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Abstract: α-Viniferin and caraphenol A, the two oligostilbenes, have the sole difference of
the presence or absence of an exocyclic double bond at the π-π conjugative site. In this
study, the antioxidant capacity and relevant mechanisms for α-viniferin and caraphenol A were
comparatively explored using spectrophotometry, UV-visible spectral analysis, and electrospray
ionization quadrupole time-of-flight tandem mass spectrometry (UPLC–ESI–Q–TOF–MS/MS)
analysis. The spectrophotometric results suggested that caraphenol A always gave lower
IC50 values than α-viniferin in cupric ion-reducing antioxidant capacity assay, ferric-reducing
antioxidant power assay, 1,1-diphenyl-2-picryl-hydrazl radical (DPPH•)-scavenging, and 2-phenyl-
4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide radical-scavenging assays. In UV-visible spectra
analysis, caraphenol A was observed to show enhanced peaks at 250–350 nm when mixed with
Fe2+, but α-viniferin exhibited no similar effects. UPLC–ESI–Q–TOF–MS/MS analysis revealed that
α-viniferin mixed with DPPH• produced radical adduct formation (RAF) peak (m/z = 1070–1072).
We conclude that the antioxidant action of α-viniferin and caraphenol A may involve both
redox-mediated mechanisms (especially electron transfer and H+-transfer) and non-redox-mediated
mechanisms (including Fe2+-chelating or RAF). The π-π conjugation of the exocyclic double bond
in caraphenol A can greatly enhance the redox-mediated antioxidant mechanisms and partially
promote the Fe2+-chelating mechanism. This makes caraphenol A far superior to α-viniferin in total
antioxidant levels.

Keywords: oligostilbene; stilbene trimer; α-viniferin; caraphenol A; antioxidant; conjugative
double bond

1. Introduction

In natural product chemistry, the term “stilbene” refers to the trans-1,2-diphenylethene core
(Figure 1). The 1,2-double bond (C=C) can induce polymerization to form oligostilbenes, mainly
dimeric stilbene, trimeric stilbene, and tetrameric stilbene. To date, at least 200 natural oligostilbenes
have been discovered [1,2]. Almost all of these natural oligostilbenes are documented to bear phenolic
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-OH [2], and thus they can be regarded as the members of natural phenolics and function as phenolic
antioxidants [3].Molecules 2017, 22, x  2 of 9 

 

 
Figure 1. The trans-1,2-diphenylethene core. 

Recently, three dimers of resveratrol have been found in grape wine, including parthenocissin 
A, quadrangularin A, and pallidol [4]. They could effectively scavenge DPPH• radical and singlet 
oxygen (1O2). In addition, two trimeric stilbenes, α-viniferin and caraphenol A (Figure 2), have been 
isolated from Caragana sinica [5,6]. α-Viniferin was suggested to have an inhibitory effect on lipid 
peroxidation, while caraphenol A was observed to inhibit human immunodeficiency virus (HIV) [6]. 
Nevertheless, there has been no antioxidant structure-activity relationship study of oligostilbenes 
until now, to the best of our knowledge. 

 
Figure 2. Structures and preferential conformation-based ball-stick models of reference compounds: 
(A) the structure of α-viniferin; (B) the structure of caraphenol A; (C) the preferential conformation-
based ball-stick model of α-viniferin; (D) the preferential conformation-based ball-stick model of 
caraphenol A. (The ball-stick models were created in Chem3D Pro 14.0). 

