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Abstract: The use of a liquid chromatography (LC) splitter inserted between an HPLC column
and an evaporative light scattering detector (ELSD) is described. This paper aims to show the
feasibility of using the splitter in an HPLC-ELSD system to fractionate a model mixture of analytes,
namely salicin (2-(hydroxymethyl)-phenyl-β-D-glucopyranoside) and glucose. The retention factors
and efficiency of the separation were studied under various temperatures and water contents in
the mobile phase in order to clarify the mechanism of polyols separation on a diol column under
the conditions of hydrophilic liquid chromatography (HILIC). Finally, the system was applied to
a biological sample (a lyophilized colony gel of Pectinatella magnifica), where the presence of fructose
and glucose was confirmed.

Keywords: fraction collection; evaporative light scattering detector; hydrophilic interaction liquid
chromatography; mixed-mode chromatography; Pectinatella magnifica

1. Introduction

1.1. Preparative Chromatography

Increasing demand for plant-based medicines, pharmaceuticals, cosmetics and other products
calls for suitable techniques that provide for a quick and easy determination of the authenticity
of crude materials and the quality assurance of herbal products. A leading technique in this
respect is preparative liquid chromatography, namely counter-current chromatography (CCC) or
high-performance liquid chromatography (HPLC).

The collection of the fraction is a key aspect of preparative chromatography for obtaining
milligram quantities of pure natural products or for a following purification of the products obtained [1].
For semi-preparative chromatography, the identification of compounds in the sample very often begins
with fraction collection if a mass spectrometric detector is not available or difficult to use (e.g., in
identifying isomers of saccharides). Fractionation of the bioactive compounds obtained from complex
natural extracts is also an essential step in the de novo identification and assessment of bioactivity
in natural product research; for instance, Challal et al. have recently reported a high-load method of
medium-performance LC (MPLC) with ELSD and UV detectors monitoring the separation process in
parallel [2].

Many recent papers have reported preparative chromatography using an ELSD for the analysis
of products of natural origin. He et al. [3] have described the preparative isolation and purification
of glycine-conjugated cholic acids from Pulvis Fellis Suis by high-speed CCC coupled with an ELSD.
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Liu et al. [4] have connected high-speed CCC and ELSD by flow injection and applied this system
for preparative isolation and purification of ginkgolide compounds obtained from Ginkgo biloba.
Alkaloids from Nitraria sibirica leaves have recently been isolated by pH-zone-refining counter-current
chromatography and a new alkaloid “schobemine” identified; to determine purity, the authors used
an ELSD [5]. Julianti et al. [6] have reported that a leaf extract of Carica papaya has undergone
semi-preparative separation with HPLC-ELSD. Antiplasmodial activity related to alkaloids has been
confirmed; flavonols were also isolated from the extract and purified. Rojas et al. [7] have quantified the
dissolved organic matter in waters after solid-phase extraction by a CCC method with a sequentially
connected UV detector and an ELSD.

Since an ELSD is, in principle, destructive, it must be the last detector hyphenated in a separation
system. The analyte is nebulized into an aerosol, which practically disables fractionation (detection is
performed in the gaseous phase). A typical laboratory semi-preparative HPLC system employs a UV
detector to control the timing of fraction collection.

1.2. ELSD

An ELSD is suitable for analytes that lack UV-vis chromophores, and is an alternative to a refractive
index detector (RID). A RID can be used only for isocratic elution, which represents a serious limitation
for analysis of real biological samples with complex matrices. The ELSD was invented in 1966, but it
became interesting for practical use only in 1978, when it was considered as a detector for modern
HPLC. Detectors of evaporative light scattering, made by companies such as the Varex Corporation
(Rockville, MD, USA), S.E.D.E.R.E (Alfortville, France), and Applied Chromatography Systems Limited
(Macclesfield, UK), have been commercially available since the 1980s; the number of papers describing
applications of ELSDs has grown enormously in recent years [8]. The application of ELSDs is very
often connected with saccharide analysis in the HILIC mode.

