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Abstract: This manuscript reviews the recent progress on mesoporous silica nanoparticles as drug
delivery systems. Their intrinsic structural, textural and chemical features permit to design versatile
multifunctional nanosystems with the capability to target the diseased tissue and release the cargo on
demand upon exposition to internal or external stimuli. The degradation rate of these nanocarriers in
diverse physiological fluids is overviewed obeying their significance for their potential translation
towards clinical applications. To conclude, the balance between the benefits and downsides of this
revolutionary nanotechnological tool is also discussed.
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1. Introduction

Mesoporous silica nanoparticles (MSNs) have revolutionized the field of controlled drug delivery
systems. Their advantageous features as well-ordered internal mesopores (typically ca. 2–6 nm) with
large pore volume (0.6–1 cm3/g) and surface area (700–1000 m2/g), tunable size (50–200 nm) and
shape, robustness and easy surface modification, make them ideal platforms to design multifunctional
nanosystems [1–5].

Since 2001, when Vallet-Regí et al. [6] introduced for the first time MCM-41 as a drug delivery
system, much effort has been devoted to the design of versatile MSNs for treating diverse pathologies,
with special emphasis in cancer treatment (Figure 1) [7–16]. Their high drug loading capability,
the possibility to attain localized and even combined therapy make them promising alternatives to
develop advanced nanotherapeutics [17–19]. Moreover, the textural properties of MSNs play a key
role in the performance of these nanosystems as drug delivery devices [1,20]. Thus, the pore diameter
behaves as a size selector for the loading of biologically active molecules within the mesoporous
cavities. Furthermore, this parameter regulates the release rate, thus acting as a limiting factor that
governs molecules diffusion processes to the physiological environment. On the other hand, the surface
area determines the molecules loading capacity of these nanoplatforms, because the higher the contact
surface the greater the number of guest molecules incorporated. Besides, the pore volume may also
influence the amount of drug loaded when aimed at the total filling of the mesopores by promoting
not only matrix-guest interactions but also drug-drug interactions. Finally, MSNs are well tolerated
in vitro (at dosages < 100 µg/mL) [21–24] and in vivo (at dosages < 200 mg/kg) [22]. Furthermore,
their good hemocompatibility has been also proved [25,26].
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Figure 1. Number of publications per year indexed in the ISI Web of Science on the topic of 
“mesoporous” and “silica” and “drug” and “delivery” up to 1st November 2017. 

Recently, the combination of MSNs with liposomes has been reported, leading to a unique 
nanocarriers denoted as “protocells” [7]. This nanosystem exhibits the robustness and high loading 
and controlled release capability of MSNs with the low toxicity and immunogenicity of liposomes. 
Protocells open up novel expectation in the drug delivery scenario due to their potential to tackle at 
once multiple challenges, such as stability, specificity and high loading capacity for diverse cargos [27]. 

The entering of nanomedicine into this landscape is expected to change the near future of 
pharmaceutical and biotechnological industries. This novel nanotechnological tools would 
overcome the major constrains of conventional medicine, as low solubility and stability, narrow 
therapeutic window, lack of specificity and non-adequate pharmacokinetic profiles and severe side 
effects of drugs [28]. Although during the last few decades the entering of nanomaterials in medicine 
has delivered more than 250 products already approved or under different phases of clinical trials, 
their ultimate clinical application remains a great challenge [29]. 

Herein, the different approaches developed so far to design MSNs owning specificity to the 
target (diseased tissue, organ or cell) and stimuli-responsive controlled drug dosage ability are 
overviewed. Moreover, the degradability of these nanosystems during and after drug delivery is 
also discussed due to their relevance in the successful translation to the clinical arena. Finally, the 
benefits and downsides of this groundbreaking nanotechnology are summarized. 

2. Mesoporous Silica Nanoparticles as Drug Delivery Systems 

MSNs exhibit unique characteristics that make them ideal nanocarriers to host, protect and 
transport drugs to the target site. It is feasible to incorporate targeting agents in the external surface 
of MSNs to direct them to the unhealthy tissues aimed at increasing specificity and therefore 
diminishing undesired side effects. Another pivotal challenge is to avoid the premature cargo 
release before reaching the target. In this sense, the pore entrances of MSNs can be capped by using 
stimuli-responsive gatekeepers. Thus, the exposure to internal or external stimuli would trigger pore 
opening and allow cargo departure. Besides, it is possible to design multifunctional MSNs with 
synergistic therapeutic effects against diseased tissues. In this context, these enhanced dual therapies 
can be achieved by different strategies, as will be discussed below. Since most of the research effort 
on MSNs for drug delivery has been committed to cancer therapy, in this section we will mainly 
focus on this pathology. 

