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Abstract: We demonstrate for the first time that 4H-1,2,6-thiadiazin-4-one (TDZ) can function as
a chemotype for the design of ATP-competitive kinase inhibitors. Using insights from a co-crystal
structure of a 3,5-bis(arylamino)-4H-1,2,6-thiadiazin-4-one bound to calcium/calmodulin-dependent
protein kinase kinase 2 (CaMKK2), several analogues were identified with micromolar activity
through targeted displacement of bound water molecules in the active site. Since the TDZ analogues
showed reduced promiscuity compared to their 2,4-dianilinopyrimidine counter parts, they represent
starting points for development of highly selective kinase inhibitors.
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1. Introduction

Protein kinases catalyze phosphate transfer from Adenosine Triphosphate (ATP) to tyrosine,
threonine or serine residues in specific target proteins. These phosphorylation events occur in almost
every signal transduction pathway and provide regulatory points for therapeutic intervention [1].
Kinases have been successfully utilized as drug targets for the past 30 years, with 38 kinase inhibitors
approved by the FDA to date [2]. These drugs are predominantly multi-targeted tyrosine kinase
inhibitors for the treatment of cancer [3]. However, approval of kinase inhibitors for the treatment on
non-oncological diseases, such as rheumatoid arthritis, psoriasis and lung fibrosis has demonstrated
their broader utility in treatment of human disease. There are over 500 kinases in the human genome,
suggesting that there remains an untapped potential to treat a wide range of human ailments with
new classes of inhibitors. Large scale kinome-wide profiling of ATP-competitive kinase inhibitors
has also started to uncover the preferred chemotypes for the inhibition of many of the relatively
under-studied kinases or dark kinases [4–6]. Despite the success in development of kinase inhibitor
drugs, there is a still a need for new heterocycles on which to build ATP-competitive inhibitors [7,8].
One chemotype that has not yet been used in kinase inhibitor design is the 4H-1,2,6-thiadiazin-4-one
(TDZ, Figure 1) [9,10] that can be prepared from 2,2-dichloromalononitrile [11].

Dianilinopyrimidines represent a remarkably common chemotype that is found in ~10% of the
clinically approved kinase inhibitor drugs, including ceritinib and palbociclib (Figure 1) [12]. Each of
these drugs demonstrates potency and efficacy for its primary kinase target but also has cross activity
on a broad range of other kinases. As such, these drugs and many other pyrimidine-based inhibitors
have limited use as chemical probes to study the biology of specific kinases. As further testament to
the broad activity profile of the dianilinopyrimidine chemotype, the 35 examples that are contained
in the chemogenomic inhibitor sets PKIS/PKIS2 showed activity on >400 different protein kinases
(excluding mutants) in either enzyme inhibition or affinity capture assays [13,14].
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Figure 1. Representative examples of known dianilino(amino)pyrimidines (highlighted in red) and
general (TDZ) core.

2. Results

2.1. Synthesis

Following analysis of the kinome-wide profiling of the dianilinopyrimidines in PKIS/PKIS2,
we selected five R1 and R2 substituent pairs (Table 1 and Figure S1) that showed the broadest range of
activity on human kinases. The corresponding dianilino-TDZs (1–5) were synthesized in two-steps
from 3,5-dichloro-4H-1,2,6-thiadiazin-4-one (6) [9]. The reason for this strategy is that the first of
the two reactive chlorine atoms of dichlorothiadiazinone 6 can be readily displaced by anilines and
alkylamines with stoichiometric amounts of the amine (1 equiv.) and 2,6-lutidine (1 equiv.) as base in
EtOH, at ca. 0–20 ◦C. However, more forcing conditions are typically required for the displacement
of the remaining chloride. This is owed to electron release by the 3-amino group into the thiadiazine
that decreases the electrophilicity of the 3-amino-5-chloro-1,2,6-4H-thiadiazin-4-one [15]. Nevertheless,
we were able to use our recently developed Buchwald-Hartwig coupling conditions to overcome this
difficulty [16] and enable the efficient synthesis of unsymmetrical 3,5-diamino-thiadiazinones.
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Therefore, treatment of dichlorothiadiazinone 6 with one equivalent of 5-amino-2-methylphenol
or 2-amino-N-methylbenzamide in the presence of 2,6-lutidine (1 equiv.), gave the required 3-chloro-
5-[(3-hydroxy-4-methylphenyl)amino]-4H-1,2,6-thiadiazin-4-one (7) and 2-[(5-chloro-4-oxo-4H-1,2,6-
thiadiazin-3-yl)amino]-N-methylbenzamide (8), respectively in good yields with a chromatography-free
work-up (Scheme 1). Subsequently, scaffolds 7 and 8 were subjected to a Pd-catalyzed Buchwald-Hartwig
coupling to introduce the second aniline. The five desired products (1–5) were obtained in medium to
good yields (66–94%, Scheme 1).

Molecules 2018, 23, x  3 of 23 

 

Hartwig coupling to introduce the second aniline. The five desired products (1–5) were obtained in 

medium to good yields (66–94%, Scheme 1). 

 

Scheme 1. Synthetic route to dianilino-TDZs 1–5. 

After the synthesis of the desired dianilino-TDZs (1–5), the stability of dianilinothiadiazinone in 

biological systems was assessed: 3,5-bis(phenylamino)-4H-1,2,6-thiadiazin-4-one (9) [9] was 

subjected to neutral, acidic or slightly basic aqueous conditions (H2O/DMSO 50:50, THF/HCl 2 M 

50:50 or THF/H2O 50:50 at pH 9 with a carbonate buffer), presence of amine or thiol nucleophiles 

(BuNH2 1 equiv., PhNH2 1 equiv., PhSH 1 equiv.), oxidizing [2,3-dichloro-5,6-dicyano-1,4-

benzoquinone (DDQ) 2 equiv.] and reducing conditions (Sn, 2 equiv.). The dianilinothiadiazine 9 was 

stable (by TLC) to all the above conditions after 48 h indicating that the thiadiazinone core was stable 

for potential development. 

