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Abstract: In the present study, an antibody raised against a peptide sequence of rat bilitranslocase
(anti-peptide Ab) was tested on microsomal proteins obtained from red grape berry skin.
Previously, this antibody had demonstrated to recognize plant membrane proteins associated with
flavonoid binding and transport. Immuno-proteomic assays identified a number of proteins reacting
with this particular antibody, suggesting that the flavonoid binding and interaction may be extended
not only to carriers of these molecules, but also to enzymes with very different functions. One of
these proteins is a pathogenesis-related (PR) class IV chitinase, whose in vitro chitinolytic activity was
modulated by two of the most representative flavonoids of grape, quercetin and catechin, as assessed
by both spectrophotometric and fluorimetric assays in grape microsomes and commercial enzyme
preparations. The effect of these flavonoids on the catalysis and its kinetic parameters was also
evaluated, evidencing that they determine a hormetic dose-dependent response. These results
highlight the importance of flavonoids not only as antioxidants or antimicrobial effectors, but also
as modulators of plant growth and stress response. Implications of the present suggestion are here
discussed in the light of environment and pesticide-reduction concerns.
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1. Introduction

Flavonoids are a group of plant polyphenolic secondary metabolites, including red to purple
anthocyanins, colourless to pale yellow flavonols (e.g., quercetin: QC), colourless to brown flavanols
(e.g., catechin: CA) and proanthocyanidins or condensed tannins [1,2]. They are involved in several
physiological functions, such as antioxidant activity, UV-light protection and defence against bacterial
and fungal phytopathogens [3]. The latter function is related to some specific activities, such as:
(i) the polyphenol oxidase polymerizing activity on sinapyl and coniferyl derivatives, which generates
a physical barrier to pathogen invasion [4]; (ii) the inhibitory properties against essential enzymes for
pathogens, as in the case of tannins; iii) the direct antimicrobial/antifungal action, as in the case of
phytoalexins [5]. The antibiotic activity of flavonoids and of their brown derivatives may also depend,
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in part, on their antioxidant properties, either by acting as free radical scavengers or by preventing
their formation by chelating metals.

To exert antibiotic action, flavonoids have to be either transported from the source tissue to the
site of infection or increasingly produced by infected cells, where they induce the hypersensitive
reaction against biotrophic pathogens, leading to a fast and localized programmed cell death [6].
This response is particularly important during fruit ripening, because such organ accumulates sugars
and attractive molecules, so becoming more prone to biotic attack. Thus, plant cells start to synthesize
pathogenesis-related (PR) proteins and flavonoids, whose efficiency seems to depend on the activation
rate of the corresponding biosynthetic pathways [7], as shown by the finding that polyphenols exert
antifungal activity, so inducing resistance [7].

Regarding the general ability of flavonoids to interact with proteins, relative binding properties
and effect on the corresponding enzyme activities may depend on their molecular structure and
oxidation state. In this context, examples have been reported for different enzymes, including NADH
oxidases, polyphenol oxidases and peroxidases [4], lipoxygenases [8], cellulases, xylanases, pectinases,
glutathione-S-transferases (GST) and glycoproteins and protein kinases involved in the polar auxin
transport [6]. Indeed QC and kaempferol could inhibit the activity of auxin transport proteins through
the interaction of their catechol group in the B-ring of the flavonoid skeleton [2,9].

Grapevine (Vitis vinifera L.) is one of the richest sources of polyphenols among fruits, and
it is a common food in the human diet. Flavonoids are the most abundant phytonutrients with
biological activity; actually, they possess cardio-protective, neuro-protective, antimicrobial and
anti-aging properties [10]. Most flavonoids are found primarily in the outer epidermal cells of red
grape skin, whereas ca. 60%–70% of total polyphenols are stored in seeds. Flavanols, one of the
most abundant class of flavonoids found in grapevine, are present mainly in the form of (+)-CA,
(−)-epicatechin, and proanthocyanidins [11]. In white grape varieties, flavanols represent 46%–56% of
total phenolics, whereas in red grapes their concentration is in the 13%–30% range. Although flavonols
are present only as 3-O-glycosides in grape skin, they can be found also as aglycones (QC, kaempferol,
myricetin and isorhamnetin) in wines and juices, as a result of acid hydrolysis during their processing
and storage. Although the profile of flavonols strongly depends on grape cultivars, QC, kaempferol and
isorhamnetin derivatives are found in both red and white grapes [12].

Due to their extensive cultivation, grapevine varieties are sensitive to a great number of pathogens.
These infections provoke heavy damages and yield losses, finally affecting wine quality. The spread of
diseases are generally controlled by the application of chemical pesticides. To limit environment
pollution, alternative strategies involve the activation of plant defence mechanisms by natural
elicitors. This type of resistance, characterized by a systemic accumulation of PR-proteins, is mainly
associated with the induction of systemic acquired resistance (SAR) induced by pathogens [13].
This resistance to biotic stress is generally based on multiple biochemical factors and involves
PR-proteins (chitinases, peroxidases, and β-1,3-glucanases), several elicitor-induced defence responses
(e.g., the lignification of cell walls), and production of flavonoid phytoalexins [14] that inhibit fungi
growth [15,16].