Figure 1. Number of publications per year indexed in the ISI Web of Science on the topic of
“mesoporous” and “silica” and “drug” and “delivery” up to 1st November 2017.

Recently, the combination of MSNs with liposomes has been reported, leading to a unique
nanocarriers denoted as “protocells” [7]. This nanosystem exhibits the robustness and high loading
and controlled release capability of MSNs with the low toxicity and immunogenicity of liposomes.
Protocells open up novel expectation in the drug delivery scenario due to their potential to tackle at
once multiple challenges, such as stability, specificity and high loading capacity for diverse cargos [27].

The entering of nanomedicine into this landscape is expected to change the near future of
pharmaceutical and biotechnological industries. This novel nanotechnological tools would overcome
the major constrains of conventional medicine, as low solubility and stability, narrow therapeutic
window, lack of specificity and non-adequate pharmacokinetic profiles and severe side effects of
drugs [28]. Although during the last few decades the entering of nanomaterials in medicine has
delivered more than 250 products already approved or under different phases of clinical trials,
their ultimate clinical application remains a great challenge [29].

Herein, the different approaches developed so far to design MSNs owning specificity to the target
(diseased tissue, organ or cell) and stimuli-responsive controlled drug dosage ability are overviewed.
Moreover, the degradability of these nanosystems during and after drug delivery is also discussed due
to their relevance in the successful translation to the clinical arena. Finally, the benefits and downsides
of this groundbreaking nanotechnology are summarized.

2. Mesoporous Silica Nanoparticles as Drug Delivery Systems

MSNs exhibit unique characteristics that make them ideal nanocarriers to host, protect and
transport drugs to the target site. It is feasible to incorporate targeting agents in the external surface of
MSNs to direct them to the unhealthy tissues aimed at increasing specificity and therefore diminishing
undesired side effects. Another pivotal challenge is to avoid the premature cargo release before
reaching the target. In this sense, the pore entrances of MSNs can be capped by using stimuli-responsive
gatekeepers. Thus, the exposure to internal or external stimuli would trigger pore opening and allow
cargo departure. Besides, it is possible to design multifunctional MSNs with synergistic therapeutic
effects against diseased tissues. In this context, these enhanced dual therapies can be achieved by
different strategies, as will be discussed below. Since most of the research effort on MSNs for drug
delivery has been committed to cancer therapy, in this section we will mainly focus on this pathology.
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2.1. Selective Targeting for Localized Therapy

In general, nanosystems injected into the blood stream are prompt to accumulate in the tumor
zone via the well-known enhanced permeation and retention (EPR) effect due to the peculiar blood
vessel architecture of these diseased tissues [30,31]. Nonetheless, the tumor mass is complex and
heterogeneous and it is composed by numerous cells (cancerous, supportive and immune cells, etc.) [32].
As an efficient eradication of malignant cells is required, it is essential to provide the nanosystem of
capability to discriminate between cancer and healthy cells. A widely explored strategy consists in
decorating the outermost surface of MSNs with molecules able to interact selectively with specific
membrane receptors overexpressed in tumor cells (Figure 2).
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Figure 2. (Left) Schematic depiction of active targeting possibilities on MSNs; (Right) Dual targeting
strategy to target both cell membrane of tumor cells and mitochondria by asymmetrically functionalized
nanoparticles (J-MSNs).

Besides, it is possible to decorate MSNs with targeting ligands with affinity towards the blood
vessels that irrigate the solid tumor, which disrupts its nutrients and oxygen supply triggering
the tumor destruction. These two approaches, known as active targeting, allow for a noticeable
improvement of the particle uptake by the tumor cell or tumor blood vessels [33]. Table 1 summarizes
these active targeting strategies developed up to date for MSNs.

Table 1. Different active targeting strategies for MSNs.

Targeting Ligand a Tumor Cell Receptor b Target Cell Line c Ref.

Tf TfR PANC-1, BT-549 [34]
Tf TfR HeLa [35]
Tf TfR HT1080 [36]

EGF EGFR HuH-7 [37]

FA FAR (FR-α) Hela, PANC, U2Os, MDA-MB-231,
SK-BR-3, MiaPaca-2, LnCAP [38–46]

Methotrexate FR-α HeLa [47]
Anisamide Sigma receptor ASPC-1 [44]

TAT peptides Importing α and β receptors Hela; MCF-7/ADR [48–50]
IL-13 peptide IL-13Rα2 U251 [51]

Anti-herceptin HER2 SK-BR3 [52]
Anti-HER2/neu HER2/neu BT474 [53]

Anti-ErbB2 ErbB2 MCF-7 [54]
Anti-ME1 Mesothelin MM [55]

Anti-TRC105 CD105/endoglin HUVECs [56]
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Table 1. Cont.

