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Abstract: Salvianolic acid A (SAA) is one of the most abundant water-soluble and potent anti-oxidative
compounds isolated from Danshen, a traditional Chinese medicine. A systematic overview of its
mechanism of action is yet to be performed. In the present study, the druggability of SAA was
measured using the TCMSP server, and potential targets of SAA were identified by PharmMapper
and DRAR-CPI. Intersecting targets were then assessed by GeneMANIA and GO pathway analysis,
and drug-target-pathway networks were constructed to give a visual view. The results showed
that SAA has good druggability, and 13 putative protein targets were identified. Network analysis
showed that these targets were associated with cancer, metabolism and other physiological processes.
In summary, SAA is predicted to target multiple proteins and pathways to form a network that exerts
systematic pharmacological effects.
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1. Introduction

Traditional Chinese medicine (TCM) and natural products in general are the best source of active
compounds for drug discovery [1,2]. Salvianolic acid A (SAA; Figure 1a) is one such example, and is
one of the most abundant water-soluble components extracted from Danshen (red sage, or Radix Salvia
miltiorrhiza), a TCM that has been widely used to treat cardiovascular diseases for hundreds of years [3,4].
This compound is the most potent anti-oxidative agent among those isolated from Danshen [5,6].
Furthermore, SAA is of pharmacological relevance due to its antiplatelet and antithrombosis activities,
and it also improves microcirculation. Furthermore, anti-inflammation and antioxidant, myocardial
ischemic protection, antithrombotic, neuroprotection and anti-fibrosis activities have been reported,
and it can prevent diabetes and associated complications [4,6]. For such naturally occurring
compounds, knowledge of the toxic or medicinal properties often long predates precise knowledge of
targets or mechanisms [1], and there remains much to learn about SAA.

Adoption of computation methodologies for the repositioning of drug molecules in receptors is
becoming mainstream because it can save time, money and labour [7,8]. Computational target fishing
in particular can improve drug discovery and drug design processes and thereby address unmet
medical needs [9]. In our previous work, we identified the potential target of capsaicin and tanshinone
IIA using computational tools [10,11]. As an active compound from TCM, SAA is similarly well suited
to this type of analysis.

In the present study, the druggability of SAA was first evaluated using the TCMSP server.
Potential targets were predicted by both computational reverse docking and chemical-protein
interactome analysis, and overlapping targets identified using both approaches were chosen for
further investigation based on gene ontology (GO) and pathway analysis. Finally, we constructed a
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drug-target network to provide a systematic overview of potential targets and mechanisms of action
for SAA. An overview of the experimental procedures for SAA target prediction is shown in Figure 1b.
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2. Results

2.1. ADME-Related Properties of SAA

TCMSP provides information on important ADME-related properties such as human oral
bioavailability (OB), drug-likeness (DL), Caco-2 permeability (Caco-2), blood-brain barrier (BBB)
permeability and Lipinski’s rule of five (MW, AlogP, TPSA, Hdon, Hacc) [12]. ADME-related properties
of ASS were investigated in depth by TCMSP (Table 1). Notably, the DL of SAA was calculated to
be 0.7 (Table 1).

Table 1. Pharmacological and molecular properties of SAA.

Name MW AlogP Hdon Hacc OB (%) Caco-2 BBB DL FSAF TPSA RBN

SAA 494.48 4.14 7 10 2.96 −0.56 −1.62 0.7 0.4 184.98 9

2.2. Identification of Potential Targets

Potential targets were predicted using two different approaches as described in the methods.
Figure 1b shows the top 300 potential protein targets of SAA from all 7302 pharmacophore models
obtained using PharmMapper, as well as the potential 330 targets identified using DRAR-CPI. In a
DRAR-CPI job, a Z′-score threshold of −0.5 indicates favourable targets, and 93 targets met this
requirement. Finally, to improve the specificity, a total of 13 potentially interacting proteins identified
in both sets of results were selected for further investigation (Table 2).
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Table 2. Putative targets of SAA identified by PharmMapper and DRAR-CPI.