In this complex scenario, the complete role of flavonoids is still under study, because they
are both ubiquitous in plant cells and involved in several biological activities [10]. Depending on
their multiple physiological roles and localization, flavonoids need to be efficiently transported to
short- and long-distance sites. A number of transporters with this putative function have been
identified, which may perform both facilitated-passive and active transport, sometimes overlapping
in a synergistic manner. In particular, active transport seems to involve different enzymes, such as
ABC (ATP-binding cassette) proteins, MATE (multidrug and toxic extrusion) proteins, GST and
a bilitranslocase-like protein [17]. The latter protein was assigned on the basis of its recognition
by an antibody raised against a peptide sequence of rat bilitranslocase (anti-peptide Ab) [18].
This study was undertaken to further characterize the nature of grape berry skin proteins reacting with
anti-peptide Ab, and in particular the putative modulation of flavonoids on their enzymatic activities.
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The analysis could provide further information on the regulative activities exerted by flavonoids on
plant cell metabolism, in particular on those pathways involved in biotic stress responses.

2. Results

2.1. Western Blot on Microsomal Fraction from Red Grape Skin

Antibodies produced against the peptide 235–246 (EFTYQLTSSPTC) from bilitranslocase
have been previously used to detect flavonoid membrane transporters in both human and plant
materials [17,19]. In this context, preliminary experiments were performed on pulp and skin of grape
fruits aimed at identifying putative flavonoid-binding proteins [17]. To further investigate this issue in
grape, we used a novel mouse antibody (Ab), generated according to the method described before [20],
which was utilized to assay grape skin microsomes. Western blot (WB) experiments demonstrated the
presence of at least 5 bands migrating at 22, 25, 27, 37 and 50 kDa, respectively (Figure 1). We focused
on the bands in the mass range of 25–27 kDa, since a quantitative correlation between signal intensity
and protein concentration was obtained (A and B for 15 and 30 µg protein, respectively).
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Figure 1. WB of proteins from RGSM revealing candidates for anti-peptide Ab interaction. RGSM proteins
from cv. Merlot (15 and 30 µg, (A) and (B) respectively) were loaded onto 12% polyacrylamide gel.
Western blotting was performed using mouse anti-peptide Ab at the concentration of 5 µg·mL−1.
Anti-mouse IgM (dilution 1:15,000) was used as secondary antibody. Protein molecular mass markers
are shown on the left.

2.2. Proteomic Analysis

Two protein bands occurring in the range of 25–27 kDa were subjected to an integrated proteomic
approach based on combined SDS-PAGE, 2-DE, WB and nLC-ESI-LIT-MS/MS analysis. These proteins
were preliminarily purified by SDS-PAGE, thus reducing the complexity of the plant samples.
Their resolution by isoelectric focusing within the 3.0–11.0 pH range allowed for a better visualization
of the protein components recognized by the anti-peptide Ab. At the same time, it limited the
occurrence of contaminants in the gel spots to be further subjected to mass spectrometric analysis for
protein identification.

Figure 2 shows two representative gel images resulting from WB (Panel A) and silver nitrate
staining (Panel B) of gel of the same protein sample after its preliminary purification by SDS-PAGE.
A number of protein spots (A,B,C with numbering 1–4) was evident after WB with the anti-peptide Ab
(Figure 2A); their counterparts within the silver nitrate stained gel were identified by software-assisted
comparison of the corresponding 2-D images (Figure 2B). The limited number of spots detected by
WB, with respect to that visualized by silver staining, demonstrated that only a very small portion of
the proteins present within the samples was recognized by Ab (Figure 2).

In particular, they consisted in a “train” of four spots (spots A1-4) migrating in the pI range 4.0–5.5
and with an apparent mass of 25 kDa, a “train” of four spots (spots C1-4) migrating in the pI range
6.0–8.0 and with an apparent mass of 25 kDa, and a “train” of three spots (spots B1-3) migrating in the
pI range 6.0–7.0 and with an apparent mass of 27 kDa. These spots were further digested with trypsin
and the resulting digests were analyzed by nLC-ESI-LIT-MS/MS. The results of database searching are
reported in Table 1.
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Table 1. Grape berry skin proteins recognized by the anti-peptide Ab. Spot number, UniProtKB/NCBI accession, protein description, MASCOT score, theoretical Mr
and pI values, matched and unique peptides observed by MS analysis and sequence coverage (%) are given.