2.2. Initial Kinase Profiling 

The corresponding dianilino-TDZs (1–5) were tested on a panel of 46 protein kinases 

representing the major kinome branches at a concentration of 10 μM using a Differential Scanning 

Fluorimetry (DSF) [17]. Only analogues 1–3 induced a significant (>2 °C) thermal shift when 

incubated with a subset of the proteins (Table 1). Compound 1 showed significant activity only on 

the pseudokinase TRIB2 (Tm = 2.5 °C) [18]. Compound 2 showed the broadest activity profile with 

Tm > 2 °C on 16/46 kinases. Compound 3 showed an intermediate activity profile, Tm > 2 °C on 9/46 

kinases. Compounds 4 and 5 did not show Tm > 2 °C on any of the 46 kinases, although weak activity 

was detected on TRIB2 (Tm ~1 °C). 

  

Scheme 1. Synthetic route to dianilino-TDZs 1–5.

After the synthesis of the desired dianilino-TDZs (1–5), the stability of dianilinothiadiazinone in
biological systems was assessed: 3,5-bis(phenylamino)-4H-1,2,6-thiadiazin-4-one (9) [9] was subjected
to neutral, acidic or slightly basic aqueous conditions (H2O/DMSO 50:50, THF/HCl 2 M 50:50 or
THF/H2O 50:50 at pH 9 with a carbonate buffer), presence of amine or thiol nucleophiles (BuNH2

1 equiv., PhNH2 1 equiv., PhSH 1 equiv.), oxidizing [2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ)
2 equiv.] and reducing conditions (Sn, 2 equiv.). The dianilinothiadiazine 9 was stable (by TLC) to all the
above conditions after 48 h indicating that the thiadiazinone core was stable for potential development.

2.2. Initial Kinase Profiling

The corresponding dianilino-TDZs (1–5) were tested on a panel of 46 protein kinases representing
the major kinome branches at a concentration of 10 µM using a Differential Scanning Fluorimetry
(DSF) [17]. Only analogues 1–3 induced a significant (>2 ◦C) thermal shift when incubated with
a subset of the proteins (Table 1). Compound 1 showed significant activity only on the pseudokinase
TRIB2 (∆Tm = 2.5 ◦C) [18]. Compound 2 showed the broadest activity profile with ∆Tm > 2 ◦C on
16/46 kinases. Compound 3 showed an intermediate activity profile, ∆Tm > 2 ◦C on 9/46 kinases.
Compounds 4 and 5 did not show ∆Tm > 2 ◦C on any of the 46 kinases, although weak activity was
detected on TRIB2 (∆Tm ~1 ◦C).
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Table 1. Activity of dianilinothiadiazinones (1–5) on a broad range of protein kinases by Differential
Scanning Fluorimetry (DSF) assay (see Supporting Information (SI) Table S1).
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2.3. CaMKK2 Crystallography

To investigate the molecular details of interaction of the dianilino-TDZs (1–3) with protein kinases,
co-crystallization with the corresponding purified proteins was attempted. Diffracting crystals were
obtained with compound 2 in complex with CAMKK2 (see Table S2). The structure was solved by
molecular replacement. The CAMKK2 kinase domain adopted an active state conformation in which
residues of the regulatory and catalytic spines were aligned (Figure 2A); residue Glu236 within α-C
helix directly contacted Lys194 (“α-C helix in”); and residues Asp330 and Phe331 within the conserved
DFG motif pointed towards and away, respectively, from the ATP-binding site (“DFG -in”).

The ligand displayed two direct contact points to the hinge region of the ATP-binding pocket:
one involving the oxygen atom of the thiadiazinone moiety and the other through the nitrogen atom
of the hydroxymethylaniline moiety (Figure 2B). A water bridge made by the nitrogen atom from the
aminobenzamide provided a third contact point to the kinase hinge region. The co-crystal structure
revealed that the oxygen atom of the aminobenzamide interacted with the catalytic Lys194 and made
a water-bridge with Glu236 of the α-C helix and Asp330 within the conserved DFG motif. Likewise,
two water-bridge interactions connected the nitrogen atom from the aminobenzamide moiety and
residues Ser175 within P-loop and Asn317 at the bottom of the kinase ATP-binding site. Finally,
the ligand aminobenzamide ring made a T-shaped π-π interaction with the Phe267. Compound 2 is
bound to CAMKK2 with aniline groups in a twisted conformation relative to the central TDZ ring, as
can be seen in the electron density map (Figure 2C).
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suite (2017-3) to create a models of compounds STO-609 and 2 bound to CaMKK2 that accurately 

reflected what was seen in the crystal structures of both [19]. Water Map using a 2 nS simulation was 

used to populate the hydration sphere of compounds STO-609 and 2. The resulting model correctly 

Figure 2. The co-crystal structure of CAMKK2 bound to compound 2. (A) Cartoon representation of
CAMKK2. (B) Binding interactions between CAMKK2 and compound 2. Dashed lines depict putative
hydrogen bonds. Water molecules are shown as red spheres. (C) Electron density (omit) map (shown
as a grey mesh contoured at 1.5 σ) for compound 2.

2.4. CaMKK2 Docking and Water Map Simulation

To further probe the molecular basis of ligand binding to CAMKK2, we compared our co-crystal
structure of compound 2 (PDB 5VT1) with the previously published co-crystal structure with
STO-609 (PDB:2ZV2) (Figure 3) [19]. We also controlled for hinge contacts in the model by using
the 2,4-dianilinopyrimidines as a training set (see Figure S2). We noted that STO-609 can displace
a bound water molecule from the ATP-binding site that is still present when compound 2 is bound to
the enzyme. The carboxylic acid of STO-609 also forms a tighter interaction with the catalytic lysine
than the benzamide of compound 2. To improve its activity, we designed analogues of 2 that would be
able to displace the bound water molecule and form stronger interactions with the catalytic lysine.
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Figure 3. Comparison of the interaction of compounds 2 and STO-609 with the hinge region of
CAMKK2: (A) PDB:5VT1 with compound 2; (B) PDB:2ZV2 with STO-609.

In order to use molecular docking to guide the design of new analogues, we used the Maestro
suite (2017-3) to create a models of compounds STO-609 and 2 bound to CaMKK2 that accurately
reflected what was seen in the crystal structures of both [19]. Water Map using a 2 nS simulation was
used to populate the hydration sphere of compounds STO-609 and 2. The resulting model correctly
identified the crystallographically observed water molecule highlighted in red (Figure 4). In addition,
several other water molecules were identified in the ‘back’ pocket of the CaMKK2 that contained the
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catalytic lysine. Several analogues of compound 2 were designed to directly displace/interact with the
key water molecule. In parallel, we designed a series of analogues to strengthen the interaction with
the catalytic lysine.
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Figure 4. Hydration sphere of STO-609 (left) and 2 (right) generated by Water Map simulation showing
high and low energy waters with graded shading (red—high energy and green—low energy).