Structurally, oligostilbenes are quite different from other natural phenolics, such as flavonoids, 
phenolic acids, and phenolic alkaloids [7]. As seen in Figure 2, caraphenol A has an exocyclic double 
bond linking the lower right phenyl ring to the lower right benzofuran-fused-ring, while at the 
corresponding site, α-viniferin has an exocyclic single bond rather than a double bond (Figure 2A). 
Undoubtedly, the sole difference between the two trimeric stilbenes is attributed to the bond type 
(single or double bond). However, according to fundamental organic chemistry, while the exocyclic 
double bond in caraphenol A can conjugate the phenyl ring with the benzo[b]furan-fused-ring, the 
single bond in α-viniferin cannot conjugatively link the phenyl ring with the benzo[b]furan-fused-
ring. Thus, the essential difference between the two trimeric stilbenes is the presence or absence of π-
π conjugation between the lower right phenyl ring and the lower right benzo[b]furan-fused-ring 
(Figures 2A,B). Thereby, α-viniferin and caraphenol A can act as an ideal pair of oligostilbenes to 
explore the possible effect of π-π conjugation towards the antioxidant capacity of oligostilbenes. 

In this study, we attempted to comparatively determine their antioxidant capacities using 
spectrophotometry, UV-vis spectral analysis, and electrospray ionization quadrupole time-of-flight 

Figure 1. The trans-1,2-diphenylethene core.

Recently, three dimers of resveratrol have been found in grape wine, including parthenocissin A,
quadrangularin A, and pallidol [4]. They could effectively scavenge DPPH• radical and singlet oxygen
(1O2). In addition, two trimeric stilbenes, α-viniferin and caraphenol A (Figure 2), have been isolated
from Caragana sinica [5,6]. α-Viniferin was suggested to have an inhibitory effect on lipid peroxidation,
while caraphenol A was observed to inhibit human immunodeficiency virus (HIV) [6]. Nevertheless,
there has been no antioxidant structure-activity relationship study of oligostilbenes until now, to the
best of our knowledge.
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Figure 2. Structures and preferential conformation-based ball-stick models of reference compounds:
(A) the structure of α-viniferin; (B) the structure of caraphenol A; (C) the preferential
conformation-based ball-stick model of α-viniferin; (D) the preferential conformation-based ball-stick
model of caraphenol A. (The ball-stick models were created in Chem3D Pro 14.0).

Structurally, oligostilbenes are quite different from other natural phenolics, such as flavonoids,
phenolic acids, and phenolic alkaloids [7]. As seen in Figure 2, caraphenol A has an exocyclic double
bond linking the lower right phenyl ring to the lower right benzofuran-fused-ring, while at the
corresponding site, α-viniferin has an exocyclic single bond rather than a double bond (Figure 2A).
Undoubtedly, the sole difference between the two trimeric stilbenes is attributed to the bond type (single
or double bond). However, according to fundamental organic chemistry, while the exocyclic double
bond in caraphenol A can conjugate the phenyl ring with the benzo[b]furan-fused-ring, the single
bond in α-viniferin cannot conjugatively link the phenyl ring with the benzo[b]furan-fused-ring. Thus,
the essential difference between the two trimeric stilbenes is the presence or absence of π-π conjugation
between the lower right phenyl ring and the lower right benzo[b]furan-fused-ring (Figure 2A,B).
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Thereby, α-viniferin and caraphenol A can act as an ideal pair of oligostilbenes to explore the possible
effect of π-π conjugation towards the antioxidant capacity of oligostilbenes.

In this study, we attempted to comparatively determine their antioxidant capacities using
spectrophotometry, UV-vis spectral analysis, and electrospray ionization quadrupole time-of-flight
tandem mass spectrometry (UPLC–ESI–Q–TOF–MS/MS) analysis. These determinations will provide
evidence regarding the effect of π-π conjugation towards antioxidant oligostilbenes (natural phenolics).

2. Results and Discussion

It is reported that, under atmospheric conditions or during cellular metabolism, oxygen (O2)
can be transformed into various reactive oxygen species (ROS), such as •OH radicals and •O2

−

radicals [8]. Since excessive ROS are harmful to cells [9], animals and plants find ways to scavenge
them [8,10]. This ROS-scavenging action is termed as antioxidation in free radical biology and
medicine. Accumulative evidence suggests that antioxidation is a complicated process involved in
several pathways. Put simply, these pathways can be divided into redox-mediated pathways and
non-redox-mediated pathways [11].