Spot UniProtKB/NCBI
Accession Protein Description MASCOT

Score
Theor. Mass

(kDa)
Theor.

pI
Matched
Peptides

Unique
Peptides

Protein
Coverage (%)

A1 Q7XAU6_VITVI/33329392 Class IV chitinase [V. vinifera] 82 25.6 5.15 2 1 6.6
A2 Q7XAU6_VITVI/33329392 Class IV chitinase [V. vinifera] 298 25.6 5.15 6 4 24.2
A3 Q7XAU6_VITVI/33329392 Class IV chitinase [V. vinifera] 338 25.6 5.15 5 4 24.2
A4 Q7XAU6_VITVI/33329392 Class IV chitinase [V. vinifera] 358 25.6 5.15 8 4 24.2
B1 F6HLL9_VITVI/225441373 Glucan endo-1,3-β-glucosidase [V. vinifera] 227 33.3 7.06 10 3 17.8
B2 F6HLL9_VITVI/225441373 Glucan endo-1,3-β-glucosidase [V. vinifera] 278 33.3 7.06 24 5 28.7
B3 F6HLL9_VITVI/225441373 Glucan endo-1,3-β-glucosidase [V. vinifera] 476 33.3 7.06 24 8 49.4
C1 A5BV65_VITVI/147784332 Triose phosphate isomerase [V. vinifera] 190 27.2 6.35 6 4 15.4

C2
731394960 Vicilin-like antimicrobial peptides 2-3 [V. vinifera] 338 97.0 6.95 11 8 10.0

A5BV65_VITVI/147784332 Triose phosphate isomerase [V. vinifera] 113 27.2 6.35 2 2 10.2
C3 731394960 Vicilin-like antimicrobial peptides 2-3 [V. vinifera] 254 97.0 6.95 5 5 10.7

C4
731394960 Vicilin-like antimicrobial peptides 2-3 [V. vinifera] 338 97.0 6.95 11 8 10.0

A5BV65_VITVI/147784332 Triose phosphate isomerase [V. vinifera] 113 27.2 6.35 2 2 10.2
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Figure 2. Immuno-proteomic analysis of grape skin proteins with a mass in the range 25–27 kDa.
Thirty µg of RGSM proteins with a mass 25–27 kDa (Figure 1) was extracted from SDS-PAGE and
subjected to 2-D electrophoresis, as described in the Materials and Methods section. Gels run in parallel
were subjected to WB with anti-peptide Ab (Panel A) or to silver staining (Panel B). The “trains” of
spots showing immuno-reactive signals were matched to counterparts in the silver-stained gel, and
are labelled as A1-4, B1-3 and C1-4 in both panels. Spots of interest were digested with trypsin and
subjected to MS analysis.

Spots A1-4 and B1-3 corresponded to class IV chitinase (Q7XAU6) and glucan endo-1,3-β-glucosidase
(XP_002277446), respectively. Otherwise, spots C1-4 contained a mixture of vicilin-like antimicrobial
peptides 2-3 (XP_003632318) and triose phosphate isomerase (CAN70587) that migrated together
within the gel as result of their almost identical pI and mass values. The observation that the theoretical
mass of vicilin-like antimicrobial peptides 2-3 is 97 kDa suggested that a fragment of this protein was
identified in this study.

In order to rationalize the reaction of the above-mentioned proteins with the anti-peptide
Ab, in silico sequence alignment of class IV chitinase, glucan endo-1,3-β-glucosidase, vicilin-like
antimicrobial peptides 2-3, and triose phosphate isomerase with the peptide 235-246 of rat
bilitranslocase was performed by using the L-Align program. These alignments provided evidence
that all these proteins contain certain sequence similarities with that of the peptide 235-246 (Table 2)
used to generate the anti-peptide Ab.

In fact, alignments exhibited an acceptable Eigen value, which was always under the limit
of 0.5; it is also noteworthy the constant occurrence of Q, S and P residues at positions 5, 9 and
10, respectively. Furthermore, the structural analysis of the tertiary structure of chitinase C from
S. griseus (pdb 1WVU_A), which shares 69.4% identity and 83.8% similarity with chitinase from
S. griseus (WP_044369170) and 41.0% identity and 74.2% similarity with class IV chitinase protein from
grape (Q7XAU6), showed that the putative sequence recognized by the anti-peptide Ab is located at
C-terminus of the protein and exposed to the aqueous environment.
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Table 2. Sequence alignment of proteins detected as reacting with the Ab raised against the peptide
235–246 of bilitranslocase. The rat enzyme is reported at the bottom of the each sequence alignment,
while the target one is shown at the top.

Protein Description Apparent Mass Alignment L-Align E Value

Class IV chitinase
Accession n.: Q7XAU6

27.5 kDa
264 aa
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This mass value was slightly lower than that predicted on the basis of the protein sequence and
that measured in the case of red grape skin microsomes (RGSM) samples (Figure 1); accordingly,
the enzyme was ascribed to family 19 bacterial chitinase C. This subtle difference may be due to the
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different mass value of the two chitinases, based on their amino acid sequence, or the occurrence of still
unknown post-translational modifications. In this context, various enzymes belonging to the family of
chitinases, with different mass values have already been identified in grape berries [21].