Almeling and Holzgrabe [9] have studied the influence of the experimental parameters on the use
of HPLC-ELSD for the quality control monitoring of drug substances, especially the effect of different
flow rates of the scavenger (nebulizing) gas. Triacylglycerols in oils and infant formulas have been
analyzed by HPLC with an ELSD [10]. Recently, Arslan et al. have described the optimization of
parameters of an ELSD in a fully automated three-dimensional column-switching SPE-FIA-HPLC
system used for lipid characterization [11].

ELSDs are known to exhibit a non-linear response, although some authors have reported
linear calibration curves [7,12]. The calibration curve can be linearized by using single-point
calibration [13], which has been adapted and applied successfully to the mutarotation monitoring of
monosaccharides [14].

1.3. HILIC

Hydrophilic interaction liquid chromatography (HILIC) has become very popular for the
separation and determination of polar compounds such as proteins, peptides, amino acids, nucleotides,
and carbohydrates. Applications of HILIC began to increase especially after 2003, and many can
now be found in the literature [15,16]. The term HILIC or “aqueous normal phase chromatography”
should reflect the fact that, unlike RP-HPLC, the stationary phase is polar; moreover, the mobile phase
contains an excess of organic solvent, typically more than 80% (v/v) of acetonitrile.

The theory of HILIC has been described by Alpert et al. [17], and the theoretical background has
been discussed by other investigators [18,19]. Hemström and Irgum [20] have matched arguments from
data in the literature, supporting a partitioning or adsorption mechanism of HILIC. Finding evidence
for both the models, they agreed with Alpert et al. [17] that “most of the real HILIC separations
are in essence multimodal.” This explains why the term “mixed-mode chromatography” is used
as an alternative name for HILIC nowadays [21]. Multimodal retention mechanisms, including ion
exchange, hydrogen bonding, and hydrophobic and hydrophilic interactions, have been discussed in
the literature. Interestingly, in the HILIC mode on a silica stationary phase, both positive and negative
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slopes of van’t Hoff plots have been reported for the same analytes (polar glycine derivatives), which
can be explained by the existence of type A and type B silica [22].

The mechanism of retention in HILIC has been studied for particular analytes [23–25] and several
models of retention have been proposed. Jin et al. [24] have suggested a retention equation combining
an adsorption model (where ln k′ is proportional to ln cw) and a partitioning model (where ln k′ is
proportional to cw) in the form:

lnk′ = a + b× lncw + c× cw (1)

where k′ is the retention factor; a, b, and c are constants, and cw is the water fraction (or concentration)
in the mobile phase.

In this paper, we demonstrated that analytes with no suitable UV-chromophore could be collected
for preparative purposes by using an ELSD. An LC-splitter (1:10) was inserted after the HPLC column
(see Figure 1) with the low-flow outlet directed to an ELSD. The remaining (approximately 90%)
sample could then be collected from the high-flow outlet of the splitter. Two model polar analytes were
used, salicin and glucose, both of which give ELSD signals. Salicin also contains a UV-chromophore
and can be detected simultaneously by using a UV detector. These model samples served first for
a study of the separation mechanism and as a retention model of polyols on a diol column in HILIC
mode. These analytes were then fractionated and re-injected, which proved the feasibility of the set-up.
Finally, the method was applied to a biological sample, an extract from a lyophilized colony gel of the
invertebrate Pectinatella magnifica.
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detection at 270 nm showed excellent linearity for the salicin calibration curve within the concentration 

Figure 1. The set-up for collecting the fraction with an ELSD. The splitter is the grey segment connected
below the HPLC column (high-flow and low-flow outlets are denoted); the black circle represents a UV
detector monitoring salicin (for comparison purposes).