Targeting Ligand a Tumor Cell Receptor b Target Cell Line c Ref.

MABG NET NB1691-luc [57]
RGD-type peptide (RDGRC) NRP-1 HOS [58]

ConA SA HOS [59]
HA CD44 MCF-7, MDA-MB-231, 4T1 [60]

Targeting Ligand a Tumor Blood Vessel
Receptor b Target Cell Line c Ref.

c(RGDyK) ανβ3 integrins U87-MG [61]
cRGD ανβ3 integrins MDA-MB 435 [34]

K7RGD; c-RGDFK ανβ3 integrins HeLa [62]
K8(RGD)2 ανβ3 integrins U87-MG [63]

N3GPLGRGRGDK-Ad ανβ3 integrins SCC-7, HT-29 [61]
N3RGDFFFFC ανβ3 integrins U87-MG [64]
Thiolated-RGD ανβ3 integrins A375, HepG2, MCF-7, Neuro-2a [66]
Anti-(VCAM-1) (VCAM-1)R HUVEC-CS [67]

VEGF VEGFR U87-MG [68]
a Tf: Transferrin; FA: Folic acid; EGFR: Epidermal growth factor; TAT: Transactivator of transcription; IL-13:
Interleukin-13; MABG: metaaminobenzyl guanidine (meta-iodobenzylguanidine analogue); ConA: concanavalin
A; c(RGD): Cyclic RGD (Arg-Gly-Asp); c(RGDyK): Cyclo(Arg-Gly-Asp-D-Phe-Lys); K7RGD: linear RGD peptide
sequence with 7 consecutive lysine residues; K8(RGD)2 cationic peptide containing 2 RGD sequences; VCAM-1:
vascular cell adhesion molecule 1; VEGFR: Vascular endothelial growth factor; b TfR: transferrin receptor; EGFR:
epidermal growth factor receptor; FAR (FR-α): Folic acid receptor; IL-13Rα2: interleukin-13 receptor subunit
alpha-2; HER2: epidermal growth factor receptor; ErbB2: Receptor tyrosine-protein kinase 2; NET: norepinephrine
transporter; NRP-1: neuropilin receptors; SA: sialic acid; (VCAM-1)R: vascular cell adhesion molecule 1 receptor;
VEGFR: Vascular endothelial growth factor receptor; c PANC-1: human pancreatic carcinoma, epithelial-like cell line;
BT-549: human breast carcinoma cell line; HeLa: Human epithelial cells from a fatal cervical carcinoma; HT1080:
Fibrosarcoma cell line; HuH-7: Human hepatoma cell line; U20S: Human osteosarcoma cell line; MDA-MB 231
and 435: Human breast carcinoma cell lines; SK-BR-3: Human breast adenocarcinoma cell line; MiaPaca-2: Human
pancreatic carcinoma cell line; LnCAP: human prostate cancer cell line; ASPC-1: Human pancreas adenocarcinoma
cell line; MCF-7/ADR: (ADR)-selected human breast cancer cell line; U251: glioma cell line; BT474: Human
breast cancer cell line; MM: Multiple myeloma cell line; HUVEC: human umbilical vein endothelial cell line;
NB1691-luc: human neuroblastoma cells; HOS: human osteosarcoma cell line; MDA-MB-23: human breast cancer
cell line; 4T1: mouse breast cancer cell line; U87-MG: human primary glioblastoma cell line; SCC-7: Squamous
cell carcinoma; HT-29: human intestinal epithelial cells; A375: Human amelanotic melanoma cell line; HepG2:
human hepatoblastoma-derived cell line; Neuro-2a: Mouse neuroblastoma cell line; HUVEC: human umbilical vein
endothelial cell line.

On the other hand, it is possible to graft two targeting agents (dual targeting) to the same
nanocarrier with the aim of enhancing even more its selectivity [69–71]. Thus, the nanocarriers
trafficking within the cell can be controlled by placing targeting molecules able to recognize different
cell organelles. In a recent study, it has been proved that the best configuration of the targeting
agents in dual-targeted nanocarriers is Janus-type structures (J-MSNs) [72]. Very recently, J-MSNs
asymmetrically functionalized with targeting agents, folic acid (FA, with affinity towards folate
membrane cell receptors overexpressed in cancer cells) and triphenylphospine (TPP, able to bind to
mitochondria membrane), has been developed for sequential cell to organelle targeting proposes [46]
(Figure 2). The asymmetric functionalization permits a fine control in the targeting grafting process.
Hence, the presence of FA increases the accumulation of J-MSNs inside the cancer cells, where they are
subsequently driven to mitochondria by TPP action. This dual-targeting strategy can be applied to
enhance the therapeutic efficiency of MSNs for antitumor therapies.