2.4. Acetazolamide Inhibition of Chitinase Activity

To further validate the occurrence of chitinase activity in berry skin extracts, samples of chitinase
from RGSM and S. griseus were incubated with a specific inhibitor of this enzyme. Since various
chitinase inhibitors of plant and animal chitinase isoforms have been described [22], acetazolamide was
chosen, because of its effective inhibitory properties with both bacterial enzyme and plant extracts.
Table 3 shows that the inhibitory effect of acetazolamide on the chitinase activity in RGSM extracts and
S. griseus enzyme was 15.2% and 20.9%, respectively, confirming the presence of an active form of this
enzyme in grape berry skin.

Table 3. Inhibition of the chitinase activity of RGSM and S. griseus by acetazolamide. The inhibitory
effect of acetazolamide was tested according to the protocol of Schuttelkopf et al. [23].

S. griseus (Fluorescence, A.U. h−1) RGSM (Fluorescence, A.U. h−1)

Control 78,202 ± 3899 (100%) 40,397 ± 1654 (100%)
Acetazolamide (32 µM) 61,859 ± 2027 (79.1%) 34,091 ± 1152 (84.8%)

2.5. Inhibition of Chitinase Activity by Anti-Peptide Ab

To investigate the interaction between the anti-peptide Ab and the chitinase present in RGSM,
the inhibitory effect of this antibody on the chitinase activity in RGSM extract and the S. griseus enzyme
was assessed by two independent methods, which are based on absorbance [13] and fluorescence [23]
measurements, respectively.

Both assays showed similar results, being Ab inhibitory on both chitinase samples. Figure 4
shows the data obtained by the fluorimetric method, which was preferred because of its accuracy,
sensitivity and simplicity. In particular, addition of increasing amounts of the anti-peptide Ab
determined an inhibition of the S. griseus chitinase enzymatic activity. Accordingly, a direct effect of
the Ab on the catalytic properties of the enzyme was hypothesized as result of its interaction with
protein regions involved in catalysis. A similar inhibitory response was obtained in the case of RGSM
extracts, although with a less pronounced extent.
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Figure 4. Inhibition of the chitinase activity of S. griseus and RGSM chitinase by anti-peptide Ab.
Chitinolytic activity was measured as described in Schuttelkopf et al. [23]. 0.2 µg·µL−1 of S. griseus
chitinase (white bars) and 30 µg of RGSM (grey bars) were assayed in the presence of increasing
concentrations of anti-peptide Ab. Different letters assigned to means designate a statistical difference
regarding data from S. griseus (not italic letters), or from RGSM samples (italic letters).
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2.6. Modulation of Chitinase Activity by QC and CA

Since the anti-peptide Ab, developed to recognize a flavonoid-binding domain of bilitranslocase,
reacted with a class IV chitinase from grape berry skin, it could be argued that chitinase activity may
be modulated by flavonoids. Thus, flavonoids belonging to flavonol and flavan-3-ol classes (QC and
CA, respectively), were incubated at different concentrations with S. griseus chitinase in order to
characterize their effect on the kinetic parameters (Table 4).

Commercial chitinase activity was evaluated using fluorimetric assay. The modulatory effect
of QC in the range of 0–20 µM was bi-phasic (Table 4, left values). In the range 0–3 µM, both Vmax
and KM increased; however, they decreased at higher concentrations up to 20 µM QC. The combined
effect of this uncompetitive modulation is that the catalytic performance of chitinase improves at low
concentrations of QC. In fact, the increased KM implies a wider range of substrate concentrations,
where reaction rate increases linearly. In addition, the substrate-saturated enzyme has a higher Vmax
than the control one.

Table 4. QC and CA modulation of the chitinase activity of S. griseus. Chitinolytic activity by chitinase
from S. griseus was measured using 4-methyl-umbelliferyl β triacetyl chitotrioside as a substrate,
as described in the Material and Methods section. The enzyme activity was assayed in the absence and
in the presence of different concentrations of QC and CA. The apparent Michaelis-Menten parameters
were obtained at each substrate concentration, by fitting data to the Michaelis-Menten equation.

Flavonoid
(µM)

KM (µM)
Quercetin

Vmax (nmol 4-4-Methyl-
umbelliferone

(mg prot h)−1) Quercetin
R2 KM (µM)

Catechin

Vmax (nmol 4-4-Methyl-
umbelliferone

(mg prot h)−1) Catechin
R2

0 35.42 ± 4.18 802 ± 41 0.996 48.89 ± 4.72 972 ± 46 0.998
0.5 42.05 ± 4.50 976 ± 48 0.997 68.81 ± 8.76 1190 ± 85 0.997
3 58.67 ± 2.91 1077 ± 28 0.999 78.33 ± 16.66 1183 ± 148 0.994
10 28.86 ± 4.94 598 ± 40 0.991 93.27 ± 7.60 1494 ± 76 0.999
20 28.70 ± 3.54 472 ± 23 0.995 53.21 ± 2.07 1007 ± 20 0.999

Conversely, higher concentrations of QC reversed this gain of function, with a lower KM going
along with a lower Vmax. A similar hormetic modulation was observed with CA (Table 4, right values).
The peculiar response of commercial chitinase activity to increasing QC and CA concentrations was
shown also in Figure 5 (panel A) and in supplementary Figure S1, where 0.1–100 µM range was
used. CA (black bars) and QC (grey bars) showed a biphasic pattern described by a sort of hormetic
dose-response effect. This phenomenon has already been reported in pharmacology, where low
concentrations of a molecule exhibit an opposite effect on a certain enzymatic activity, when compared
to high concentrations. Although the hormetic response was observed for both flavonoids, QC induced
the strongest modulation; in particular, it determined a 60% increment of the chitinase activity when
tested at 1 µM concentration, and a 20% decrement when assayed at 100 µM concentration (Figure 5,
Panel A). At the same concentrations, CA stimulated the activity by about 5% and reduced it by
almost 13%, respectively.

