iNOS expressions were observed with immunohistochemistry in the brain tissue 

of the mice which performed the Morris water maze test. The LPS+GRZ group (30 mg/kg) 

demonstrated significant reductions in relative densities of COX-2 and iNOS expression in the cerebral 
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cortex and DG region of the hippocampus compared to that of the LPS group (Figure 2C–F). The 

results support that GRZ exerts anti-neuroinflammatory effect, considering a line of results in previous 

studies and its effects on TNF-α and IL-1β mRNA in the present study. GRZ has been shown to 

suppress COX-2 and iNOS expressions in acute lung injury induced by LPS treatment [6]. GRZ also 

showed an anti-inflammatory effect by attenuating the generation of excessive NO, PGE2, and ROS 

through the inhibition of NF-κB and PI3K activity in various in vitro and in vivo studies [4–8]. 

Figure 3. Effects of GRZ on COX-2 and iNOS protein expression in the brain tissue. 

Representative western blots illustrating differences in the bands of COX-2 and iNOS  

(A) GRZ significantly attenuated the up-regulation of brain COX-2 expression at all doses 

of 10, 30 and 50 mg/kg; (B) and iNOS expression was attenuated at 30 and 50 mg/kg of 

GRZ; and (C) Data are represented by mean ± SEM (n = 6 in each group; ** p < 0.01;  

*** p < 0.001 compared to the LPS group). 

 

2.3. Effect on Microglial Activation in the Hippocampal Tissue of LPS-Treated Mice 

To better understand GRZ’s anti-neuroinflammatory effect in the hippocampus, observation of 

microglial activation in the hippocampal tissue of mice was performed in the Morris water maze test. 

Microglia are key cellular elements of the acute neuroinflammatory response and the primary source 

for pro-inflammatory cytokines detected in the brain [23]. Systemic LPS injection promotes 

neuroinflammation through microgial activation and overproduction of inflammatory cytokines [34]. 

Activated microglia are also responsible for the induction of COX-2 and iNOS in the brain following 

LPS stimulation [35]. Ionized calcium binding adaptor molecule 1 (Iba1) protein expression, a marker 

of microglial activation in the hippocampal tissue was measured 24 h after the LPS injection using 

Western blotting method. GRZ treatment significantly reduced Iba1 expression at a dose of 30 mg/kg 

(p < 0.05) compared to the LPS group (Figure 4A). When microglia are activated in response to 

immunological stimulation such as LPS, they undergo morphological changes which include 
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shortening and thickening of processes and cell size increase [23]. Therefore, cell number and cell size 

of Iba1-expressing microglia in the CA1 and DG region of the hippocampus were measured. Although 

GRZ treatment did not attenuate the number of Iba1-expressing microglia both in the CA1 and DG 

region of the hippocampus compared to that of the LPS group (Figure 4B,C), the average cell size of 

the Iba1-expressing microglia was significantly decreased by GRZ treatment both in the CA1 (p < 0.05) 

and DG region (p < 0.05) of the hippocampus compared to that of the LPS group (Figure 4B,D). The 

results indicate that GRZ attenuated the microglial activation related over-expression of pro-inflammatory 

cytokines in the hippocampus induced by systemic LPS treatment. 

Figure 4. Effects of GRZ on Iba1 protein expression and Iba1-expressing microglia in the 

hippocampal tissue. Representative western blots illustrating differences in the bands of 

Iba1 (A) GRZ (30 mg/kg) significantly attenuated the up-regulation of hippocampal  

Iba1 expression of mice which performed the Morris water maze test. Representative  

Iba1-expressing microglia in the hippocampus of mice which performed the Morris water 

maze test. Scale bars are 100 μm (B) The numbers of Iba1-expressing microglia were not 

different between groups (C). The average cell size of Iba1-expressing microglia was 

significantly attenuated at 30 mg/kg of GRZ; and (D) Data are represented by mean ± SEM  

(n = 6 in each group; ††† p < 0.001 compared to the normal group; * p < 0.05 compared to 

the LPS group). 
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2.4. Effect on Spatial Learning of LPS-Treated Mice 

TNF-α and IL-1β are the most potent pro-inflammatory cytokines to induce behavioral alterations. 