Redox-mediated pathways are characterized by electron transfer (ET), through which electrons
are transferred from a (phenolic) antioxidant to ROS or reactive nitrogen species (RNS) [12]. In order
to test the ET possibility of α-viniferin and caraphenol A, these two trimeric stilbenes were analyzed
using a ferric-reducing antioxidant power (FRAP) assay. The FRAP assay is a colorimetric analysis
performed at a pH of 3.6 [13]. This low pH value is thought to suppress H+ ionization, and thus,
the FRAP is proposed to be a mere ET process [14]. As shown in Supplementary 1, the FRAP
percentages of caraphenol A increased with concentration, while those of α-viniferin hardly increased
with concentration. This clearly suggested that caraphenol A had much higher ET potential than
α-viniferin at a lower, acidic pH.

In order to explore whether the two trimeric stilbenes transfer electrons at physiological pH,
we also conducted a cupric ion-reducing antioxidant capacity (CUPRAC) assay. The CUPRAC assay
has been demonstrated to be an ET-based Cu2+-reducing reaction in pH 7.4 solution [15]. As illustrated
in Supplementary 1, the two trimeric stilbenes reduced Cu2+ to Cu+ in good agreement with the
dosage. This suggests an ET potential of the two trimeric stilbenes at physiological pH.

The above FRAP and CUPRAC assays actually involved the interaction of trimeric stilbenes with
metal ions. There was no direct interaction of trimeric stilbenes with free radicals. In order to observe
the direct interaction of the two trimeric stilbenes with free radicals, each trimeric stilbenes was mixed
with 1,1-diphenyl-2-picryl-hydrazyl radical (DPPH•) in a methanol solution. As seen in Supplementary
1, α-viniferin and caraphenol A could increase the DPPH•-scavenging percentages depending on the
dosage. DPPH•-scavenging, however, is proven to involve in ET and H+-transfer pathways [16–21].
These pathways are essentially mediated by redox reactions, thus indicating that α-viniferin and
caraphenol A may undergo redox reactions (especially ET and H+-transfer) to scavenge DPPH•.

In order to study the radical-scavenging action of α-viniferin and caraphenol A further, they were
measured using a PTIO•-scavenging assay, a method newly established by our research group [22].
In the PTIO•-scavenging assay, α-viniferin and caraphenol A could also increase the scavenging
percentages depending on their concentrations (Supplementary 1). Similar to DPPH•-scavenging,
PTIO•-scavenging is also involved in ET and H+-transfer [22,23]. This further supported the
assumption from the above DPPH•-scavenging assay.

The IC50 value in µM was obtained from the dose-response curves in Supplementary 1. The IC50

values with different letters (a, b, or c) in the same assay are significantly (p < 0.05) different among
α-viniferin, caraphenol A, and the positive control Trolox.

To quantitatively evaluate their antioxidant levels in the FRAP assay, CUPRAC assay,
DPPH•-scavenging assay, and PITO•-scavenging assay, their IC50 values were calculated and
are shown in Figure 3. According to the IC50 values in Figure 3, the ratio value of
IC50,α-viniferin:IC50,caraphenol A in the FRAP assay was calculated as 29.9. Meanwhile, the ratio values
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in the CUPRAC assay, DPPH•-scavenging assay, and PITO•-scavenging assay were 1.7, 4.7, and 5.1,
respectively. The average ratio value was obtained as 10.4. This means that the total antioxidant
capacity of caraphenol A is about 10.4-fold higher than that possessed by α-viniferin.