In the case of RGSM (Panel B), the effects of CA and QC were not as strong as in the case of
S. griseus chitinase. In particular, no significant modulation was observed when RGSM were treated
with CA. In contrast, an evident and linear inhibition was observed when QC was used. The apparent
contrasting effect of CA and QC on the chitinase activity of RGSM, when compared to that of S. griseus
enzyme, was rationalized hypothesizing the presence of endogenous flavonoids in the microsome
extract, which might have masked and reduced the modulatory effect due to the external addition of
CA and QC.
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Figure 5. QC and CA modulation of the chitinase activity of S. griseus and RGSM enzyme. Chitinolytic
activity was measured as described in Schuttelkopf et al. [23]. Different concentrations of CA (black bars)
and QC (grey bars) were tested on chitinase from S. griseus (Panel A) and on RGSM (Panel B).
Different letters assigned to means designate a statistical difference regarding data from CA (not italic
letters), or from QC (italic letters).

3. Discussion

Chitinases (EC 3.2.1.14) belong to a widely studied family of enzymes present in plant, animal
and bacteria kingdoms [24]. These enzymes catalyze the hydrolytic cleavage of the β-1,4-glycosidic
bond in N-acetylglucosamine-based biopolymers, mainly in chitin. Chitin is found in the cuticle of
insect and crustacean shells, as well as in the cell walls of many fungi; accordingly, chitin is the second
most abundant polysaccharide in nature after cellulose. Chitinases are the most studied PR-proteins,
belonging to the families 18 and 19 of glycosyl hydrolases, which differ in amino acid sequence,
structure and mechanism. While family 18 contains chitinases from many organisms, family 19
includes only highly conserved plant enzymes, typically endo-chitinases [22]. In bacteria, chitinases are
mainly involved in nutrition processes; in yeast and various fungi, they participate in morphogenesis
and some pathogenesis processes; in animals and plants, they mainly play a role in the defence against
pathogen attack, as components of the innate immunity [25–27]. In the latter context, worth mentioning
is the fact that different isoforms of chitinases can be induced by developmental signals regulating
fruit ripening [21,28]. Specifically in the skin of grape berry, chitinase isoforms were over-expressed at
maturation and the enzymatic activity correspondingly increased during ripening, even in the absence
of any pathogen attack [28]. In grape berry from different cultivars, proteomic analysis evidenced that
a class IV chitinase (CTG1027246) was strongly transcripted during post-veraison stage, where this PR
protein is presumed to be involved in disease and pest resistance [29]. By generating or degrading
signal metabolites, chitinases also participate to signalling pathways, including hormonal (ethylene)
interaction [30]. This phenomenon is confirmed by the observation that chitinases and PR-proteins
increase their activity during plant senescence [31]. Their involvement in programmed cell death has
been hypothesized in Arabidopis and Brassica napus [30].
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In the present work, a class IV chitinase (family 19) was identified in microsomes from red
grape berry teguments as the main protein reacting with a mouse IgM Ab raised against the peptide
235-246 of rat bilitranslocase. The latter protein was chosen as a probe species being a flavonoid
translocator [32]; peptide 235-246 was selected being present in the bilitranslocase region involved
in the flavonoid binding [33]. Class IV chitinase identification was obtained by a combination of
SDS-PAGE, 2-DE, WB and nLC-ESI-LIT-MS/MS experiments (Figure 2). Evidence of the existence
of a protein similar to that identified here as reacting with this antibody derived from a previous
work, where bilitranslocase-like proteins were characterized in grape berry skin microsomes by using
rabbit IgG polyclonal Ab raised against the same peptide [18,19]. Although the immune-chemical
assays were performed on similar plant extracts, the two antibodies exhibited a slightly different
cross-reactivity. Mouse IgM Ab was able to cross-react with about five proteins (Figure 1), while rabbit
IgG Ab detected only two polypeptides having similar molecular mass values (28–30 kDa). Mouse IgM
Ab also reacted with a chitinase having bacterial origin (from S. griseus), which was used as a positive
control (Figure 3). The latter is a bacterial member of the family 19 chitinases sharing sequence
similarities with plant counterparts. In particular, family 19 chitinases are widely observed in the plant
kingdom and, specifically, in grapevine [34], but they have also been characterized in bacteria. In this
context, chitinase C from S. griseus HUT6037 was the first example of a bacterial member of family 19
chitinase that was identified [35]. Thus it is a good candidate to accomplish an evolutionary linkage
between Actinobacteria and Viridiplantae [36,37].