Elevated levels of TNF-α have been demonstrated in AD patients [36]. TNF-α protein synthesis 

inhibitor reversed cognitive deficits induced by chronic LPS-infusion into the ventricle of rats [37]. IL-1β 

reduced adult hippocampal neurogenesis [38], induced synaptic loss of hippocampal neurons [39], and 

aggravated long-term potentiation (LTP) and synaptic plasticity in the hippocampus [40]. Direct 

central administration of IL-1β impaired hippocampal-dependent learning and memory [41]. 

Moreover, microglial activation is involved in learning and memory impairment through the release of 

TNF-α and IL-1β and the negative impact on hippocampal LTP [42]. There are numerous reports that 

systemic LPS treatment produces learning and memory impairment, even if it is acutely stimulated by 

a single injection of LPS [19]. In the acquisition trials before the LPS treatment, all study groups 

showed relatively comparable results in the escape latency on the 1st day (F2,21 = 0.255, p = 0.777) and 

2nd day (F2,21 = 0.159, p = 0.854). After LPS treatment on the 3rd day, the escape latency of the LPS 

group was significantly longer compared to the normal group (F1,14 = 30.16, p < 0.001), while the 

escape latency between groups (normal, LPS, and LPS+GRZ) was significantly different (F2,21 = 12.19,  

p < 0.001). The LPS + GRZ group showed significantly shorter escape latency at the 7th and 8th trials 

on the 3rd day (p < 0.05, respectively), while the escape latencies for all the trials on the 3rd day were 

significantly shorter than that of the LPS group (F1,14 = 5.164, p < 0.05) (Figure 5). The results indicate 

that pre-treatment of GRZ was effective in improving spatial learning of LPS-treated mice. 

Figure 5. Effect of GRZ on the acquisition training trials. The escape latencies on the 1st 

and 2nd day were not different among the normal, LPS, and LPS + GRZ groups (F2,21 = 0.33, 

p = 0.723; F2,21 = 0.13, p = 0.882; respectively). The LPS + GRZ group showed 

significantly shorter escape latency at the 7th and 8th trials on the 3rd day, while the escape 

latency for the total trials on the 3rd day was significantly different from the LPS group 

(F1,14 = 1.98, p = 0.181). Data are represented by mean ± SEM (n = 12 in each group;  

† p < 0.05; †† p < 0.01; ††† p < 0.001 compared to the normal group; * p < 0.05 compared 

to the LPS group). 

 

(s
) 
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2.5. Effects on Memory Deficit of LPS-Treated Mice 

In the retention trial on the 4th day of the Morris water maze test, the swimming time spent in the 

various zones, number of the target heading and memory score were analyzed with a grid design of six 

zones (Figure 6A) and were used to estimate spatial memory. The LPS group spent significantly less 

time in zones A (the target, p < 0.001) and B (peri-target area, p < 0.001), but significantly more time 

in zone F (dis-target area, p < 0.001) compared to those of the normal group. GRZ treatment 

significantly prolonged the swimming time spent in zones A (p < 0.01) and B (p < 0.01) and 

significantly shortened the swimming time spent in zone F (p < 0.05) compared to that of the LPS 

group (Figure 6B). The number of target heading in the LPS group was significantly reduced (p < 0.01) 

compared to the normal group, while GRZ treatment significantly increased the number of target 

heading (p < 0.05) compared to the LPS group (Figure 7A,B). The LPS group revealed significantly 

lower memory score (p < 0.001) than that of the normal group, while the memory score of the  

LPS + GRZ group was significantly higher (p < 0.01) than that of the LPS group (Figure 7A,C). The 

results indicate that pre-treatment of GRZ was effective in ameliorating spatial memory of LPS-treated 

mice. The average swimming speed (cm/sec) in the retention trials was not different among three 

groups (normal, 21.9 ± 1.5; LPS, 20.2 ± 0.5; LPS + GRZ, 21.3 ± 1.2). The result suggests that GRZ 

might not affect locomotor and emotional behavior. 