2. Results and Discussion

In the first part of this section we compared the calibration curves of the model analytes (salicin
and glucose). The experimental conditions used to obtain the calibration curves followed a paper of
Pazourek [14] concerning the separation of monosaccharides (isocratic elution, mobile phase 10%:90%
(v/v) water/acetonitrile, flow rate 2.0 mL/min), but the column temperature was changed to 25 ◦C.
We then studied the separation mechanism of the HILIC using the retention of glucose at three different
temperatures (10 ◦C, 25 ◦C, and 40 ◦C) and varying the elution strength of the mobile phase (3%, 5%,
10%, 15%, 20%, and 25% (v/v)), applying the retention model of Equation (1). In the last part of this
section we demonstrated the performance of the LC-splitter in the HPLC system using the model
analytes (salicin and glucose) and applied the set-up to a real sample of P. magnifica, which showed the
presence of fructose and glucose.
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2.1. Calibration Curves

Calibration curves were constructed for both the UV detector (270 nm, salicin) and the ELSD
(salicin, glucose) in order to compare the detector signals and to observe the linearity of the curves.
UV detection at 270 nm showed excellent linearity for the salicin calibration curve within the
concentration range 0.02–5 mg/mL (Figure 2a, curve A; R2 = 0.9999). On the other hand, the ELSD
signals for both salicin and glucose showed a typical upward concave course (Figure 2a, curves B and C)
which can be clearly seen at the lowest concentrations (0.02–1 mg/mL) and is in agreement with previous
observations on a similar DIOL column [14]. Single-point calibration linearization was used to make the
ELSD calibration curves linear [13] (Figure 2b, curves B and C, exponents of 0.73 and 0.68, respectively).

A direct comparison of the sensitivities (i.e., the slopes of the calibration curves) of the UV
detector and the ELSD calibration curves in Figure 2a is not worthwhile, because we did not select
the optimum wavelength for UV detection. It is more reasonable to compare the signal-to-noise
ratio (S/N), which is related to the limit of detection (LOD). In our case, at a level of 0.04 mg/mL,
the S/N ratios were comparable for both detectors (S/N ≈ 40). The estimated LOD for the ELSD was
0.01 mg/mL (using successive dilution).

Although there are other analytical methods for the determination of glucose (some of them with
higher sensitivity and/or with lower LODs—for review see [26]), we should note that the goal of this
article is the demonstration of the fraction collection with ELSD. The analytes of glucose (and salicin)
were chosen as model analytes.
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Figure 2. (a) Calibration curves of salicin (A, UV-detector λ = 270 nm, linear), and salicin with glucose
(B, C, ELSD; non-linear); calibration points are connected by a cubic function only to visualize the
course since there is no hard model for ELSD calibration functions; (b) Linearization of the ELSD
calibration curves (B, C); peak areas were replaced by a function (area)x with exponents of x = 0.73 and
0.68, respectively [13]. Every concentration level was measured in triplicate. Experimental conditions:
the mobile phase was 90% acetonitrile/10% water, flow rate was 2 mL/min, 25 ◦C, and injection
volume was 10 µL.

2.2. Temperature Effect

The column temperature is an important parameter in an HPLC separation because it significantly
affects the diffusivity of the analyte, the viscosity of the mobile phase, and the analyte transferring
enthalpy between the stationary and mobile phase [22], especially when ionic interactions are
involved [27]. In general, an increased temperature increases the diffusion coefficient and results in
narrower peaks. At the same time, an elevated temperature could also result in a shorter retention
time as explained by classical analyte diffusion theory. In the HILIC of monosaccharides, the column
temperature can also affect the rate of conversion between α- and β-anomers of the analyte. Moreover,
because the equilibration time of the process is typically about 1 h and the retention time is less than
10 min, the kinetics of mutarotation can easily be monitored with an ELSD [14].
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The temperature effect on the separation process can be described by the van’t Hoff equation for
the retention factor k′:

lnk′ = −∆H
RT

+
∆S
R

+ ln φ (2)

where ∆H and ∆S are changes in enthalpy and entropy, respectively, between the mobile and stationary
phases, R is the universal gas constant, and φ is the phase ratio.