The docking simulations showed that strengthening the interaction with the catalytic lysine
while retaining the bound water molecule gave better scores than direct displacement of the water
(Figure 5). We first optimized the core to see if the weak hit (2) could be a tractable starting point.
Molecular simulations of compound 2 (Figure 5A) showed a weaker interaction with the catalytic
lysine when the primary amide was switched in compound 10 (Figure 5B); the interaction with the
water produced a more effective docking pose with a strong water mediated interaction with the
backbone. We were able to boost the proposed lysine interaction with an imidazole substitution (11)
(Figure 5C). The carboxylic acid in STO-609 appeared to contribute significantly to the binding affinity
to CaMKK2. We designed a switch of the primary amide in compound 2 to a carboxylic acid (12)
(Figure 5D) and this gave a 14/15 poses match to where STO-609’s carboxylic acid was directed in the
co-crystal structure with CaMKK2 [19].Molecules 2018, 23, x  7 of 23 
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2.5. Optimisation Results on CaMKK2

2.5.1. Outline of Compounds

We proposed a series of modifications of compound 2 relating to the crystal structure and
modelling (Figure 6). These included a switch of the para-amide to the ortho-position (10) to better
interact with the water and a direct substitution of the para-amide with a carboxylic acid (12) to
form a stronger interaction with the water network. A series of mono-substituted ortho-, meta- and
para- cyano analogues (13–15, respectively) probed the space available in this pocket and checked
conformation constraints. A substitution on the adjacent anilino-nitrogen to the hinge binder to directly
replace the water with a 4-methyloxazole (16) was encouraging. A methanol substitution at the ortho
position (17) also looked promising and to increase the π-stacking potential of this analogue we
added a meta-trifluoromethyl group (18). The use of an imidazole as a hydrogen bond donor/acceptor
and the model (Figure 4C) suggested that, though out of plane, it could align with the catalytic
lysine. The para-substituted imidazole (11) is about 30–40◦ out of plane and looked favorable to form
a networked interaction between Lys197 and the wider water network. The final analogue was an
arylthiadiazinone with a substitution of 2-cyclopentylbenzoic acid (19). This tactic for interaction of
the wider water network with the para-carboxylic acid while having an adjacent meta-cyclopentyl to
form a π-stacking/lipophilic interaction was previously used to successfully target SGK1, a regulator
of epithelial sodium channels (eNaCs) [20].Molecules 2018, 23, x  8 of 23 
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Figure 6. Designed compound rationale.

2.5.2. Analogue Synthesis

The designed analogues 10–19 were prepared using 3-chloro-5-[(3-hydroxy-4-methylphenyl)-
amino]-4H-1,2,6-thiadiazin-4-one (7) as the substrate for the Buchwald-Hartwig coupling reaction to the
relevant aniline. The desired dianilino-TDZs were prepared in medium to good yields (65–94%) except
for 4-benzoic acid derivative 19 that gave a low yield (36%) attributed to potential nucleophilic
displacements by the carboxylate ion in the reaction conditions (K2CO3). The secondary amine
20 required for the preparation of oxazole derivative 16 was prepared by a reductive amination
reaction of 4-aminobenzamide and oxazole-4-carbaldehyde with sodium borohydride (Scheme 2).

Interestingly, a different route was used to access imidazole derivative 11 as the Buchwald-Hartwig
coupling of thiadiazinone 7 with 4-(1H-imidazol-2-yl)aniline led to a complex mixture of products.
This was resolved by switching the reaction sequence and performing first the nucleophilic displacement
of the 3-chloride of dichlorothiadiazinone 6 with 4-(1H-imidazol-2-yl)aniline to afford anilinothiadiazine 21
and subsequently performing the Buchwald-Hartwig coupling with 5-amino-2-methylphenol (Scheme 2).
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Scheme 2. Synthesis of oxazole amine 20 and dianilino-TDZ 11.

The arylthiadiazinone analogue 19 required a different synthetic protocol involving a Suzuki
coupling with the relevant arylboronic acid 22. The boronic acid was prepared in two steps from
4-bromo-2-fluorobenzoic acid (Scheme 3). Treatment of 4-bromo-2-fluorobenzoic acid 22 with cyclopentyl
magnesium bromide led to 4-bromo-2-cyclopentylbenzoic acid (23). Subsequent lithium-halogen exchange
and treatment with triisopropyl borate gave the desired boronic acid 24 albeit in a 35% overall yield. Boronic
acid 24 was then reacted with 3-chloro-5-[(3-hydroxy-4-methylphenyl)-amino]-4H-1,2,6-thiadiazin-4-one
(7) in the presence of Pd(Ph3P)4 (5 mol %) to yield the aryl-thiadiazinone 19 in 86% yield (Scheme 3) [10].
We note that this reaction order was chosen since it is difficult to perform a mono-arylation Suzuki
reaction [10] but easy to mono-displace dichlorothiadiazinone 6 with amine nucleophiles.
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2.6. Optimization Results on CaMKK2

To more accurately determine the relative changes in potency of the TDZ analogues and to
enable measurement of accurate IC50

’s, we developed a Time-Resolved Fluorescence Resonance Energy
Transfer (TR-FRET) assay. The TR-FRET tracer displacement assays were generated using a protocol
derived from the Lanthascreen binding assays (ThermoFisher Scientific, Waltham, MA, USA) [21].
In this assay, we measured the effect of ATP competing compounds that are able to displace
a fluorophore-labeled pan-kinase inhibitor (tracer 236) from the ATP binding site. We used ponatinib
and staurosporine as internal controls to calibrate the FRET assay. The results of the CAMKK2 FRET
assay are shown in Figure 7 and Table 2 (see Figures S3 and S4, SI). Surprisingly, TDZ analogues 1 and 2
showed no measurable activity at a concentration up to 50 µM but analogue 3 gave weak activity with
an IC50 34 µM. Nevertheless, several of the structure-optimized analogues showed improvements in
potency. TDZ’s 10–12 had the highest affinity for CAMKK2 with IC50 7.8, 3.2 and 10.5 µM, respectively.
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The switch of the amide from the para-position (2) to the ortho-position (10) provided a >8-fold
boost likely related to the new more favorable water mediated interaction. The exchange of the
para-amide (2) to the para-carboxylic acid (12) led to a >5-fold increase in potency. However,
the mono-cyano group substitutions were relatively in-effective. The ortho-cyano (13) showed some
activity (43 µM) likely do to the water network interaction but meta-cyano (14) and para-cyano (15)
were >50 µM against CaMKK2. This was the same result for the 4-methyloxazole (16), which was
surprising but could be related to an inability to be accommodated in the active site. The methanol
analogues (17-18) were also effectively inactive, likely due in part to the lack of ability to reach the
water interaction. The imidazole (11) preformed well as we expected from our model (Figure 4C)
and appeared to form the water network interaction in the back pocket of CaMKK2. The direct
carbon-carbon bonded para-carboxylic acid with adjacent meta-cyclopentyl compound (19) was only
weakly active (38 µM) and was likely out of position on this scaffold to form the optimal interaction as
in STO-609.