Figure 6. Effects of GRZ on the swimming time spent in discrete zones. Computerized 

grid design used in the retention test. Discrete zones are labeled with letters, zone A 

representing the platform site (A) GRZ significantly prolonged the swimming time spent in 

zones A and B, while significantly shortened in zone F; and (B) Data are represented by  

mean ± SEM (n = 12 in each group; ††† p < 0.001 compared to the normal group; * p < 0.05; 

** p < 0.01 compared to the LPS group). 

 
  

(s
) 
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Figure 7. Effects of GRZ on the retention memory test. Representative swimming tracts of 

the normal, LPS, and LPS+GRZ groups (A) GRZ significantly increased the number of 

target heading on platform site (B) and memory score; and (C) in the retention test. Data 

are represented by mean ± SEM (n = 12 in each group; †† p < 0.01; ††† p < 0.001 

compared to the normal group; * p < 0.05; ** p < 0.01 compared to the LPS group). 

 

Recently, Zhu et al. and Zhao et al. demonstrated that diammonium glycyrrhizinate, a salt form of 

GRZ, significantly decreased the escape latency and search distance and increased the target crossing 

times of Aβ(1-42)-induced AD mice [16,17]. The previous reports showed the anti-inflammatory 

effect of GRZ using in vitro BV-2 cells. This study demonstrated the anti-neuroinflammatory effect of 

GRZ using the brain tissue in vivo and used a salt form of GRZ, monoammonium glycyrrhizinate, 

which has more stable and more significant bioactivities than GRZ. TNF-α and IL-1β inhibit LTP in 

the CA1 and the dentate gyrus regions of the hippocampus [43]. COX-2 inhibition improves 

suppression of memory and synaptic plasticity [44]. iNOS upregulation interrupts memory 

consolidation by altering cholinergic function [45]. Therefore, suppression of these neuroinflammatory 

mediators can lead to improvement in cognitive function. In the present study, GRZ significantly 

reduced the up-regulations of TNF-α, IL-1β, COX-2, and iNOS in the brain tissue induced by LPS 

treatment. Considering all results in this study, it is suggested that GRZ effectively ameliorated the 

memory deficits induced by systemic LPS treatment through the inhibition of pro-inflammatory 

cytokines and microglial activation in the brain tissue. 
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3. Experimental 

3.1. Animals 

Male C57BL/6 mice (25–28 g, Nara Biotechnology, Seoul, Korea) were used for this study. All 
animal protocols were approved by the Ethics Committee for the Care and Use of Laboratory Animals 
at Kyung Hee University. The animals were housed in plastic cages at constant temperature (22 ± 2 °C) 
and humidity (55 ± 10%) with 12 h–12 h light-dark conditions. The animals were allowed free access 
to food and water before the experiment. 

3.2. Materials 

Glycyrrhizin (a salt form of GRZ; monoammonium glycyrrhizinate from glycyrrhiza root, 
C42H62O16·NH3; Figure 8) and lipopolysaccharide (LPS from Escherichia coli O55:B5) were 
purchased from Sigma-Aldrich (St. Louis, MO, USA). Anti-COX-2 antibody was purchased from 
Cayman Chemical (Ann Arbor, MI, USA); Anti-iNOS) antibody from BD Biosciences (Laguna Hills, 
CA, USA); Anti-Iba1 antibodies (#016-20001, #019-19741) from Wako Pure Chemical Industries 
(Osaka, Japan); Anti-β-actin antibody from Chemicon International (Temecula, CA, USA); Anti-TNF-α 
antibody from Santa Cruz Biotechnology (Santa Cruz, CA, USA); and Cy2-conjugated donkey anti-
mouse or donkey anti-rabbit IgG from Jackson ImmunoReseach Laboratories (West Grove, PA, USA). 

Figure 8. Chemical structure of GRZ (a salt form, monoammonium glycyrrhizinate). 

 
3.3. Experimental Groups 

For the quantitative real-time polymerase chain reaction (PCR) and western blotting studies, mice 

were randomly divided into five groups. The normal group (Normal) was allowed free access to food 

and water without any treatment. The control group (LPS) was intraperitoneally (i.p.) injected with a 

single dose of LPS (3 mg/kg) and received vehicle (normal saline) orally. The GRZ treatment groups 

[LPS + GRZ(10), LPS + GRZ(30), LPS + GRZ(50)] were administered GRZ (10, 30, or 50 mg/kg, 

dissolved in normal saline, orally) respectively, once daily for 3 days before receiving LPS injection. 