Rank PDB ID Name Target Gene

1 1T40 Aldose reductase AKR1B1
2 2C3Q Glutathione S-transferase theta-1 GSTT1
3 2BX8 Serum albumin ALB
4 1LJR Glutathione S-transferase theta-2 GSTT2B
5 1XMI Cystic fibrosis transmembrane conductance regulator CFTR
6 1EK5 UDP-glucose 4-epimerase GALE
7 2E8A Heat shock 70 kDa protein 1 HSPA1
8 1H0C Serine-pyruvate aminotransferase SPAT
9 11GS Glutathione S-transferase P GSTP1
10 5P21 GTPase HRas HRAS
11 1A3B Prothrombin F2
12 1XWK Glutathione S-transferase Mu 1 GSTM1
13 1R6T Tryptophanyl-tRNA synthetase, cytoplasmic WARS

2.3. Analysis by GeneMANIA

Among the 13 targets and their interacting proteins, it was found that 38.36% displayed similar
co-expression characteristics, and 36.81% shared the same protein domain. Other results including
physical interactions, pathways and co-localisation are also shown in Figure 2.
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Figure 2. Network of potential SAA targets. Black protein nodes indicate target proteins, and different
connecting colours represent different correlations. Functional association of targets was analysed
using GeneMANIA. Genes in black circles were submitted as query terms in searches. Grey circles
indicate genes associated with query genes.

2.4. GO and Pathway Analysis, and Network Construction

To further investigate the 13 identified targets, analysis of interaction network regulation was
performed using MAS 3.0. As shown in Figure 3 and Table 3, the top five functions were physiological
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process (GO:0007582), cellular process (GO:0009987), binding (GO:0005488), biological regulation
(GO:0065007) and cell (GO:0005623), which together accounted for 45%. As shown in Supporting
Table S1, the 13 targets participate in 44 KEGG pathways including glutathione metabolism, metabolism
of xenobiotics by cytochrome P450, galactose metabolism, prostate cancer, regulation of actin
cytoskeleton and MAPK signalling.

Table 3. GO analysis of potential targets.

GO Term Count Percentage

GO:0007582 Physiological process 41 0.1348684211
GO:0009987 Cellular process 37 0.1217105263

GO:0005488 Binding 22 0.0723684211
GO:0065007 Biological regulation 20 0.0657894737

GO:0005623 Cell 19 0.0625
GO:0044464 Cell part 19 0.0625

GO:0050789 Regulation of biological process 17 0.0559210526
GO:0032501 Multicellular organismal process 16 0.0526315789

GO:0050896 Response to stimulus 16 0.0526315789
GO Other items 15 0.0493421053

GO:0003824 Catalytic activity 15 0.0493421053
GO:0008152 Metabolism 14 0.0460526316

GO:0032502 Developmental process 11 0.0361842105
GO:0051179 Localisation 10 0.0361842105

GO:0043226 Organelle 9 0.0296052632
GO:0051234 Establishment of localisation 8 0.0263157895

GO:0048519 Negative regulation of biological process 6 0.0197368421
GO:0048518 Positive regulation of biological process 5 0.0164473684

GO:0044422 Organelle part 4 0.0131578947
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Based on target fishing and pathway analysis, an entire network was constructed using Cytoscape
3.0. As shown in Figure 4, the interaction network has 59 nodes and 68 edges. The red oblong, green
inverted triangles and blue circles correspond to SAA, target proteins and pathways, respectively.
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3. Discussion

Poor pharmacokinetics and toxicity are significant causes of costly late-stage failures in drug
development, and it is increasingly accepted that these areas should be prioritised in the drug discovery
process [13]. In silico approaches can improve our ability to predict and model pharmacokinetic,
metabolic and toxicity endpoints, thereby streamlining and accelerating the drug discovery process [13].

Lipinski’s “rule of 5” can identify several critical properties that should be considered for
compounds with oral delivery in mind [13,14]. They are the molecular weight (MW) < 500 daltons
(Da), the calculated LogP (CLogP) < 5 (or MlogP > 4.15), number of hydrogen-bond donors < 5 and
number of hydrogen-bond acceptors < 10 [13,14]. Now, the rule of five is commonly referred to as
a “druglike” measure and guideline in drug lead optimisation [13,15]. As listed in Table 1, SAA’s
properties meet the requirements, which means SAA is a good candidate for drug discovery.