2.7. Advanced Enzyme Assay Results on CaMKK2 Demonstrating Functional Inhibition

To further characterize the activity of 10–12 as inhibitors of CAMKK2, the compounds were
subjected to an enzyme inhibition assay. CaMKK2 activity was measured by determining the rate of
transfer of radiolabeled phosphate from [γ-32P]-ATP to a synthetic peptide substrate [22]. Compounds
10–12, when initially screened at a concentration of 1 µM, showed statistically significant inhibition of
CAMKK2 kinase activity. The compounds were then screened at 7 concentrations (see Table S3, SI) to
produce moderately potent IC50’s. TDZs 10–12 were demonstrated to be competent inhibitors of the
CaMKK2 enzyme with enzymatic IC50

’s of 11.9, 6.5 and 4.1 µM, respectively (Table 3).

Table 3. CaMKK2 Enzyme assay results for advanced TDZ analogues.

Compound FRET (IC50) a CaMKK2 Enzyme Assay b

IC50 (µM)

10 7.8 11.9
11 10.5 6.5
12 3.2 4.1

STO-609 - 0.04
a Average of 2 experiments; b Data are presented as mean ± SEM for 2 experiments

3. Discussion

We demonstrate, for the first time, that the 4H-1,2,6-thiadiazin-4-one (TDZ) chemotype can
function as an ATP-competitive kinase inhibitor. TDZ represents a novel hinge binder with the
potential to be further optimized into a high quality chemical probe for kinases such as CaMKK2.
Furthermore, we report the first protein co-crystallization with this rare heterocycle. The electronics
of the TDZ core allows for participation of the sulfur atom to be part of extended conjugated
electronic exchanges through the core units to transfer charge [23]. This electronic property, exploited
in solar cell applications, can partly explain the general lack of kinome promiscuity compared to the
dianilinopyrimidine. The modular synthesis and relative narrow kinome spectrum make the TDZ an
attractive chemotype for further development.

CaMKK2 is predominantly expressed in the brain, with trace expression in peripheral tissues
such as the testis, spleen and lung [24,25]. In addition to recently being linked to appetite in vivo [26],
CAMKK2 is over-expressed in multiple cancers [27,28]. The knockout of CaMKK2 can reduce cell
proliferation and tumorigenicity in vivo, making CAMKK2 an attractive drug target. The only reported
potent small molecule inhibitor of CaMKK2 is STO-609, which has several liabilities limiting its use as a
probe of CaMKK2 activity. These include poor solubility and unfavorable off-target kinome profile with
kinases that would cloud the interpretation of a phenotype including ERK8, MNK1 and PIM3 [29–31].
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In addition, STO-609 is an agonist of the arylhydrocarbon receptor (AhR) [32]. The complicating factors
highlight the need for the design and development of high quality inhibitors targeting CAMKK2.

Our results add further credence to the importance of water networks in optimization of kinase
inhibitors. The advent of powerful modelling tools such as Water Map and the Schrodinger Maestro
platform have made manipulating the water network more accessible [33–35]. There are two distinct
water network regions that the TDZ core can exploit in binding to CaMKK2. We have shown an ability
to exploiting the water network and lysine interactions, we improved on the activity of compound 2
and produced compound 11 that is >15-fold more potent. Our discovery of the TDZ core as a useful
chemotype for kinase inhibitor design adds a new a hinge binding heterocycle to the medicinal
chemistry tool box and provides another example of the application of sulfur in drug design.

4. Materials and Methods

4.1. Kinase Panel

Kinase selectivity assay—A home-made kinase panel was generated for the following enzymes:
AAK1, BMP2K, BMX, BRAF, CAMK1D, CAMK1G, CAMKK1, CAMKK2B, CDC42BPA, CDK2, CDKL1,
CHEK2, CLK1, CSNK1G1, CSNK1G3, CSNK2A1, DYRK1A, DYRK2A, EPHA2, GAK, GSG2, MAPK1,
MAP2K7, MAPK14B, MAPK3, PHKG2, PIM1, PLK1, PKMYT1, PRPF4B, RPS6KA1A, RPS6KA5A,
RPS6KA6A, SLK, SRPK1, SRPK2, STK3, STK6, STK10, STK17A, STK24, STK38L, TRIB2, TTK, VRK1
and VRK2. Proteins were produced in E. coli, purified in a Ni-chelate column, followed by overnight
digestion using TEV protease (made in house with an N-terminal 6xHis tag) and dialysis to remove
imidazole. To clear samples of uncleaved proteins and the TEV protease, samples were loaded on new
Ni-chelate columns. The flow through was collected, concentrated and loaded to a HiLoad Superdex
200 16/600 column (GE Healthcare, Chicago, IL, USA) for final polishing and buffer exchange.

Starting from 100 µM protein stocks, our kinase panel enzymes were diluted to 1 µM in buffer
100 mM K2HPO4 pH 7.5 containing 150 mM NaCl, 10% glycerol and 5X dye (Applied Biosystems
catalogue 4461806). The protein/dye mixture was transferred to a 384-well PCR microplate having
20 µM per well. Compounds in DMSO at 10 mM concentration were added in 20 nL volume, using
a liquid handling device setup with a pin head, to make 10 µM compound concentration in the
assay plate.

Protein thermal shift data was measured in a qPCR instrument (Applied Biosystems QuantStudio 6)
programmed to equilibrate the plate at 25 ◦C for 5 min followed by ramping the temperature to 95 ◦C
at a rate of 0.05 ◦C/s. Data was processed using Protein Thermal shift software (Applied Biosystems)
by fitting experimental curves to a Boltzmann function to calculate differential thermal shifts (dTm)
referenced to protein/dye in 0.2% DMSO.