This difference can be attributed only to the exocyclic carbon-carbon bond type (C-C or
C=C). The exocyclic double bond in caraphenol A conjugates the lower right phenyl ring and
the lower right benzofuran-fused-ring in Figure 2B, thus considerably extending the molecular
conjugative system. Density functional response theory indicated that the extended π-π conjugation
had a stronger capability to stabilize the radical species via delocalization of the π-electrons [24].
Thereby, π-π conjugation in caraphenol A greatly enhances redox-mediated antioxidant capacity.
This can explain the aforementioned great difference between α-viniferin and caraphenol A in the
FRAP, DPPH•-scavenging, and PITO•-scavenging assays (Figure 3), and the previous findings that
trans-ε-viniferin (IC50 62.5 ± 0.8 µM) possessed a higher DPPH•-scavenging level than (+)-ampelopsin
A (IC50 > 200 µM) [25].
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ferric-reducing antioxidant power (FRAP) assay, cupric ion-reducing antioxidant capacity (CUPRAC)
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A wide range of studies have pointed out that, apart from redox-mediated pathways, non-redox
pathways may also occur during antioxidant processes [26–29]. That the non-redox pathways may
include transition metal chelating can be justified by the fact that transition metals (especially Fe2+)
function as catalysts to accelerate the generation of ROS. For instance, Fe2+ can catalyze H2O2 to
produce •OH radical via the Fenton reaction. Fe2+-chelation can thus block •OH radical production.
In the study, we used UV-vis spectra to monitor the Fe2+-chelation reactions of α-viniferin and
caraphenol A. As seen in Figure 4, caraphenol A with π-π conjugation gave stronger UV-visible peaks
at 250–350 nm when mixed with Fe2+. α-Viniferin showed no similar changes after mixing with Fe2+.
This indicates that π-π conjugation promotes the Fe2+-chelation capacity of phenolic oligostilbenes to
some extent.
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It is worth mentioning that a radical adduct formation (RAF) product was also found in the
mixture of α-viniferin with DPPH• radical. Through the UPLC–ESI–Q–TOF–MS/MS analysis,
a molecular ion peak was obtained at an m/z value of 1070–1072 (Figure 5E), i.e., an RAF product
of α-viniferin-DPPH was obtained. RAF occurs only after hydrogen atom transfer (HAT) or the
deprotonation of an antioxidant molecule [7,28,30,31], and thus can be considered as the decay
product of an antioxidant radical [32]. However, some studies have also suggested it as a minor
non-redox-mediated antioxidant pathway [33].
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Figure 5. The main results of UPLC–ESI–Q–TOF–MS/MS analysis: (A) Total ion chromatographical
diagram of α-viniferin; (B) Primary MS spectra (i.e., molecular ion peaks) of α-viniferin; (C) Secondary
MS spectra (i.e., the fragment peaks) of α-viniferin; (D) Total ion chromatographical diagram of
α-viniferin-DPPH• extracted by C60H41N5O15; (E) Primary MS spectra (i.e., molecular ion peaks) of
α-viniferin-DPPH•; (F) Secondary MS spectra (i.e., the fragment peaks) of α-viniferin-DPPH•.

There were four peaks in the total ion chromatographical diagram of α-viniferin-DPPH• in
Figure 5D, i.e., retention times = 3.653, 4.496, 4.811, and 6.479 min. Each of the four peaks exhibited a
primary MS spectrum, as shown in Figure 5E. The secondary MS spectra of the latter three peaks are
shown in Figure 5F, while the first peak was too small to give rise to a secondary MS spectrum. Their
original spectra are detailed in Supplementary 2.
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3. Materials and Methods

3.1. Chemicals

α-Viniferin (CAS 62218-13-7, C42H30O9, M.W. 678.7, purity 97%, yellow powder,
Supplementary 3) and caraphenol A (CAS 354553-35-8, C42H28O9, M.W. 676.7, purity 97%,
brown powder, Supplementary 3) were obtained from BioBioPha Co., Ltd. (Kunming,
China). The 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide radical (PTIO•) was from
TCI Chemical Co. (Shanghai, China). The 1,1-diphenyl-2-picryl-hydrazl radical (DPPH•),
(±)-6-hydroxyl-2,5,7,8-tetramethlychromane-2-carboxylic acid (Trolox), 2,4,6-tripyridyltriazine (TPTZ),
and 2,9-dimethyl-1,10-phenanthroline (neocuproine) were purchased from Sigma-Aldrich Shanghai
Trading Co. (Shanghai, China). Ultrapure water was obtained using a Milli-Q system (Millipore,
Bedford, NY, USA). Methanol was of HPLC grade. FeCl2·4H2O (A.R.), FeCl3·6H2O (A.R.), CH3COOH
(A.R.), CH3COONH4 (A.R.), CuSO4 (A.R.), KH2PO4 (A.R.), and Na2HPO4·12H2O (A.R.) were from
Guangdong Guanghua Chemical Plants Co., Ltd. (Shantou, China).