This equation should be followed if partitioning is involved in the separation mechanism. In order
to elucidate the mechanism in our separation system of glucose on a diol stationary phase, calibration
curves were recorded at temperatures 10 ◦C, 25 ◦C, and 40 ◦C. The corresponding average capacity
factors of both the analytes were calculated, and van´t Hoff plots (ln k′ vs. 1/T) for several different
fractions of water in the mobile phase (3%–25% v/v) were constructed, as shown in Figure 3.

We observed quite good linearity of the van’t Hoff plots (R2 > 0.99) and positive slopes, which
confirms that the transfer of the solutes from the mobile phase to the stationary phase is an exothermic
process. Enthalpies were calculated for all of the compounds using the slope of Equation (2). For both
salicin and glucose, the enthalpy of retention was negative, ranging from −14.75 kJ/mol (3% v/v
of water) to −5.21 kJ/mol (25% v/v of water), although positive enthalpy changes have also been
reported in HILIC [28]. Our results indicate that the transfer of the solutes from the mobile phase to
the stationary phase is an exothermic process (favorable for low temperatures) and the solutes are
retained more as the column temperature decreases. In accordance with this finding, the column plate
number (N) for the retained peak of glucose (k′ ≈ 4) doubled as the column temperature was reduced
from 40 to 10 ◦C; on the other hand, N was practically constant for unretained peaks (k′ ≈ 1 for salicin).
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Figure 3. Thermodynamics of the separation—van’t Hoff plots. Retention factors were calculated for
the second peak of glucose (β-anomer). Experimental conditions were as follows: flow rate 2 mL/min,
injection volume 10 µL. The concentration range was 1–5 mg/L, at least three replicates at each of
five concentration levels, all plots are linear within the measurement precision (error bars show the
standard deviation of at least three replicates).

2.3. Effect of Water Concentration in the Mobile Phase

The commonly accepted model of HILIC presumes a stagnant layer of water on the hydrophilic
surface of the stationary phase. Hydrophilic interactions including hydrogen bonding between the
analytes and the stationary phase are therefore much more significant in HILIC separation than in
RP-HPLC [22].

A few recent studies have examined the relationship between the retention and the water content
of the mobile phase in HILIC mode. These attempts have tried to determine whether the mechanism
of retention is phase partitioning or surface adsorption or both [22,24,29,30]. From the theory of
adsorption chromatography (Snyder-Soczewinski equation [20]) and from an empirical formula for
neutral analytes partitioned between phases in RP-HPLC, it follows that in HILIC, a plot of log k′ vs.
log (mole fraction of water) should yield a straight line for an adsorption mechanism, whereas a plot
of log k′ vs. log (volume fraction of water) should yield a straight line for a partition mechanism [18].
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Therefore, experiments were carried out varying the content of water in the mobile phase of 3%–25%
(v/v). The results are shown in Figure 4.Molecules 2016, 21, 1495 6 of 11 
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Under the experimental conditions used for HILIC (5%–15% v/v of water in the mobile phase),
neither graph showed a linear course even within the limits of the error bars, a fact which supports the
theory of a mixed mechanism [21]. The shaded area in Figure 4 portrays conditions with low retention
that are not used in practice.

We also verified the retention model of the HILIC mode suggested by Jin et al. [24], who have
claimed that their model of Equation (1) is more suitable than a purely mathematical fit (the quadratic
polynomial ln k′ = c0 + c1 × cw + c2 × cw

2) because the coefficients a, b, and c of Equation (1) have
a physico-chemical meaning: “a relates to the interaction energy between solutes with the stationary
phase and the mobile phase, b relates to the direct analyte–stationary phase interaction, c relates to the
interaction energy between solutes and solvents” [24]. Surprisingly, the authors put these constants
forward only for the compounds of a plant extract separated on a β-cyclodextrin column (a ≈ −1,
b ≈ −1, c ≈ −4, regression coefficients 0.998–0.999), and used the equation to predict the retention
times. Our results are shown in Figure 5. A very good fit was found for each of the three temperatures
tested; regression coefficients R2 were 0.9848 (10 ◦C), 0.9826 (25 ◦C) and 0.9851 (40 ◦C), respectively.
The values of both the constants at 25 ◦C (a ≈ +1.0, b ≈ −0.3, and c ≈ −5.0, respectively) and the
regression coefficients were comparable with those in the original paper [24].
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We demonstrated the performance of our HPLC system with the splitter on a model mixture of 
salicin and glucose standards. The results are shown in Figure 6. In order to obtain a sufficient signal 