4.2. CaMKK2 Crystallization

4.2.1. Cloning, Protein Expression and Purification

The crystallization of CAMKK2 was performed with a construct of CAMKK2 isoform 7 residues
161-449 (NCBI NP_001257415.1 – SGC construct CAMKK2B-cb002) containing the wild-type kinase
domain in vector pNIC28-Bsa4. The construct was transformed into BL21(DE3) Escherichia coli cells that
co-express λ-phosphatase and three rare tRNAs (plasmid pACYC-LIC+). Cells were cultured in TB
medium containing 50 µg/mL kanamycin and 35 µg/mL chloramphenicol at 37 ◦C with shaking until
the OD600 reached ~3 and then cooled to 18 ◦C for 1 h. Isopropyl β-D-1-thiogalactopyranoside (IPTG)
was added to a final concentration of 0.1 mM and the cultures were left overnight at 18 ◦C. The cells were
collected by centrifugation then resuspended in 2× lysis buffer [1× lysis buffer is 50 mM HEPES buffer,
pH 7.5, 0.5 M KOAc, 10% (v/v) glycerol, 50 mM each arginine/glutamate, 10 mM imidazole, 1.0 mM
tris(2-carboxyethyl)phosphine (TCEP), Protease Inhibitor Cocktail Set VII (Calbiochem, 1/500 dilution)]
and flash-frozen in liquid nitrogen. Cells were lysed by sonication on ice. The resulting proteins were
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purified using Ni-Sepharose resin (GE Healthcare) and eluted stepwise in 1× lysis buffer with 300 mM
imidazole. Removal of the hexahistidine tag was performed at 4 ◦C overnight using recombinant TEV
protease. The protein was further purified using reverse affinity chromatography on Ni-Sepharose
followed by gel filtration (Superdex 200 16/60, GE Healthcare). The protein in gel filtration buffer
(10 mM HEPES, 500 mM KOAc, 1.0 mM TCEP, 5% (v/v) glycerol, 50 mM each arginine/glutamate)
was concentrated to 8.5 mg/mL (measured by UV absorbance in a NanoDrop spectrophotometer
(Thermo Scientific, Waltham, MA, USA) using the calculated molecular weight and estimated extinction
coefficient) using 30 kDa molecular weight cut-off centrifugal concentrators (Sigma-Aldrich Corp.,
St. Louis, MO, USA) at 4 ◦C. The concentrated protein was flash-frozen in a liquid nitrogen bath and
stored at −80 ◦C until use.

4.2.2. Protein Crystallization

Kinase inhibitor (dissolved in 100% DMSO) was added to the protein in 3-fold molar excess and
incubated on ice for approximately 30 min. The mixture was centrifuged at 15,000 rpm for 10 min at 4 ◦C
before setting up 150 nL volume sitting drops at three ratios (2:1, 1:1, or 1:2 protein-inhibitor complex to
reservoir solution). Crystallization experiments were performed at 20 ◦C. Crystals were cryoprotected
in mother liquor supplemented with 25–30% glycerol before flash-freezing in liquid nitrogen for data
collection. Diffraction data were collected at 100 K at Diamond Light Source beamline I03. Crystal
optimization used Newman’s buffer system [36].

4.2.3. Structure Solution and Refinement

Diffraction data were integrated using XDS [37] and scaled using AIMLESS from the CCP4
software suite (version 7.0.057, London, UK) [38]. Molecular replacement (MR) was performed with
Phaser [19] using the CAMKK2 bound to STO-609 co-structure (PDB ID 2ZV2) [19]. Automated
refinement was performed with Refmac [39,40]. Coot [41] was used for manual model building
and refinement. Structure validation was performed using MolProbity [42]. Structure factors and
coordinates have been deposited in the PDB (see Table S2, SI).

4.3. Molecular Modelling

4.3.1. Molecular Modelling

Molecular modelling was performed using Schrödinger Maestro software package (version 2018-1,
Schrödinger, Mannheim, Germany) [43]. Structures of small molecules were prepared using and the
LigPrep module of Schrodinger suite employing OPLS3 force for all computations. X-ray crystal
structure for the CaMMKK2 (PDB:5VT1/2ZV2) was pre-processed using the protein preparation
wizard of Schrödinger suite to optimize the hydrogen bonding network [43].

Prior to Glide docking, the grid box was centered using corresponding x-ray ligand as template.
The ligand docking was performed using default SP settings of Schrodinger Glide with softened vdw’s
potential (0.6) and additional hydrogen bond constraints to NH of V270 (hinge residue). Graphical
illustrations were generated using Schrödinger Maestro software (version 2018-1, Schrödinger,
Mannheim, Germany).

4.3.2. Hydration Site Analysis

Hydration site analysis calculated with Water Map (Schrödinger Release 2017-3: Water Map,
Schrödinger, LLC, New York, NY, 2017). The 5VT1 structure was prepared with Protein Preparation
Wizard (as above). Waters were analyzed within 6 Å of the co-crystallized ligand and the 2 ns simulation
was conducted with OPLS3 force field.
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4.4. Biochemical Assays

4.4.1. CaMKK2B TR-FRET Assay

CAMKK2 kinase domain (132–470) was cloned in a pNIC-Bio2 vector in fusion with N-terminal
10xHis tag followed by a TEV protease cleavage site and a C-terminal biotin ligase recognition sequence.
This construct was used in the expression of CAMKK2 in E. coli BL21(DE3)-R3-BirA [44]. Protein
was purified in a Ni-NTA column (Thermo Scientific, Waltham, MA, USA) followed TEV digestion
overnight, dialysis to remove imidazole and re-purification in Ni-NTA to remove undigested samples
and TEV protease (made in house with an N-terminal 6xHis tag). As a last step, this sample was
loaded to a HiLoad Superdex 200 16/600 column (GE Healthcare, Chicago, IL, USA) for final polishing
and buffer exchange.

Tracer displacement assay was measured in 15 µM volume containing 5 nM of our C-terminal
biotinylated CAMKK2 kinase domain, 2 nM of Europium-labeled streptavidin in buffer 50 mM HEPES
pH 7.5, 10 mM MgCl2, 1 mM EGTA, 0.01% Brij-35 and 8 nM of tracer 236 (measured KD of 8.13 ± 0.9 nM)
as described [45].