One of the major limitations in the use of nanosystems is their poor penetration capability within
the tumor mass, due to the presence of a collagen-rich extracellular matrix, which hampers the diffusion
of these nanocarriers. Therefore, two main alternatives have been proposed to increase the penetration
rate of MSNs into tumor masses. The first one consists in the design of pH-sensitive collagenase
nanocapsules anchored on the MSNs surface [73]. Collagenase is a proteolytic enzyme able to digest
the extracellular matrix, which improves the penetration degree of the nanosystem and enhances its
therapeutic capability. However, because of this enzyme is easily degraded or denaturalized under
varied conditions, it has been protected by using nanocapsules formed by radical polymerization of
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different monomers: acrylamide as the structural monomer; 2-aminoethylmethacrylate to provide
amino groups capable of attach to MSNs surface; and ethylene glycol dimethacrylate as the
pH-cleavable cross-linker. Thus, under acidic pH typical of solid tumor environment, the nanocapsules
break triggering the collagenase release, which then digests the extracellular matrix and improves the
penetrability of the MSNs. This novel nanosystem exhibits good biocompatibility, which opens up
new paths for further applications in nanomedicine.

The second alternative relies on taking advantage of the capability of human mesenchymal stem cells
(MSCs) to migrate towards tumors [74]. Thus, MSCs have been successfully reported as MSNs carriers,
being able to reach the deeper regions of diverse tumors [75]. Thus, Paris et al. have designed a new
tumor-tropic system consisting in decidua of human placenta MSCs and doxorubicin loaded-MSNs,
which induces an efficient cancer cell death both in vitro and in vivo.

2.2. Controlled Dosage and Smart Behavior

One of the major advantages of MSNs as drug delivery systems is the possibility to design
zero-premature cargo release nanosystems by blocking the pore openings using gatekeepers.
Stimuli-responsive behavior can be accomplished anchoring pore blocking caps throughout linkers
that can be cleaved upon exposure to given stimuli. These stimuli are classified as internal, i.e., those
typical of the treated pathology, such as pH, redox potential, enzymes, etc., and external, such as
magnetic fields, ultrasounds or light, among others, which can be remotely applied by the clinician
(Figure 3).
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Smart MSNs that respond to internal stimuli exhibit the advantage of not needing external devices
to trigger cargo release. Nonetheless, the precise control of drug dosage is lower than that achieved
using external stimuli. Anyway, each type of smart nanosystem shows pros and cons that should be
carefully considered depending on the targeted pathology and their potential clinical application.

2.2.1. Internal Stimuli-Responsive Drug Delivery MSNs

The deep knowledge of the biochemical and metabolic processes involved in the different
pathologies to be treated has allowed for the design of drug delivery nanosystems sensitive to
endogenous stimuli [4,76,77]. In this context it has been reported the design of smart MSNs
able to respond to specific internal stimuli such as pH variations, high glutathione concentration,
overexpression of certain enzymes or presence of several small molecules. In general, these smart
drug delivery systems incorporate one or two elements, namely a sensitive linker and/or a capping
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agent. The responsive linker is able to break, degrade or undergo a conformational change in the
presence of the given stimulus. The capping agents, such as inorganic nanoparticles, polymers or
macromolecules, block the mesopore entrances and hinders premature cargo departure. It is also
possible to use coatings of organic or inorganic chemical nature as blocking caps able to degrade under
the stimulus action, thus allowing pore uncapping and drug release (Figure 4). Table 2 summarizes
the main internal stimuli-responsive MSNs reported up to date, specifying the endogenous stimulus,
the responsive linker and the capping agent.
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pH-responsive nanosystem based on polymer coated-MSNs; redox potential-responsive based on MSNs
functionalized with disulfide bonds and capped with inorganic nanoparticles; and enzyme-responsive
based on MSNs coated with a degradable polymer, from left to right.

Table 2. Internal stimuli-responsive strategies for smart drug delivery MSNs.