3.2. FRAP Assay (Fe3+-Reducing Assay)

The Fe3+-reducing assay was established by Benzie and Strain and is formally named as FRAP [15].
The experimental protocol of this assay was described in a previous report [34]. Briefly, the FRAP
reagent was freshly prepared by mixing 10 mM TPTZ, 20 mM FeCl3, and 0.25 M acetate buffer at a ratio
of 1:1:10 at pH 3.6. The test sample (x = 4–20 µL, 0.2 mg/mL) was added to (20 − x) µL of 95% ethanol
followed by 80 µL of FRAP reagent. After a 30-min incubation at ambient temperature, the absorbance
was measured at 595 nm using a microplate reader (Multiskan FC, Thermo Scientific, Shanghai, China).
The relative reducing power of the sample was calculated using the following formula:

Relative reducing effect % =
A− Amin

Amax − Amin
× 100%

where Amax was assigned as 1.41, and Amin is the minimum absorbance in the test. A is the absorbance
of the sample.

3.3. CUPRAC Assay (Cu2+-Reducing Assay)

This assay was carried out according to the method described by Wang [35]. Briefly, 12 µL of
CuSO4 aqueous solution (10 mmol/L), 12 µL of neocuproine ethanolic solution (7.5 mmol/L), and
(75 − x) µL of ammonium acetate buffer solution (0.1 mol/L, pH 7.5) were added to wells with different
volumes of sample (0.05 mg/mL, 4–20 µL). The absorbance at 450 nm after 30 min was measured
using the aforementioned microplate reader. The relative CUPRAC power was calculated using the
formula for FRAP. Amax was assigned as 0.159.

3.4. PTIO•-Scavenging Assay

The PTIO•-scavenging assays were conducted based on our method [7]. In brief, the test sample
solution (x = 0–20 µL, 1 mg/mL) was added to (20 − x) µL of 95% ethanol, followed by 80 µL of
an aqueous PTIO• solution. The aqueous PTIO• solution was prepared using a phosphate-buffer
solution (0.1 mM, pH 7.0). The mixture was maintained at 37 ◦C for 2 h, and the absorbance was then
measured at 560 nm using the aforementioned microplate reader. The PTIO• inhibition percentage
was calculated as follows:

Inhibition % =
A0 −A

A0
× 100%

where A0 is the absorbance of the control without the sample, and A is the absorbance of the reaction
mixture with the sample.
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3.5. DPPH•-Scavenging Assay

DPPH• radical-scavenging activity was determined as described previously [36]. Briefly, 80 µL
DPPH•-methanolic solution (0.1 mol/L) was mixed with 0.5 mg/mL sample-methanolic solution
(4–20 µL). The mixture was maintained at room temperature for 30 min, and the absorbance was
measured at 519 nm on a microplate reader. The percentage of DPPH• scavenging activity was
calculated based on the formula presented in Section 3.4.

3.6. Determining Fe2+-Chelating Ability of α-Viniferin and Caraphenol A (UV-Visible Spectra Analysis)

The method was based on the previous study [37]. Briefly, 500 µL of a methanolic solution of
α-viniferin (0.15 mmol/L) was added to 500 µL of an aqueous solution of FeCl2•4H2O (18 mmol/L).
The solution was then mixed vigorously. Then, the mixture was kept for 30 min at room temperature
and the spectrum was obtained using a UV-visible spectrophotometer (Unico UV 2600A, Shanghai,
China) from 200–800 nm.