4.4.2. CaMKK2 Enzyme Assay

CaMKK2 activity was measured as described previously [22]. A standard 30 µM assay, 1 ng
of recombinant bacterial expressed human CaMKK2 (residues 50–588) was added to assay buffer
(50 mM HEPES [pH 7.4], 1 mM DTT, 0.02% (v/v) Brij-35) containing 200 µM CaMKKtide peptide
substrate, 50 µM CaCl2, 1 µM calmodulin (Sigma-Aldrich Corp., St. Louis, MO, USA), 50 µM
[γ-32P]-ATP (Perkin Elmer) and 5 mM MgCl2, in the presence and absence of different concentrations
of small-molecule inhibitors. Reactions were incubated for 10 min at 30 ◦C, after which they
were terminated by spotting 15 µM onto P81 phosphocellulose paper (Whatman, GE Healthcare,
Chicago, IL, USA) and washing extensively in 1% phosphoric acid. Radioactivity was quantified by
scintillation counting.

4.5. Chemistry Experimental Section

4.5.1. General Methods and Materials

All chemicals were commercially available except those whose synthesis is described. Anhydrous
Na2SO4 was used for drying organic extracts and all volatiles were removed under reduced
pressure. 1,4-Dioxane was dried by refluxing over CaH2. All reaction mixtures and column eluents
were monitored by TLC using commercial glass backed thin layer chromatography (TLC) plates
(Merck Kieselgel 60 F254) [46]. The plates were observed under UV light at 254 and 365 nm.
The technique of dry flash chromatography was used throughout for all prep scale chromatographic
separations using Merck Silica Gel 60 (less than 0.063 mm). Melting points were determined using
a PolyTherm-A, Wagner & Munz, Koefler-Hotstage Microscope apparatus or were determined
using a TA Instruments DSC Q1000 with samples hermetically sealed in aluminum pans under
an argon atmosphere; using heating rates of 5 ◦C/min (DSC m.p. listed by onset and peak values).
Solvents used for recrystallization are indicated after the melting point. UV spectra were obtained
using a Perkin-Elmer Lambda-25 UV/vis spectrophotometer and inflections are identified by the
abbreviation “inf.” IR spectra were recorded on a Shimadzu FTIR-NIR Prestige-21 spectrometer with
Pike Miracle Ge ATR accessory and strong, medium and weak peaks are represented by s, m and w,
respectively. 1H and 13C-NMR spectra were recorded on a Bruker Avance 300 (at 300 and 75 MHz,
respectively), or a 500 machine (at 500 and 125 MHz, respectively). Deuterated solvents were used
for homonuclear lock and the signals are referenced to the deuterated solvent peaks. APT NMR
studies identified quaternary and tertiary carbons, which are indicated by (s) and (d) notations,
respectively. MALDI-TOF mass spectra were recorded on a Bruker Autoflex III Smartbeam instrument.
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Low resolution (EI) mass spectra were recorded on a Shimadzu Q2010 GC-MS with direct inlet probe.
3,5-Dichloro-4H-1,2,6-thiadiazin-4-one (6) was prepared according to the reported procedure [9].

4.5.2. Preparation of Aniline Starting Materials

4-[(Oxazol-4-ylmethyl)amino]benzamide (20). To a stirred solution of 4-aminobenzamide (136 mg, 1.00 mol)
in EtOH (5 mL), at ca. 20 ◦C, was added oxazole-4-carbaldehyde (97 mg, 1.00 mmol) in one portion
and the mixture was stirred at this temperature for 12 h. Then NaBH4 (75.6 mg, 2.00 mmol) and the
mixture was stirred for a further 6 h. H2O (10 mL) was then added and the mixture stirred for 30 min.
The colorless solid formed was then filtered under reduced pressure and washed with EtOH (2 mL),
DCM (5 mL) and n-hexane (5 mL) to give the title compound 20 (153.6 mg, 71%) as colorless plates, m.p.
161–162 ◦C (from EtOH); Rf 0.44 (DCM/MeOH, 90:10); (found: C, 60.78; H, 5.03; N, 19.26. C11H11N3O2

requires C, 60.82; H, 5.10; N, 19.34%); λmax(EtOH)/nm 216 (log ε 3.86), 292 (4.34); υmax/cm−1 3381 m,
3273 m, 3169 m, 3129 w, 1639 m, 1599s , 1530 s, 1422 m, 1391 s, 1385 m, 1342 m, 1278 w, 1267 m, 1242 w,
1204 m, 1186 m, 1150 s, 1126 m, 1109 s, 1086 m, 1061 s, 1003 m, 922 m, 874 w, 842 m, 828 m, 804 m, 789
m, 775 m, 762 m, 727 m, 702 m; δH(500 MHz; CDCl3) 8.33 (1H, d, J 0.7), 7.97 (1H, d, J 0.9), 7.63 (2H, d,
J 8.7, Ar H), 7.55 (1H, br s, NH), 6.86 (1H, br s, NH), 6.61 (2H, d, J 8.8, Ar H), 6.57 (1H, dd, J 5.9, 5.9,
Ar H), 4.20 (2H, d, J 5.8, CH2); δC(125 MHz; CDCl3) 167.9 (s), 152.1 (s), 150.7 (s), 137.7 (s), 136.1 (d),
128.9 (d), 121.3 (s), 111.0 (d), 38.4 (t); m/z (APCI+) 218 (MH+, 59%), 201 (93), 175 (32), 137 (100), 120 (55).

4-Borono-2-cyclopentylbenzoic acid (24). To a stirred solution of 4-bromo-2-fluorobenzoic acid (22) (2.00 g,
9.13 mmol) in THF, at ca. 0 ◦C, under a N2 atmosphere, was added a solution of 2 M cyclopentyl
magnesium bromide (16 mL, 32 mmol) and the mixture stirred at this temperature for 4.5 h. Then was
added slowly 2 M HCl (25 mL) followed by EtOAc (40 mL). The two layers were separated and the
organic layer was washed with H2O (2 × 20 mL) and then dried (MgSO4). The solvent was removed
under vacuum to give 4-bromo-2-cyclopentylbenzoic acid (23) as a colorless solid (2.10 g, 85%) that
was used directly in next step without further purification.