The concept of DL, established from analysis of physiochemical properties or/and structural
features of existing small molecule drugs and/or drug candidates, has been widely used to filter
out compounds with undesirable properties, especially those with poor ADMET-related profiles [16].
Natural products with inherently good biological properties are understandably receiving increasing
attention [16]. Average DL values for Drugbank compounds≥ 0.18 have been reported as a criterion for
screening bioactive compounds in systems pharmacology-based analyses of TCM [12,17,18]. As shown
in Table 1, the DL value of SAA was calculated to be 0.7 by TCMSP, which is above average, and
therefore indicates that SAA may be a promising drug.

Target identification is the first step in drug discovery, and more and more drugs or active
compounds are being shown to target multiple proteins [1,9,19,20]. Various in silico target fishing
methods have been designed and are now widely used for this purpose [21]. As shown in Table 2,
13 putative targets of SAA were screened using computational tools.

Some of the putative SAA targets have been identified previously. For example, aldose reductase
(AR) is a major mediator of inflammatory signals induced by oxidative stress, and plays a pivotal role in
cellular metabolism, inflammation and cancer [22,23]. In vitro experiments showed that SAA inhibits
AR activity and prevents galactose-induced cataract [24]. The GTPase HRas (Table 2) is a Ras isoform
that, like other Ras proteins, functions as a GDP-GTP-regulated binary on-off switch that controls
cytoplasmic signalling networks affecting a diverse range of cellular processes [25]. S-3-1, a synthetic
intermediate of SAA, can suppress the overexpression of the c-myc oncogene, inhibit the function of the
Ras oncoprotein, increase the expression of the P53 tumour suppressor, and interrupt P46-associated
and mitogen-activated pathways distinct from farnesylation of Ras [26]. Glutathione S-transferases
(GSTs) are a family of detoxification enzymes that catalyse the conjugation of glutathione to a wide
variety of xenobiotics [27]. Danshensu, another active compound from Danshen, reduces MDA and
restores GSH levels and total SH content in the cultured rat lens [28]. A combination of extracts from
Danshen act pharmacologically via GST [29,30]. As for other putative targets, salvianolate, a highly
concentrated form of salvianolic acid B, can inhibit neuronal apoptosis by increasing heat shock protein
22 in a reperfusion-ischemia model [31]. Therefore, the identification of 13 potential protein targets is
consistent with multiple targets for SAA. The GeneMANIA results (Figure 3) provided information
on co-expression and shared protein domains, and suggested that the targets and their interacting
proteins may have identical or similar functions, in agreement with the results of the first step.

There have similar reports about predictive targets of SAA by computational tools. For example,
Li developed an approach by combining network efficiency analysis with scoring function from
molecular docking to estimate the anticoagulant activities of compounds which includes SAA [32].
A recently published paper also reported that SAA exhibits 8 hepatoprotective targets (BCL2, AKT1,
CCND1, SPZ1, COL1A1, CDKN1A, HERC5 and MMP2) connections by in silico-based network
pharmacology approach [33]. Notably, AKT1 and MMP3 are also the PharmMapper’s results of SAA
in our study (Supporting Table S2).

GO and pathway analysis was also conducted using MAS 3.0, and a network was constructed
using Cytoscape. As shown in Figure 4, the network also indicated that SAA has multiple targets and
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further implies that it possesses multiple pharmacological activities. Interestingly, HRAS was identified
as a potential hub protein in the network (Figure 4). SAA reverses paclitaxel resistance in human
breast cancer bytargeting the expression of transgelin2 and attenuating the PI3K/Akt pathway [34],
inactivates transgelin2 [35], protects human neuroblastoma SH-SY5Y cells against MPP+-induced
cytotoxicity [36] and inhibits the growth of A549 lung cancer cells [37]. These findings indicate that the
anticancer activity of SAA likely involves Ras proteins.