3.7. Electrospray Ionization Quadrupole Time-of-Flight Tandem Mass Spectrometry (UPLC–ESI–Q–TOF–
MS/MS) Determining DPPH• Reaction Products with α-Viniferin or Caraphenol A

The DPPH• reaction products with α-viniferin (or caraphenol A) were prepared based on
a previous work [17]. In brief, methanolic solution of α-viniferin (or caraphenol A) was mixed
with a solution of DPPH• radical in methanol at a molar ratio of 1:2, and the mixture was
incubated for 24 h at room temperature. The product was then filtered through a 0.22-µm filter
for UPLC-ESI-Q-TOF-MS/MS analysis [22].

In the UPLC analysis, the sample solution (1 µL) was injected to a C18 column (2.0 mm × 100 mm,
1.6 µm, Phenomenex Co., Torrance, USA). The mobile phase, used for the elution of the system,
consisted of a mixture of methanol (phase A) and ultrapure water (phase B). The products mixture
was eluted at a flow rate of 0.3 mL/min with the following gradient elution program: 0–10 min,
60–100% A; 10–15 min, 100% A. The column temperature was 40 ◦C. ESI-Q-TOF-MS/MS analysis
was performed on a Triple TOF 5600plus Mass spectrometer (AB SCIEX, Framingham, MA, USA)
equipped with an ESI source, which was run in the negative ionization mode. The system was run
with the following parameters: ion spray voltage, −4500 V; ion source heater, 550 ◦C; curtain gas
(CUR, N2), 30 psi; nebulizing gas (GS1, Air), 50 psi; Tis gas (GS2, Air), 50 psi. The declustering
potential (DP) was set at −100 V, whereas the collision energy (CE) was set at −40 V with a collision
energy spread (CES) of 20 V. The RAF MS peaks were extracted using the corresponding formula
(e.g., [C42H30O9 − H]− for α-viniferin and [C60H41N5O15]− for α-viniferin-DPPH•) from the Total
Ion Chromatogram, integrating the corresponding peaks. The scan range was fixed at 100–1600 Da.

3.8. Statistical Analysis

Each experiment was performed in triplicate and the data were recorded as means± SD (standard
deviation). The dose-response curves were plotted using Origin 6.0 professional software (OriginLab,
Northampton, MA, USA). The IC50 value was defined as the final concentration of 50% radical
inhibition (or relative reducing power). It was calculated by linear regression analysis and expressed
as the mean ± SD (n = 3) [38]. The linear regression was analyzed by Origin 6.0 professional software.
Statistical comparisons were made by one-way ANOVA to detect significant difference using SPSS
13.0 (SPSS Inc., Chicago, IL, USA) for windows. p < 0.05 was considered to be statistically significant.

4. Conclusions

To conclude, in both α-viniferin and caraphenol A, antioxidant reaction can proceed by
redox-mediated mechanisms (especially ET and H+-transfer) as well as non-redox-mediated
mechanisms (including Fe2+-chelating and RAF). The π-π conjugation of the exocyclic double bond in
caraphenol A can greatly enhance the redox-mediated antioxidant mechanisms, and slightly strengthen
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the Fe2+-chelation mechanism. These factors result in the total antioxidant capacity of caraphenol A
being much higher than that of α-viniferin.

Supplementary Materials: The following are available online. Supplementary 1: Dose response curves;
Supplementary 2: Original spectra of UPLC–ESI–Q–TOF–MS/MS analysis; Supplementary 3: Appearances
and analysis certificates of α-viniferin and caraphenol A.

Acknowledgments: This work was supported by Natural Science Foundation of Guangdong Province
(2017A030312009), Guangdong Science and Technology Project (2017A050506043), and the National Nature
Science Foundation of China (81573558).

Author Contributions: Xican Li and Dongfeng Chen conceived and designed the experiments; Yulu Xie, Hong Xie,
and Jian Yang performed the antioxidant experiments; Xican Li wrote the paper. All authors read and approved
the final manuscript.

Conflicts of Interest: The authors declare that they have no competing interests.

Abbreviations

The following abbreviations are used in this manuscript:

ABTS 2,2′-azino-bis(3-ethylbenzo-thiazoline-6-sulfonic acid diammonium salt)
DPPH• 1,1-diphenyl-2-picryl-hydrazl
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