4-Bromo-2-cyclopentylbenzoic acid (23) (2.10 g, 7.80 mmol) was dissolved in THF (50 mL) and the mixture
cooled to −78 ◦C with stirring. Triisopropyl borate (6.30 mL, 27.3 mmol, 3.5 equiv.) was then added,
followed by the slow addition of a solution of n-BuLi (hexanes) 2.5 M (13 mL, 31.2 mmol, 4 equiv.).
The reaction mixture was slowly warmed to room temperature and stirred for 5 h. Then a solution
of 2 M HCl (20 mL) was added and the mixture stirred for 10 min. The mixture was extracted with
EtOAc (2 × 25 mL) and the combined organic layers were then stirred with 2.5 M NaOH (30 mL)
for 1 h. The layers were separated and the aqueous layer acidified to pH 2-3 with concentrated HCl.
The mixture was then extracted by EtOAc (2 × 25 mL), the organic layer dried (Na2SO4) and the
solvent was removed under vacuum. The crude colorless solid was stirred in DCM (10 mL) and filtered
to give the title compound 24 (750 mg, 35% overall yield) as a colorless solid, m.p. 162–165 ◦C; Rf 0.38
(n-hexane/Et2O, 50:50); υmax/cm−1 3215 br (O-H), 2955 w, 2947 w and 2870 w (alkyl C-H), 1692 s,
1678 s, 1503 w, 1441 w, 1366 s, 1333 m, 1302 m, 1248 m, 1213 m, 1188 m, 1144 m, 1113 m, 1072 w, 1044w,
1011 w, 932 w, 903 w, 849 w, 791 m, 716 s; δH(500 MHz; DMSO-d6) 12.86 (1H, br s, OH), 8.19 (2H, s,
OH), 7.87 (1H, s, Ar H), 7.62 (1H, d, J 7.6, Ar H), 7.54 (1H, d, J 7.6, Ar H), 3.67–3.60 (1H, m, alkyl H),
1.98 (2H, br s, alkyl H), 1.79 (2H, br s, alkyl H), 1.66-1.53 (4H, m, alkyl H); δC(125 MHz; DMSO-d6)
169.9 (s), 144.1 (s), 137.1 (s), 133.4 (s), 132.3 (d), 131.0 (d), 127.6 (d), 41.1 (d), 34.4 (t), 25.3 (t); mass
spectrometry and elemental analysis data could not be obtained due to compound instability.

4.5.3. Preparation of 3-Amino-Substituted-4H-1,2,6-Thiadiazines

3-Chloro-5-[(3-hydroxy-4-methylphenyl)amino]-4H-1,2,6-thiadiazin-4-one (7) (General procedure). To a stirred
solution of 3,5-dichloro-4H-1,2,6-thiadiazin-4-one (6) (366.0 mg, 2.000 mmol) in EtOH (4 mL),
at ca. 20 ◦C, was added 5-amino-2-methylphenol (246.3 mg, 2.000 mmol) in one portion followed
by 2,6-lutidine (233 µM, 4.00 mmol) and the mixture was stirred at this temperature until complete
consumption of the starting material (TLC, 1 h). The yellow solid formed was then filtered under
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reduced pressure and washed with EtOH (2 mL), DCM (5 mL) and n-hexane (5 mL) to give the
title compound 7 (477.1 mg, 77%) as orange needles, m.p. 248–250 ◦C (from EtOH/THF); Rf 0.53
(n-hexane/t-BuOMe, 50:50); (found: C, 44.45; H, 2.97; N, 15.56. C10H8ClN3O2S requires C, 44.53; H,
2.99; N, 15.58%); λmax(DCM)/nm 241 (log ε 3.88), 343 (4.34), 408 (3.67); υmax/cm−1 3383br (O-H),
3341 m and 2922 w (C-H), 1584 s, 1562 s, 1557 s, 1553 s, 1503 m, 1450 w, 1427 m, 1421 m, 1406 w, 1366 w,
1327 w, 1312 w, 1263 m, 1238 m, 1194 w, 1153 m, 1123 s, 999 m, 972 m, 874 m, 862 m, 851 s, 802s , 737 m,
727 s; δH(500 MHz; CDCl3) 9.91 (1H, s), 9.36 (1H, s), 7.32 (1H, d, J 2.0, Ar H), 7.06 (1H, dd, J 8.1, 2.0,
Ar H), 7.00 (1H, d, J 8.2, Ar H), 2.08 (3H, s, CH3); δC(125 MHz; CDCl3) 157.0 (s), 155.1 (s), 150.0 (s),
140.7 (s), 136.2 (s), 130.1 (d), 120.0 (s), 111.8 (d), 107.4 (d), 15.5 (q); m/z (MALDI-TOF) 272 (MH+ + 2,
42%), 270 (MH+, 94), 252 (100), 234 (32), 180 (42).

2-[(5-Chloro-4-oxo-4H-1,2,6-thiadiazin-3-yl)amino]-N-methylbenzamide (8). Similar treatment of 3,5-dichloro-
4H-1,2,6-thiadiazin-4-one (6) (183 mg, 1.00 mmol) in EtOH (1 mL), with 2-amino-N- methyl-benzamide
(150 mg, 1.00 mmol) and 2,6-lutidine (116 µM, 2.00 mmol) after 48 h gave the title compound 8 (228 mg,
77%) as yellow needles, m.p. 252–255 ◦C (from benzene); Rf 0.22 (n-hexane/t-BuOMe, 50:50); (found:
C, 44.45; H, 2.92; N, 18.74. C11H9ClN4O2S requires C, 44.53; H, 3.06; N, 18.88%); λmax(DCM)/nm
240 inf (log ε 4.47), 300 (4.64), 336 (4.82), 402 (4.25); υmax/ cm−1 3310 m, 3111 w, 1626 m, 1595 m, 1585 m,
1541 s, 1537 s, 1452 m, 1435 m, 1406 m, 1329 m, 1308 m, 1285 w, 1238 w, 1178 m, 1169 m, 1150 w, 1107 w,
1053 w, 1001 w, 947 w, 885 m, 858 m, 841 m, 773 m, 752 m, 727 m; δH(500 MHz; CDCl3) 12.36 (1H,
br s, NH), 8.76 (1H, s, NH), 8.47 (1H, d, J 8.2, Ar H), 7.78 (1H, d, J 7.4, Ar H), 7.55 (1H, dd, J 7.4, 7.4,
Ar H), 7.20 (1H, dd, J 7.2, 7.2, Ar H), 2.81 (3H, d, J 3.5, CH3); δC(125 MHz; CDCl3) 168.3 (s), 157.3 (s),
149.5 (s), 141.5 (s), 137.9 (s), 131.8 (d), 128.2 (d), 122.9 (d), 121.3 (s), 119.1 (d), 26.2 (q); m/z (MALDI-TOF)
298 (M+ + 2, 25%), 296 (M+, 100%), 265 (42).