The presence of a chitinase in grape extracts was confirmed by using acetazolamide, a well-known
broad-spectrum chitinase inhibitor, which was able to inhibit the chitinolytic activity of both RGSM
and S. griseus enzyme (Table 1). This is a remarkable result since it is well-known that members of
the chitinase family 19 are heterogeneous. Although its inhibitory effect on RGSM extracts was low,
acetazolamide resulted to be effective with both plant and bacterial enzymes. Accordingly, it can be
suggested as a suitable inhibitor of chitinases from organisms of different kingdoms.

Aiming at better understanding why an Ab, raised toward a flavonoid binding sequence, can also
recognize plant PR-proteins, the interaction among flavonoids and class IV chitinase was further
investigated. In particular, the possible connection between chitinases and flavonoids was elucidated
by assaying the effect of two of the most representative flavonoids present in grape, namely CA and
QC on chitinase activity [12]. The functional assay was performed on both S. griseus chitinase and
on a RGSM extracts containing class IV chitinase (supplementary Figure S1 and Figure 5). In either
cases, a sort of hormetic effect was observed, thus indicating that flavonoids may actually act as
modulators, rather than mere inhibitors, with a typical kinetics already observed in the case of other
derivatives having pharmacological properties [38]. This effect was confirmed by two different assays,
thus excluding any possible artefact; for sake of brevity, only one has been shown in this study.
The functional comparison between the bacteria and RGSM chitinase showed that the modulation
was strong and significant in the first case, while was less pronounced in the remaining one. This was
ascribed to the flavonoids, already present in RGSM preparations, which probably acted as inner
modulators, reducing any further possible measurable effect.

The results reported above on the modulation of the chitinase activity exerted by QC, CA and
on the inhibition by anti-peptide Ab, let us to speculate that all these molecules may interact with
the enzyme region devoted to binding of flavonoids. Moreover, the hormetic effects reveal that the
enzyme has a conformational flexibility, controlled by flavonoid binding. Also in the case of the
measurements of the effect of the anti-peptide Ab, on chitinase activity (Figure 4), experiments were
performed by two independent assays to exclude any possible artefact. Since sequence comparisons
with bilitranslocase (Table 2 and data not shown) have suggested that the site recognized by the
anti-peptide Ab site is located in a highly accessible C-terminus region of both class IV and S. griseus
chitinase, it is tempting to hypothesize that this structural portion may be involved in the interaction
with flavonoids. In particular a biochemical analysis of kinetic features of the microbial chitinase
(Figure 5 and Table 4) showed a hormetic effect both on KM and Vmax parameters, which were
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increased at low flavonoid doses, while higher treatments caused a decrease under the control level.
The possible explanation about the hormetic behaviour of chitinase activity modulated by flavonoids
is clearly merely speculative. As already claimed by Vargas and Burd [39], flavonoids, and quercetin
in particular, show a biphasic effect on metabolic processes and catalytic activities depending on
concentration, since at low concentration they act as reducing agents, while at high concentration they
exert a pro-oxidative action. In the case of other auto-oxidizable molecules such as methylene blue,
it has also been shown that their electron reduction-oxidation capacity was related to their in vitro
hormetic dose-response modulation of the enzymatic activity [40]. Actually, there is evidence about
redox status regulation on chitinolytic activity [41,42] and that plant chitinases and β-glucanases
respond to UV-C treatment with a hormetic concentration-dependent manner [43].

All these modulatory effects showed by flavonoids support the dual action of these secondary
metabolites, by having a complex regulatory role, depending on their concentration and redox state,
in maintaining the homeostatic equilibrium among different cell metabolic processes. In addition,
polyphenols often play also an ecological role as allelo-chemicals, being released in the environment to
affect neighboring plant species. These physiological responses are themselves hormetic phenomena,
which are described by complex mathematical models [44]. At the molecular level, hormesis probably
results from the presence of multiple binding domains on the chitinase catalytic site, each of them
characterized by a different binding affinity with both substrate and flavonoid. Such a complex
interaction has already been proposed to explain hormetic response, for example in the case of
mono-amine oxidase [45]. In our system, chitinase appeared to be not allosterically modulated, since
the best regression curve for our data was a rectangular hyperbolic curve and not a sigmoid curve,
as expected in the case of allosteric regulation.

In conclusion, the results reported in this study on the modulatory effect exerted by flavonoids
on chitinase activity are in good agreement with recent literature, which evidenced that further
physiological functions can be claimed for these secondary metabolites, in addition to the antioxidant
and/or antimicrobial ones [6,46]. In fact, flavonoids have been demonstrated to act as developmental
regulators and signals by a direct interaction with target proteins and modulation of activity [6,8,47].
Moreover, it has also been suggested that flavonoid localization in the nucleus may be associated to
their role as activators/repressors of transcriptional factors [48].