Figure 5. Verification of the retention model proposed by Jin et al. [24]. Experimental data were
fitted with Equation (1) until the χ2 tolerance of 10−6 was reached (Levenberg-Marquardt algorithm).
The values of the coefficients a, b, and c were as follows: +1.2, −0.3, −5.0 (upper curve, 10 ◦C); +1.0,
−0.3, −5.0 (middle curve, 25 ◦C); +0.9, −0.3, −4.9 (lower curve, 40 ◦C). Error bars show the standard
deviations of at least three replicates.
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2.4. Fractionation of a Model Mixture of Standards

We demonstrated the performance of our HPLC system with the splitter on a model mixture of
salicin and glucose standards. The results are shown in Figure 6. In order to obtain a sufficient signal
from the re-injected fractions, a high amount of the analytes (20 µL, concentration 10 mg/mL, i.e.,
0.02 mg) was loaded in the collection step (upper curve A, ELSD signal, left y-axis). Fractions were
collected at around 2.6 min (salicin) and 5.8 min (glucose) (each fraction was collected for 30 s, i.e.,
1 mL was collected). The fractions were then re-injected and the signals from both the detectors were
recorded. To reduce the UV signal and make it comparable to the signal of the ELSD, a wavelength of
270 nm was chosen—curve C, right y-axis, fraction 1. Curves B and D (right y-axis) show the ELSD
signals of fraction 1 and fraction 2, respectively; their retention times showed the presence of salicin
in fraction 1 and glucose in fraction 2, respectively, as expected. Glucose exhibits the characteristic
two-peak pattern representing its α- and β-anomers. The time delay between the peak maxima of
curves C and D (salicin) reflects the time required for the analyte to travel from the UV detector to the
ELSD (0.18 min at a flow rate of 2 mL/min, and 0.28 min at a flow rate of 1 mL/min, respectively).
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Figure 6. Fraction collection and re-injection of a model mixture. Chromatogram A is the ELSD
signal used for fraction collection (fraction1 and fraction 2 were collected within the marked time
intervals). Collection: 20 µL of a mixture of salicin and glucose (c = 10 mg/mL each) was injected.
After re-injection, signals C (UV 270 nm) and D (ELSD) were obtained for salicin and chromatogram B
for glucose (ELSD). Other experimental conditions: the temperature was 25 ◦C, the mobile phase was
90% acetonitrile/10% water, and the flow rate was 2 mL/min.

2.5. Fractionation and Re-injection of an Extract from P. magnifica

The experimental set-up was used to identify the monosaccharides in a real sample, an extract
taken from the inner colony gel of the invasive invertebrate P. magnifica [31]. The analysis was
performed under the same conditions that we used for calibration (the mobile phase was 90%
acetonitrile: 10% water (isocratic elution), the flow rate 2 mL/min, and the temperature 25 ◦C;
the experimental parameters of the ELSD were as follows: the chamber temperature was 40 ◦C, and the
nitrogen pressure in a standard nebulizer was 3.0 bars).

The results are shown in Figure 7: 50 µL of the P. magnifica extract was loaded on the column
and, according to the ELSD signal, a fraction was collected between 4 min and 6 min (the grey-shaded
chromatogram denoted “fraction collection”). The splitter was then removed, the fraction was
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evaporated to dryness under a nitrogen flow, dissolved into 200 µL of water, and re-injected (solid line
chromatogram). The signals of both fructose and glucose were identified by their retention times and
the typical anomeric patterns [14] (the dotted chromatograms of the fructose and glucose standards
are overlapped).
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Figure 7. The splitter application to a real sample. The grey solid-filled chromatogram represents
an extract of inner gel of P. magnifica used for fraction collection (injection volume was 50 µL, fractions
were collected within 4–6 min). The fraction collected was evaporated to dryness under nitrogen,
dissolved into 200 µL of water and then re-injected. The dotted traces show the chromatograms of
the standards of fructose and glucose, respectively (each with a concentration of c = 2 mg/mL and
an injection volume of 5 µL). Other experimental conditions: the temperature was 25 ◦C, the mobile
phase was 90% acetonitrile/10% water, and the flow rate was 2 mL/min.