Stimulus Responsive Linker Blocking Cap Ref.

pH Acetal linker Au NPs [78]
pH Boronate ester Fe3O4 NPs [79]
pH Ferrocenyl moieties β-CD-modified CeO2 NPs [80]
pH PAH-PSS PEM PAH-PSS PEM [81]
pH Aromatic amines CDs [82]
pH Benzoic-imine bonds Polypseudorotaxanes [83]
pH CaP soluble at acid pH CaP coating [84]
pH Self-immolative polymer Self-immolative polymer [85]
pH Gelatin Gelatin coating [45,86]

pH 3,9-Bis(3-aminopropyl)-2,4,8,10-tetraoxaspiro
[5.5] undecane (ATU) Poly(acrylic acid) PAA [59]

Redox potential —S—S— ssDNA [87]
Redox potential —S—S— PEG [88]
Redox potential —S—S— CdS NPs [89]
Redox potential —S—S— PPI dendrimer [90]

Enzymes MMP-degradable gelatin Gelatin coating [91]
Enzymes β-galactosidase-cleavable oligosaccharide β-galacto-oligosaccharide [92]
Enzymes MMP9-sensitive peptide sequence (RSWMGLP) Avidin [93]

Enzymes Protease-sensitive peptide sequences
(CGPQGIWGQGCR) PNIPAm-PEGDA shell [94]

Enzymes α-amylase and lipase cleavable stalks CDs [95]
Enzymes HRP-polymer nanocapsule - [96]



Molecules 2018, 23, 47 7 of 19

Table 2. Cont.

Stimulus Responsive Linker Blocking Cap Ref.

Enzymes Phosphate-phosphate APasa-hydrolizable bonds ATP [97]
Small molecules Ionizable benzimidazole group CD-modified glucose oxidase [98]
Small molecules pAb pAb [99]
Small molecules ATP aptamer ATP aptamer [100]

PNIPAm: Poly(N-isopropylacrylamide); Poly(acrylic acid) PAA ssDNA: single-stranded DNA; CB[6]: Cucurbit[6]uril;
PEI: poly(propylene imine); PEG: poly(ethylneglycol); CD: cyclodextrin; PAH: poly (allylamine hydrochloride);
PSS: sodium poly(styrene sulfonate); PEM: polyelectrolyte multilayers; APase: acid phosphatase; PEGDA:
poly(ethylene glycol) diacrylate; HRP: enzyme horseradish peroxidase; ATP: adenosine triphosphate; pAb: polyclonal
antibody; MMP: matrix metalloproteinase.

2.2.2. External Stimuli-Responsive Drug Delivery MSNs

Different stimuli-responsive MSNs have been developed capable to respond to externally applied
stimuli, highlighting magnetic fields, ultrasound or light, among others (Figure 5) [4,18,76].
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• Magnetically-responsive MSNs. The benefits of using magnetic fields is due to the different effect
that they can exert on MSNs, which can be magnetic guidance under a permanent magnetic
field or a temperature increase upon application of an alternating magnetic (AM) field [76]
This permits a wide range of possibilities for in the biomedical field. The most widely used
magnetic nanoparticles for stimuli-responsive drug delivery are superparamagnetic iron oxide
ones (SPIONs). These nanoparticles are able to convert the magnetic energy into heat obeying
two mechanisms: (i) Brownian fluctuations provoked by the fast rotation of the magnetic nuclei,
and (ii) Nell fluctuations caused by the rotation of the magnetic moments [101]. Most of the employed
designed strategies consist in the encapsulation of SPIONs of ca. 5–10 nm within MSNs, which can be
accomplished by using aerosol techniques [102] or sol-gel process [103–106] etc. The incorporation
of SPIONs within MSNs permits the employ of AM fields, which triggers temperature increase.
MSNs can incorporate temperature-responsive moieties acting as gatekeepers able to undergo
physicochemical changes that provoke pore opening and drug release. Figure 5 displays a
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representative example based on drug-loaded magnetic MSNs whose pore outlets have been
grafted with single-DNA strands that hybridize with Fe3O4 SPIONs functionalized with the
complementary DNA strand, acting as capping agents. The application of an AM field provokes
heat that trigger the dehybridization of the DNA, allowing the cargo release in a reversible
fashion [107].

• Ultrasound-triggered MSNs. Ultrasounds (US) constitute an efficient method to attain spatiotemporal
control of drug delivery at the target site and preventing the damage of healthy tissues. Other of
the advantages of the use of US regards its non-invasiveness, absence of ionizing radiations and
the easily regulation of tissue penetration depth by tuning US parameters (frequency, duty cycles
and exposure times) [76,108]. US waves can trigger drug release from MSNs through thermal
effect. Mechanophores, i.e., chemical bonds that cleave under US radiation, can be used to
design of US-triggered MSNs. Thus, 2-tetrahydropyranyl methacrylate, a hydrophobic monomer
with a US-sensitive group, can transform to hydrophilic methacrylic acid [109,110]. This phase
transformation under US stimulus has been used to develop US-responsive drug delivery MSNs
by using such moieties as mesopore gatekeepers (Figure 5) [111,112].