During plant defence response to pathogen attack, flavonoid biosynthesis is induced in parallel
with the activation of the expression of PR proteins, including chitinases. The results reported in this
study on the modulation in vitro of chitinase activity by flavonoids, suggest that secondary metabolites
may also exert such biological effects in vivo. These results may be useful for a better understanding
of the intricate picture describing the various mechanisms underlying the plant response to biotic
stresses. The modulatory effect of flavonoids on chitinase activity, together with PR protein expression,
may be considered as an example of a regulatory convergence of two independent mechanisms of
plant response to pathogens. This flavonoid property may also have practical consequences due to
its possible impact on the augmentation of plant resilience. In fact, the use of flavonoids may be
hypothesized to induce plant defence to pathogens by modulating the activity of PR-related proteins,
in a similar way as other natural products regulate protective metabolic reactions/pathways [49,50].
Additional experiments have to be performed in this direction, together with a more detailed
description of the structural basis regulating flavonoid-chitinase interaction.

4. Materials and Methods

4.1. Isolation of Microsomes from Berry Skin

Approximately 30 g (FW) of red grapevine (Vitis vinifera L., cv. Merlot) berry skin was
homogenized as described in Braidot et al. [18], with minor changes: grape berries were pressed
through 100 µm nylon gauze and the seeds were separated by floating into 10 mM Tris-HCl buffer
at pH 7.5. The skins obtained were used to extract microsomes as described in the above-mentioned
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paper. For chitinase activity determination, microsomes were finally resuspended in 200 mM sodium
acetate buffer, pH 5.0.

4.2. Anti-Peptide Antibody Production

Mice were immunized with a peptide corresponding to segment 235-246 (EFTYQLTSSPTC) of the
primary structure of the mammalian bilitranslocase carrier [51]. Mouse antibody (Ab) was generated
by cell fusion of mouse spleen lymphocytes and mouse myeloma NS1 cells, as described before [20].
Ab was purified from the growth medium by affinity FPLC on protein G column (General Electric,
Healthcare, Little Chalfont, UK). Purified Ab was used for immunodetection at a concentration of
5 µg·IgM·mL−1.

4.3. SDS-PAGE and Subsequent Protein Extraction from Polyacrylamide Gel

Aiming at enriching the protein samples, 0.5 mg of protein from red grape skin microsomes
(RGSM), conditioned in 62.5 mM Tris-HCl pH 6.8, 2.5% (v/v) SDS, 0.002% (v/v) bromophenol blue,
0.71 M β-mercaptoethanol, 10% (v/v) glycerol, were loaded onto a large SDS-PAGE 3 × 50 µL-volume
well, with lateral wells for standard molecular markers. Proteins from RGSM were separated by
SDS-PAGE (12%), as described in Braidot et al. [18]. After running, selected gel slices, corresponding
to the band of interest able to cross react with antipeptide Ab (see also Section 4.5. Western Blotting),
were cut and crushed in 4 mL of 25 mM Tris/250 mM glycine (Tris-glycine 1×). After centrifugation
at 5000× g for 5 min, solubilized proteins were collected and concentrated using a Vivaspin filter
(with 10 kDa molecular mass cut off), after 3 washing steps with 1 mL of Tris-glycine 1× to remove SDS.

4.4. Two-Dimensional Electrophoresis

Proteins recovered from SDS-PAGE were loaded on two-dimensional electrophoresis (2-DE);
experiments were always performed in duplicate for further western blotting (WB) (30 µg protein
loaded/strip) and silver staining analyses (3 µg protein loaded/strip). In the first dimension,
isoelectric focusing of samples was performed on 3–11 NL strips (GE Healthcare), using an Ettan
IPGphor 3 Isoelectric Focusing System unit (GE Healthcare), according to manufacturer’s instructions.
Focused strips were equilibrated with dithiothreitol (DTT) and iodoacetamide, according to
manufacturer’s instructions. Second dimension was performed by positioning the strips at the top of
the running gels and performing SDS-PAGE as reported above (Section 4.3). After running, one gel
was used for WB, which was carried out as reported below; the other gel was subjected to silver
staining, as reported in Bortolussi et al. [52]. In both cases, gel images were acquired, analyzed and
matched, as described by the same authors. Silver-stained gel spots corresponding to those detected
by WB were excised, and further treated for protein identification.

4.5. Western Blotting

Gels from mono- and 2-D analyses were transferred onto nitrocellulose membranes and subjected
to immunoblotting according to the protocol described in Braidot et al. [18]. In this case, the primary
anti-peptide Ab (see the Section 4.2 on antibody production) was used at a final concentration of
5 µg·mL−1. Secondary antibody against mouse IgM (product A9044, Sigma Aldrich, Milan, Italy) was
used at final dilution of 1:15,000.