For the Morris water maze study, mice were randomly divided into three groups. The normal group 

(Normal) was also allowed free access to food and water without any treatment. While the control 

group (LPS) was intraperitoneally injected with a single dose of LPS (3 mg/kg) on the 3rd day of the 

experiment. The GRZ treatment group (LPS + GRZ) was administered 30 mg/kg of GRZ, a reliable 

dose from the PCR and western blotting studies, once daily for 3 days prior to the LPS injection. They 
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were also administered one additional dose 2 h before the retention test on 4th day of the experiment. 

A total of 66 mice, 30 mice for the PCR and the western blotting study and 36 mice for the Morris 

water maze study were used. 

3.4. Real-Time PCR Measurement 

Pro-inflammatory cytokines, TNF-α and IL-1β in the brain tissue were measured using real-time 

PCR method. Twenty-four hours after the LPS injection, the mice were sacrificed by decapitation and 

the brain was rapidly dissected on ice. Total RNA was extracted from the samples with Trizol (Qiagen, 

Germany) according to the manufacturer’s protocol. One microgram of total RNA was transcribed into 

DNA using iScript cDNA synthesis Kit (Bio-Rad, Hercules, CA, USA). After reverse transcription, 

quantitative real-time PCR was performed using preoptimized primer/probe mixture with iQ SYBR 

Green Supermix kit (Bio-Rad) and the CFX 96 RT-PCR Detection System (Bio-Rad). Primer 

sequences for the analyzed genes were as follows: (1) TNF-α; forward, 5'-TGA GAA GTT CCC AAA 

TGG C-3'; reverse, 5'-GCT ACA GGC TTG TCA CTC-3'; (2) IL-1β; forward, 5'-TGA GCA CCT 

TCT TTT CCT TCA-3'; reverse, 5'-TTG TCT AAT GGG AAC GTC ACA C-3'; (3) β-actin; forward, 

5'-TTT CCA GCC TTC CTT GGG TAT G-3'; reverse, 5'-CAC TGT GTT GGC ATA GAG GTC TTT 

AC-3'. The relative difference in expression between samples is represented by cycle time values 

normalized to the measurement of the housekeeping gene β-actin as a reference. The sample values 

represent x-fold differences from a normal sample (given as a designated value of 1) within the  

same experiment. 

3.5. Western Blotting 

COX-2 and iNOS expression in the brain tissue and Iba1 expression in the hippocampal tissue were 

measured by Western blotting method. The brain tissue was homogenized and sonicated on ice in lysis 

buffer (50 mM Tris–HCl, pH 8.0, 150 mM NaCl, 1% Triton X-100, 0.5% sodium deoxycholate,  

0.1% sodium dodecyl sulfate (SDS), 1 mM EDTA, 1% protease inhibitor cocktail; Sigma). After 

centrifugation, the supernatant was collected and assayed for protein concentration using the Bradford 

method. Lysate samples containing 50 μg of protein were fractionated by SDS—10% polyacrylamide 

gel electrophoresis, and then subjected to western blot analysis. The primary antibodies used in this 

study were mouse anti-COX-2 antibody (#160106, Cayman), mouse anti-iNOS antibody (#610329, 

BD Biosciences), rabbit anti-Iba1 antibody (#016-20001, Wako) and mouse anti-β-actin antibody 

(Chemicon). Iba1 expression in the hippocampal tissue was examined in the mice which performed the 

Morris water maze test. 

3.6. Morris Water Maze Test 

The Morris water maze test was performed for 4 days. The acquisition training was performed for  

3 days prior to the LPS injection and the retention test on the 4th day. The apparatus consisted of a 

circular water pool 100 cm in diameter and 40 cm in height. It was filled with 23 ± 1 °C water with a 

depth of 28 cm and covered a black platform (10 cm in diameter). The platform was submerged 

approximately 0.5 cm below the surface of water. The pool was divided into four quadrants: northeast 
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(NE), northwest (NW), southeast (SE), and southwest (SW) at equal distances on the rim. The platform 

was located in the center of the southwest quadrant. During the first 3 days of acquisition tests, mice 

were given eight trials per day to find the hidden platform. Each mouse (12 mice per group) was gently 

placed into the water facing the wall in the direction of north (N), east (E), south (S), and west (W) in 

two series of order. The mouse was allowed to swim until they reached the hidden platform (maximum 

swim time was 60 s). The escape latency to reach the platform was recorded and they remained on the 

platform for 20 s before being removed. The mouse which failed to find the platform within 60 s was 

guided to the hidden platform and then was placed on the platform for 20 s for reinforcement before 

being removed. On the 3rd day, LPS was injected into the mice 1 h before the acquisition test. 