• Light-triggered MSNs. Light constitutes another useful alternative with non-invasive and
spatiotemporal control to design stimuli-responsive MSNs able to achieve on-demand drug release
triggered by illumination with a specific wavelength (ultraviolet, UV, visible, Vis, or near-infrared,
NIR, regions) [113,114]. The advantages of the use of light relies on its easy application, low toxicity
and precise focalization in the desired place. Nonetheless, the main constrain is its low tissue
penetration capability, which can be solved by using auxiliary medical devices such as those
use in laparoscopy surgeries. Up to date UV stimulus has been by far the most widely used
radiation to trigger drug release from MSNs [36,113] because this light has the highest power
and can break bonds with ease. However, UV light present several drawbacks for current
biomedical applications, such as its toxicity and low tissue penetrability [115–118]. Thus, recently
Vis light is receiving growing attention since it offers a less harmful and higher penetrability
rate than UV radiation. Figure 5 displays a representative example of a Vis light-triggered
MSNs-based drug delivery system [119]. In this case, MSNs are decorated with porphyrin
nanocaps anchored via reactive oxygen species (ROS)-cleavable linkages. When Vis light stimulus
is applied, the porphyrin blocking caps provoke singlet oxygen molecules that break the sensitive
linker and trigger the opening of mesopores and allowing drug release.

3. Performance in Physiological Fluids

To exploit the potential biomedical usefulness of MSNs as drug nanocarriers, it is essential
to understand the final fate of silica matrix in the human body during and after drug delivery
process. In this sense, their lixiviation rate in physiological fluids is a pivotal parameter that should be
considered in order to control the release kinetics and the cytotoxicity [120]. Firstly, it is necessary that
the nanocarrier is robust enough (chemically stable) to protect the loaded-drugs during their transport
to the target tissues or cells. Finally, upon completion of drug release it is desirable that it degrades
without causing undesirable accumulation and toxicity in tissues [121].

The MSNs matrix mainly consists of -Si-O- bonds with relatively chemical strong (bond energy
of 452 KJ/mol) [122]. However, in aqueous medium they are susceptible to nucleophilic attack by
hydroxide of water into the SiO2 network. This reaction provokes an hydrolytic breakdown of the
siloxane (Si-O-Si) group, leaching orthosilicic acid (Si(OH)4), which is biocompatible and well-excreted
by urine [123–125]. Therefore, a deep comprehension of MSNs solubility and biodegradability is of
foremost relevance to ensure their biocompatibility and efficacy in the characteristic conditions of the
disease to be treated.

Figure 6 illustrates the in vitro degradation process of MSNs in phosphate buffer saline (PBS)
at 37 ◦C at different time periods. TEM images indicate that both the structural and morphological
features of the nanoparticles are preserved after 8 days of assay. However, after 12 days of test a
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noticeable alteration of such parameters is clearly observed. These findings reveal that the intrinsic
characteristics of MSNs keep stable for enough time to guarantee their functionality as drug delivery
systems. Figure 6 also schematizes the degradation process at the meso and atomic scales, representing
both the damage in the structural mesopore arrangement (meso scale) as a consequence of the Si(OH)4

lixiviation from the silica matrix (atomic scale) to the physiological environment.Molecules 2018, 23, 47 9 of 18 
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Figure 7. Main factors that drive the degradation of MSNs in physiological environment. TEM images
of MSNs before and after being soaked in PBS under physiological conditions reveal the permanence
of the structural and morphological characteristics after 8 days of in vitro test.

The effect of MSNs size has been in vitro evaluated by different research groups [126,127], proving
that the degradation process did not depend on this parameter. However, there are other parameters
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such as the morphology, surface area, chemical composition, surface functionalization, loaded cargo
and physiological environment, which orchestrate in vitro degradation of MSNs.

Concerning nanoparticle morphology, the lixiviation behavior of spherical- and rod-shaped
nanoparticles has been studies, showing faster dissolution rates in the former due to their relative
larger outer surface are [128]. Besides, the surface area plays a pivotal role in the degradation rates
of MSNs. Thus, the higher the surface area the faster the silica matrix lixiviation due to the greater
contact with the physiological medium [129]. Another important parameter that strongly influences
in vitro degradation of MSNs is the chemical composition.