3. Material and Methods

D-α-glucose, D-fructose, salicin, acetonitrile of HPLC grade and water of gradient HPLC grade
were purchased from Sigma-Aldrich (St. Louis, MO, USA).

The stock solution of salicin and glucose (used for the study of the retention mechanism) was
a mixture of standards, each with a concentration of 10 mg/mL. The individual stock solutions for the
identification of glucose and fructose were also 10 mg/mL.

A YL9100 HPLC system (Young Lin, Anyang, Korea) connected to an ELSD (Agilent Technologies,
Santa Clara, CA, USA) was used. The temperature of the ELSD chamber was set to 40 ◦C and the
nitrogen pressure in the standard nebulizer was 3.0 bars. The column was LiChrospher100 DIOL
(Merck, Darmstadt, Germany) 250 × 4.1 mm, with a packing particle diameter of 5 µm. Isocratic
elution was always employed. If not stated otherwise, the mobile phase contained 10% (v/v) water
and 90% (v/v) acetonitrile, the flow rate was 2.0 mL/min, the temperature of the column was 25 ◦C,
and the injection volume was 10 µL.

3.1. Fractionation and Re-injection

For the fraction collection step, the splitter was inserted after the HPLC column (Figure 1), a high
load of the sample was injected (20–50 µL), and the fraction was collected according to the ELSD signal.
The splitter was then removed and the fraction(s) reinjected (10–50 µL). If the concentrations of the
analytes were still low (e.g., for real samples), the fractions could be evaporated to dryness under
flowing nitrogen and diluted in a suitable solvent prior to injection.
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3.2. Sample from Pectinatella magnifica

Pectinatella magnifica is an invasive invertebrate that is spread world-wide and found in freshwater
sources in the region of Třeboňsko (Třeboň, Czech Republic). Its biology, chemical composition,
and environmental impact are not yet clear [31]. Because the composition of the animals (zooids)
themselves is thought to be complex, only the inner gel of the colony blob, which represents most of
the mass of the colony, was analyzed. The sample was collected in 2014.

After lyophilization, 100 mg of the material was weighed into 1.3 mL of a 1:1 water-methanol
mixture [28], ultra-sonicated for 15 min, centrifuged for 10 min and then filtered (0.45 µm filter) into
an HPLC vial. Fractions of the sample obtained from the splitter were evaporated to dryness under
flowing nitrogen and dissolved in 200 µL of water prior to re-injection.

4. Conclusions

It was demonstrated that an LC-splitter inserted between an HPLC column and an ELSD
can be adapted for fractionation and the following identification of compounds without a suitable
UV-chromophore. Typical analytes for applications of such a chromatographic system are saccharides,
or glycosides (common compounds in phytochemistry), and other polar compounds.

Analysis of a real sample of P. magnifica showed that the colony gel contains fructose and glucose,
a fact which had not previously been reported. This finding is also in agreement with our tentative
hypothesis (deduced from elemental analysis results) that the gel produced by P. magnifica is a highly
glycosylated protein.

With respect to the separation mechanism of glucose on a diol column, van’t Hoff plots revealed
that the transfer of the solutes from the mobile phase to the stationary phase is an exothermic process.
Experiments varying the composition of the mobile phase to provide different elution strengths
showed that neither adsorption nor partitioning is the prevailing mechanism; they rather suggested
a mixed-mode (multimodal) mechanism of retention. The HILIC retention model of Equation (1) put
forward by Jin et al. [24] predicts the retention factor k´ as a function of the water concentration in the
mobile phase and is a suitable description of the mechanism of retention.
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