4.6. Protein Identification

Gel spots of interest were triturated, washed with water, in-gel reduced with DTT, S-alkylated
with iodoacetamide, and then in-gel digested with trypsin. Resulting peptide mixtures were desalted
by µZip-TipC18 using 50% (v/v) acetonitrile and 5% (v/v) formic acid as eluents. Recovered peptides
were then analyzed for protein identification by nano-liquid electrospray-linear ion trap-tandem mass
spectrometry (nLC-ESI-LIT-MS/MS), using an LTQ XL mass spectrometer (Thermo Fisher Scientific,
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Waltham, MA, USA) equipped with a Proxeon nanospray source connected to an Easy-nanoLC
(Proxeon, Odense, Denmark). Peptides were separated on an Easy C18 column (100 mm × 0.075 mm,
3 µm) (Proxeon). Mobile phases were 0.1% (v/v) formic acid (solvent A) and 0.1% (v/v) formic
acid in acetonitrile (solvent B), running at a total flow rate of 300 nL·min−1. Linear gradient was
initiated 20 min after sample loading; solvent B ramped from 5% to 35% over 45 min, from 35% to 60%
over 10 min, and from 60% to 95% over 20 min. Spectra were acquired in the range m/z 400−2000.
Peptide samples were analyzed under collision-induced dissociation (CID)-MS/MS data-dependent
product ion scanning procedure, enabling dynamic exclusion (repeat count 1 and exclusion duration
60 s) over the three most abundant ions. Mass isolation window and collision energy were set to
m/z 3 and 35%, respectively [53].

Raw data from nLC-ESI-LIT-MS/MS analysis were compared by MASCOT search engine
(version 2.2.06, Matrix Science, London, UK) against a database containing protein sequences from
Vitis vinifera, which were downloaded from the National Center for Biotechnology Information and
UniProtKB database. Database searching was performed by using Cys carbamidomethylation and
Met oxidation as fixed and variable modifications, respectively, a mass tolerance value of 1.8 Da
for precursor ion and 0.8 Da for MS/MS fragments, trypsin as proteolytic enzyme, and a missed
cleavage maximum value of 2. Other MASCOT parameters were kept as default. Protein candidates
assigned on the basis of at least 2 sequenced peptides with an individual peptide expectation
value <0.05 (corresponding to a confidence level for peptide identification >95%) were considered
confidently identified. Definitive assignment was always associated with manual spectra visualization
and verification.

4.7. Chitinase Activity Assays

Two different assays were used to evaluate the chitinase activity of both commercial enzyme from
Streptomyces griseus (Sigma Aldrich) and RGSM preparation, following, respectively, the protocol of
Magnin-Robert et al. [13] (data presented in Figure S1) and the protocol of Schuttelkopf et al. [23],
with minor changes. Briefly, 2 µg of enzyme were mixed with the desired amount of the antibody in
McIlvain’s buffer, pH 5.5 (100 µL-final volume) and pre-incubated in a black 96-well plate for 15 min
(data presented in Figure 5 refer to the latter protocol). The fluorescent substrate 4-methylumbelliferyl
β-d-N,N′,N′-tri-acetyl-chitotrioside (Sigma Aldrich) was dissolved in McIlvain’s buffer, pH 5.5,
added to the mixture as substrate at final concentration of 0.5–100 µM, and then incubated at 37 ◦C,
for 1 h. Finally, 100 µL of 1 M Na2CO3 was added to each well and the fluorescence was measured
by means of a Multilabel Counter (WALLAC, model 1420, Perkin-Elmer, Waltham, MA, USA) set at
340 nm (20 nm excitation filter bandwidth) and at 465 nm (20 nm emission filter bandwidth). The same
protocol was applied when 30 µg of RGSM was used instead of pure chitinase. For modulation
experiments by the inhibitor acetazolamide, 1 µg of enzyme was pre-incubated for 30 min.

4.8. Statistical Data Analysis

All the experiments were carried out with at least three biological replicates, unless differently
stated. In the case of chitinase activity determinations, treatment means were compared by Least
Significant Difference (LSD), according to Fisher’s statistical test, and different letters assigned to
means designate a statistical difference at p ≤ 0.05.

5. Conclusions

The identification of a chitinase in microsomes from grape berry skin was assessed by an antibody
raised against a sequence of rat bilitranslocase. The antigen sequence of the mammalian protein is also
a flavonoid binding domain. Consistently, the putative chitinase activity was found to be modulated
by flavonoids. Such evidence was obtained in both grape extracts and pure commercial preparation
from S. griseus.



Molecules 2016, 21, 1300 14 of 16

These findings are noteworthy, because chitinase family plays a pivotal role as pathogen-related
(PR) proteins, a class of enzymes involved in both plant responses to biotic and pollution stress, as well
as in senescence. The modulation exerted by flavonoids on this activity opens new possibilities to
increase plant resilience towards environmental strains. In particular, recent researches have been
developed in the field of plant induced resistance, by means of activation of plant immune system.
It has been demonstrated that treatments with peptones or chitosans are able to strengthen plant
defense, acting as activators of PR protein. In this view, flavonoids could further stimulate the induced
resistance, thus minimizing the use of pesticides. Actually, this is a critical issue that needs to be
developed, in particular in the case of viticulture practices.

Supplementary Materials: Supplementary materials can be accessed at: http://www.mdpi.com/1420-3049/21/
10/1300/s1.
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