Several authors have demonstrated that the doping with different cations, such as Ca(II) and
Fe(III) [130,131] increases the dissolution rate of nanoparticles due to the decrease in the silica network
connectivity. On the other hand, the design of MSNs in the SiO2-ZrO2 binary system permits to slow
down the dissolution kinetics compared to pure silica MSNs [132]. This finding can be attributed to
the fact that the dissolved silica in the medium does not reach the saturation level because of the SiO2

recondensation on local zirconium nuclei in the matrix [132]. Regarding to the effect of functionalization
on MSNs degradation, different studies have been carried out. Among the different tested organic
groups, including phenyl, chloropropyl, aminopropyl-functionalization, PEG-coating [133] or grafting
of other polymers [111], PEGylation significantly reduces the dissolution rate. Thus, whereas pure
silica MSNs are dissolved from the outside surface towards the inside, PEGylated MSNs start to
dissolve oppositely, i.e., from the inside towards the external surface. In addition, the molecular weight
of the grafted PEG also affects MSNs degradation, in such a way that longer polymer chains decrease
the dissolution rate [133]. Very recently, it has been reported that the loaded-cargo also affects in vitro
degradation behavior of MSNs [121]. In this work MSNs were loaded with doxorubicin and matrix
dissolution in PBS at 37 ◦C was monitored vs. time. The obtained results showed a highest degradation
rate of drug-loaded nanoparticles due to PBS acidification. However, further studies are needed to
evaluate the effect of the chemical nature of the loaded cargo on the lixiviation behavior of MSNs.
Additionally, lixiviation behaviors of MSNs were tested in various aqueous media, e.g., PBS, simulated
body fluid (SBF), simulated lung fluid (SLF) and simulated gastric fluid (SGF). The obtained results
showed the fastest degradation rate in SLF, with comparable behavior in PBS and SBF, and the slowest
dissolution in SGF [126]. On the other hand, the degradation process of MSNs has been tested in the
presence of proteins by using fetal bovine serum (FBS) [128], demonstrating a decrease in the stability
of the nanoparticles. All these studies prove that it is essential a fine tuning the properties of MSNs
depending on their biomedical application, because they will be in contact with diverse physiological
milieu in the presence of proteins, diverse pH, ionic strength, etc.

Evaluating the in vivo dissolution of MSNs is essential to test their potential clinical translation.
In this sense, the biodistribution, biodegradation and excretion of MSNs with different sizes coated or
not with PEG have been investigated [134]. The effect of the concentration of degradation products
of MSNs in urine after different times following tail vein injection in mice was evaluated. Smaller
nanoparticles exhibited significantly lower amount of degradation products and, for a given size,
PEGylation slowed down the degradation process. These findings could be ascribed to an easier capture
by liver and spleen of bigger MSNs, whereas the PEG coating would decrease their accumulation into
these organs by increasing their bloodstream circulation time.

4. Benefits and Downsides of MSNs for Drug Delivery

The impact of nanoparticles for drug delivery technologies on the Pharmaceutical Research
and Development industry is evident with the creation of more than 2000 start-ups focused on
nanomedicine in the last few years [135]. In fact, there are more than 250 nanomedicine products
already commercialized or in clinical trials [136]. If we attend to the budgets, the sector of
nanopharmaceuticals now represents about the 15% of the total pharmaceutical market, and it is
estimated to be worth about $400 billion by 2019 [137].
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4.1. Benefits of MSNs for Drug Delivery

The reasons for the interest on nanoparticles and, specifically, on MSNs for drug delivery relays
on different factors. First of all, and this is probably the most straightforward advantage, is the scale
of MSNs interaction with living systems. It is well known that human cells present a broad size
variability, but most of them are normally within the micrometer scale. That scale similarity between
MSNs and cells would present an intimate interaction. As it has been commented throughout this
review, MSNs allow a fine control over the pharmacokinetic profile of the transported therapeutic
agent. This is important because when a free drug is administered, independently if it is orally or
intravenously delivered, there would be a maximum in the concentration of that drug in the serum.
Afterwards, that concentration would be reduced until the next drug administration, which would
produce again a concentration peak. This procedure would lead to a “roller coaster” concentration
profile, and sometimes the maxima could be over the toxicity levels, and the minima could be under the
optimal levels. The use of MSNs as controlled drug delivery systems could keep the drug concentration
at optimal levels over prolonged periods of time, improving the efficiency of the treatment and avoiding
any type of potential toxicity and the subsequent side effects. MSNs employed for drug delivery can
also protect the therapeutic agents during their journey within the body. In this sense, any potential
degradation of the cargo would be avoided, which is of special interest when delivering soft therapeutic
agents, such as RNAs or proteins. The great loading capacity of MSNs allows transporting two or
more drugs into the same nanoparticles, which allows designing combined therapies for tackling
multiresistant tumors. Additionally, this feature allows including certain contrast agents for biomedical
imaging, which could be very interesting for following up in real time the treatment evolution. Another
benefit of using MSNs as drug delivery systems arises from the possibility of providing them with a
responsive behavior. This allows a precise control on cargo release upon the use of a stimulus, whether
is internal and characteristic of the treated pathology, or externally applied by the clinician. In this sense,
the control provided by the stimuli-responsive MSNs delivery system avoids the premature release of
the therapeutic agent, which might be of importance when systemic toxicity should be prevented.