4. Materials and Methods

4.1. Evaluation of Drug-Likeness Using the TCMSP Server

The TCMSP server (http://ibts.hkbu.edu.hk/LSP/tcmsp.php) is a systems-level pharmacology
database for TCM that can also calculate ADME-related properties for interesting, naturally occurring
compounds [12]. It provides an in silico ADME-systems evaluation model created by Wang’s research
team, which integrated drug-likeness (DL), oral bioavailability (OB), and Caco-2 permeability and so
on [12,17,18].

Drug-likeness (DL) is a qualitative concept used in drug design for an estimate on how “drug-like”
a prospective compound is, which helps to optimize pharmacokinetic and pharmaceutical properties,
such as solubility and chemical stability [17]. A database-dependent model is constructed based on the
molecular descriptors and Tanimoto coefficient (as displayed below) [17,18]:

T (A, B) =
A × B

‖A‖2 + ‖B‖2 −A × B
(1)

where A is the molecular descriptor of herbal ingredients, and B shows the average molecular properties
of all molecules in Drug-Bank database [17,18].

Oral bioavailability (OB) is one of the most vital pharmacokinetic properties of orally administered
drugs because it plays an important role for the efficiency of the drug delivery to the systemic
circulation. Its value was calculated by an in-house model OBioavail1.1 in the TCMSP database [12,17].

For orally administered drugs, one of the greatest problems is movement across the intestinal
epithelial barrier, which determines the rate and extent of human absorption and ultimately affects its
bioavailability [12,17]. The Caco-2 permeability prediction model preCaco2 was applied in the TCMSP
database [12,17].

In this study, the chemical name “salvianolic acid A” was entered as the search term and its
druggability was analysed at the molecular level.

4.2. Computational Target Fishing by PharmMapper and DRAR-CPI

PharmMapper, a reverse docking server, can identify potential protein targets for small molecule
compounds via a pharmacophore mapping approach [38]. For a given compound, it can provide
the top 300 targets, sorted by fit score in descending order [38]. Meanwhile, the DRAR-CPI server
can identify targetable proteins for small molecules via chemical-protein interactome analysis [39].
Both are powerful tools for computational target fishing.

An sdf file for SAA (PubChem CID: 5281793) was downloaded from the PubChem database
and separately uploaded to the PharmMapper and DRAR-CPI servers. All parameters were set
to default values, and overlapping protein targets identified using both servers were chosen for
further investigation.

4.3. Analysis by GeneMANIA

GeneMANIA is a flexible, user-friendly web interface for generating hypotheses about gene
function, analysing gene lists and prioritising genes for functional assays [40]. After selecting
Homo sapiens from the nine optional organisms, the gene of interest in the previous step was entered
into the search bar and the results were collated.

http://ibts.hkbu.edu.hk/LSP/tcmsp.php
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4.4. GO and Pathway Analysis, and Network Construction

The Molecule Annotation System 3.0 (MAS 3.0), a web-based software toolkit, can be used
to help understand relationships within gene expression data and provide systematic and visual
information on the gene of interest. Potential targets were uploaded to the MAS 3.0 server (http:
//bioinfo.capitalbio.com/mas3/) following the online instructions, and GO and KEGG pathway
information for SAA was generated and collected. For a deeper understanding of the complex
relationships among compounds, targets and diseases, networks were constructed and analysed using
Cytoscape 3.0.

5. Conclusions

In the present study, the DL of SAA was evaluated by TCMSP, and potential targets identified
by both PharmMapper and DRAR-CPI were chosen for further investigation. The results showed
that SAA may be a good drug candidate, and 13 potential interacting partners were identified that
are associated with various pharmacological activities. In addition, GO and pathway analysis was
performed and a drug-target association network was constructed. These results indicated that SAA
has multiple functions, including anticancer and metabolic activity. Although further studies are
necessary to determine the precise interactions, this study provides a systematic and visual overview
of possible SAA molecular mechanisms and signaling pathways.

Supplementary Materials: The following are available online. Table S1: KEGG pathways of putative targets
identified by MAS 3.0, Table S2: The top 300 potential targets of SAA predicted by PharmMapper.
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