One trial of the retention test without the platform was performed on the 4th day, 24 h after the LPS 

injection, to assess the memory of the correct platform location. The mice were placed into the pool 

and swam freely for 60 s. The swimming paths were recorded by a video camera linked to a computer-

based image analyzer (SMART 2.5 video-tracking system, Panlab, Barcelona, Spain). The number of 

target heading and the swimming time in each zone was analyzed with a grid design of 6 zones  

(Figure 6A). This grid design, constructed with a computer-based image analyzer, was superimposed 

over the maze and viewed on a monitor. Memory scores were calculated using the formula (time in 

zone A × 10) + (time in zone B × 8) + (time in zone C × 6) + (time in zone D × 3) + (time in zone  

F × 2) + (time in zone G × 1) = memory score. The grid design and the formula for calculating the 

memory score were based on and modified from the behavior study of Smith et al. [46]. The mice 

were sacrificed after the retention test trial and the brains were randomly used either for Iba1 western 

blotting (6 mice) or immunohistochemistry (6 mice). 

3.7. Immunohistochemistry 

After the retention test trail, the mice were sacrificed and the brains (6 mice per group, randomly) 

were used for immunohistochemistry against TNF-α, COX-2, and iNOS expression in the brain tissue. 

The mice were deeply anesthetized and perfused transcardially with 0.05 M phosphate-buffered saline 

(PBS) containing 4% paraformaldehyde. The brain was removed and was postfixed in the same 

perfusing solution overnight at 4 °C. Thirty μm thick coronal sections of brain tissue were made using 

a freezing microtome (Leica, Wetzler, Germany). The brain sections were rinsed with 0.05 M PBS and 

incubated for 15 min in 1% hydrogen peroxide PBS at room temperature. The sections were incubated 

overnight at 4 °C with primary antibodies against TNF-α (1:200, sc-1349, Santa Cruz), COX-2 (1:200, 

#160106, Cayman), and iNOS (1:200, #610329, BD), then incubated with anti-rabbit or anti-mouse 

Cy2 as a secondary antibody (Jackson ImmunoResearch, West Grove, PA, USA). The fluorescence-

labeled images were captured using a confocal laser-scanning microscope (Carl Zeiss, LSM 510 

META, Oberkochen, Germany). The fluorescence-labeled densities against TNF-α, COX-2, and iNOS 

were analyzed using ImageJ software (Ver. 1.44p, NIH, Bethesda, MD, USA) in corresponding areas. 

The sample values represent the percentage increase differences from a sample of the normal group 

and the mean values for the four sections in each mouse were used for statistical analysis. For Iba1 

immunohistochemistry, Iba1 (1:500, #019-19741, Wako) was used for primary antibody and the 

avidin–biotin complex (Vector Laboratories, Burlingame, CA, USA) method were carried out with 

peroxidase coupling in a mixture containing 0.05% diaminobenzidine (Sigma-Aldrich) and 0.03% 
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H2O2 for 2–5 min. The Iba1-expressing microglia were captured using a light microscope (BX51, 

Olympus, Tokyo, Japan) equipped with CCD camera (DP70, Olympus) and analyzed using the ImageJ 

software (Ver. 1.44p, NIH, USA). The number and the average size of microglia in the CA1 and DG 

region of the hippocampus were measured on an inverted black-white binary image by determination 

of threshold gray value and pixels definition using the ImageJ software. Data were normalized with the 

same area (105 μm2) and the mean values from the four sections analyzed in each mouse were used for 

statistical analysis. 

3.8. Statistical Analysis 

Study data are presented as means ± standard errors. Differences between groups were evaluated 

using paired Student’s t-test and one-way Analysis of variance (ANOVA). A probability value of less 

than 0.05 was used to indicate a significant difference. 

4. Conclusions 

This study demonstrates that GRZ effectively reduced neuroinflammation and ameliorated the 

memory deficits induced by systemic LPS treatment. The effects of GRZ were found to be mediated 

through the inhibition of pro-inflammatory cytokines and microglial activation in the brain tissue. 

Therefore, this study supports that GRZ may be a putative therapeutic drug on neurodegenerative 

diseases associated with cognitive deficits and neuroinflammation such as AD. 
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