4.2. Downsides of MSNs for Drug Delivery

It is quite obvious that any nanomedicine able to reach the Clinic would undoubtedly contribute
to the benefit of society. However, before reaching the Market, all nanomedicines must succeed
in an industrial technology transfer and, obviously, in clinical translation. Regarding the first task,
the industrial technology transfer would depend on the scaling up process [138], which together
with the reproducibility and the total costs, constitute the ordinary barriers for commercialization.
In this sense, the scaling up of the synthesis of MSNs is not trivial, because there are many different
factors to take into account during the synthetic procedure. MSNs are often developed in the lab,
where milligrams or grams of product are obtained, but the production of large-scale batches under
Good Manufacturing Practices (GMP) conditions, which are needed for preclinical screening, clinical
trials and clinical use, is a roadblock for their commercialization. Additionally, reproducibility on the
synthesis of MSNs at small scale is relatively easy, but at the larger and industrial scale is very difficult
to control from batch to batch. In general, and for all nanomedicines, reproducibility is a complicated
and expensive process that takes very long to sort out. For all those reasons, the clinical translation of
MSNs, in which the therapeutic efficacy alone is not enough, has taken longer than initially desired by
researchers in this area. The translation of MSNs to the clinic is somehow stuck in the first milestone
that any nanomedicine development should quickly overtake: Are the nanoparticles stable, with great
loading capacity, reproducible and scalable? Do far, researchers have answered all the questions but
not the last, although advances are taking place quickly in this area.

The next question that researchers should ask themselves from the biological point of view should
be regarding their potential toxicity and immunogenicity, which has been found to strongly depend
on their surface functionalization. In any case, MSNs have been observed in different animal models
to be perfectly biocompatible in which toxicity has been discarded. However, there is still much
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to do to clearly show the benefits of using this new platform, including in vivo efficacy through
pharmacokinetics and pharmacodynamics studies. Additionally, if the MSNs investigated are aimed
to be used for cancer treatment, biodistribution should be deeply evaluated, since it is necessary to
show that MSNs reach preferentially the tumor tissue.

Once those preclinical studies might be successfully carried out, then the clinical trials for MSNs
should be designed. So far, there are not MSNs being evaluated into any clinical trial. This would
be a very delicate step, since many nanomedicines fail the clinical translation even before the clinical
trials because of reiterative pitfalls. In this sense, from all the nanomedicine scientific papers focused
on oncology, only 2% advance to clinical trials. In this sense, the lack of efficiency in humans is
a common factor in most nanomedicines that might had showed some kind of success in animal
models. The reason for that recurrent failure lies beneath the different physiology of small animals and
humans. When dealing with nanomedicines targeting cancer, this is of capital importance, since there
are many scientific publications that use xenografts models of human cancer cells in mice to test the
nanomedicines. Although it was ok in the past, nowadays it is a very controversial approach and,
perhaps, one of the main reasons of the limited clinical success of currently investigated nanomedicines.

A possible alternative could be based on showing great toxicology results in animals and then go
straightforward to phase 1 clinical trials, avoiding the preclinical xenograft experiments, which might
represent a very expensive and time consuming option. However, toxicity in humans should be
carefully approached, since it is one of the main reasons for the pharmaceutical companies to exclude
a nanotherapeutic during the different stages of clinical trials. In this sense, the nanocarriers analyzed
should be non-toxic themselves and they should be excreted completely from the body via the liver
and/or the kidneys. Regarding this, safety and renal or hepatic clearance must be some of the basic
criteria when considering the clinical translation of nanoparticles for drug delivery [139].

Another key point during the planning of the clinical trials should be dealing with the regulation
agencies, such as the American Food and Drug Administration (FDA), or the European Medicines
Agency (EMA). Nowadays there is a lack of specific requirements for nanomedicines from those
agencies, and the evaluation process follows the same path as for small-molecules drugs. This means
that every novel nanocarrier for drug delivery has to follow a complete evaluation process, even if
the transported drug (Active Pharmaceutical Ingredient) alone has been already accepted for clinical
use. This supposes a bottleneck for the translation of novel nanomedicines, with only 5% of the
initial nanomedicines initially evaluated succeeding in the market authorization. It is expected that
in the near future the regulatory agencies might develop specific requirements for nanomedicines to
accelerate the translation from the lab to the clinic.

Last, but not least, it is also very important that the healthcare professionals might understand
the potential benefits of using novel nanomedicines. The Pharmaceutical Industry should clearly
demonstrate the therapeutic efficacy, so clinicians, who also demand easy and safe administration
routes, would use them in the near future.
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