3-{[4-(1H-Imidazol-2-yl)phenyl]amino}-5-chloro-4H-1,2,6-thiadiazin-4-one (21). Similar treatment of 3,5-dichloro-
4H-1,2,6-thiadiazin-4-one (6) (91.5 mg, 0.500 mmol) in MeCN (2 mL), with 4-(1H-imidazol-2-yl)aniline
dihydrochloride (116 mg, 0.500 mmol) and Hünig’s base (261 µM, 1.50 mmol) after 2 h gave the title
compound 21 (63.3 mg, 42%) as orange needles, m.p. 298-300 ◦C (from EtOH/THF); Rf 0.45 (t-BuOMe);
λmax(DCM)/nm 268 (log ε 4.00), 342 (4.53), 403 (3.73); υmax/cm−1 3293 m, 2768 br, 1630 s, 1589s, 1547 s,
1537 s, 1512 s, 1445 m, 1402 w, 1331 w, 1296 w, 1248 w, 1182 m, 1107 m, 1005 w, 949 m, 885m, 868 m, 849 s,
779 m, 733 s, 717 s; δH(500 MHz; CDCl3) 12.51 (1H, br s, NH), 10.21 (1H, s, NH), 7.90 (2H, d, J 8.9, Ar H),
7.87 (2H, d, J 8.4, Ar H), 7.12 (2H, s, Ar H); δC(125 MHz; CDCl3) 157.1 (s), 149.9 (s), 145.2 (s), 145.2 (s),
137.6 (s), 126.8 (s), 126.5 (s), 126.3 (d), 125.0 (d), 120.6 (d), 113.5 (d); m/z (ESI+) 306 (MH+, 15%), 160 (33),
153 (19), 130 (38), 62 (100).

4.5.4. Preparation of 3,5-Diaminosubstituted Thiadiazines

3-({5-[(3-Hydroxy-4-methylphenyl)amino]-4-oxo-4H-1,2,6-thiadiazin-3-yl}amino)benzamide (1) (General
procedure). To a mixture of 3-chloro-5-[(3-hydroxy-4-methylphenyl)amino]-4H-1,2,6-thiadiazin-4-one
(7) (53.9 mg, 0.200 mmol), Pd[3,5-(F3C)2C6H3]3 (5.3 mg, 1.25 mol %), DPEPhos (5.3 mg, 5 mol %),
powdered dry K2CO3 (66.4 mg, 0.480 mmol) and 3-aminobenzamide (30.0 mg, 0.220 mmol) was
added dioxane (5 mL). The stirred suspension was then deaerated by bubbling of Ar through it for
5 min and then heated at reflux under Ar until complete consumption of the starting thiadiazine
(TLC, 2 h). The mixture was cooled to ca. 20 ◦C, then adsorbed onto silica and chromatographed
(n-hexane/acetone, 50:50) to give the title compound 1 (63.1 mg, 85%) as orange needles, m.p.
297–298 ◦C (from THF); Rf 0.30 (n-hexane/acetone, 50:50); (found: C, 55.11; H, 4.15; N, 18.83.
C17H15N5O3S requires C, 55.28; H, 4.09; N, 18.96%); λmax(EtOH)/nm 207 (log ε 4.62), 338 (4.), 453 (3.80);
υmax/cm−1 3447 w, 3373 w, 3345 m, 3329 m, 3177 w, 1641 m, 1628 m, 1614 m, 1582 s, 1537 s, 1510 s,
1485 m, 1477 m, 1435 m, 1422 m, 1341 w, 1327 w, 1310 w, 1294 w, 1275 w, 1234 m, 1196 w, 1180 m,
1124 m, 1070 w, 999 m, 869 m, 860 m, 787 m; δH(500 MHz; DMSO-d6) 9.63 (1H, s, NH), 9.38 (1H, s,
NH), 9.29 (1H, s, OH), 8.30 (1H, s, NH), 7.92 (1H, s, NH), 7.89 (1H, dd, J 8.1, 1.8, Ar H), 7.53 (1H, d,
J 7.8, Ar H), 7.41–7.36 (3H, m, Ar H and NH), 7.05 (1H, dd, J 8.1, 1.9, Ar H), 6.97 (1H, d, J 8.2, Ar H),
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2.07 (3H, s, CH3); δC(125 MHz; DMSO-d6) 167.8 (s), 155.1 (s), 154.6 (s), 147.1 (s), 146.8 (s), 139.0 (s),
137.3 (s), 134.9 (s), 130.1 (d), 128.3 (d), 122.2 (d), 121.4 (d), 118.8 (d), 118.4 (s), 110.6 (d), 106.1 (d), 15.4 (q);
m/z (ESI+) 370 (MH+, 100%), 369 (M+, 7), 214 (14); HRMS found for MH+ 370.09675, C17H16N5O3S
requires 370.09684.

4-({5-[(3-Hydroxy-4-methylphenyl)amino]-4-oxo-4H-1,2,6-thiadiazin-3-yl}amino)benzamide (2). Similar
treatment of 3-chloro-5-[(3-hydroxy-4-methylphenyl)amino]-4H-1,2,6-thiadiazin-4-one (7) (53.9 mg,
0.200 mmol) with 4-aminobenzamide (30.0 mg, 0.220 mmol) after 1 h gave after chromatography
(n-hexane/acetone, 50:50) the title compound 2 (69.2 mg, 94%) as orange needles, m.p. > 300 ◦C
(from MeOH/THF); Rf 0.27 (n-hexane/acetone, 50:50); (found: C, 55.39; H, 4.25; N, 18.78. C17H15N5O3S
requires C, 55.28; H, 4.09; N, 18.96%); λmax(EtOH)/nm 208 (log ε 4.60), 235 inf (4.28), 347 (4.82),
451 (3.94); υmax/cm−1 3645 w, 3362 m, 3325 m, 3188 w, 2955 m, 2918 w, 2870 w, 1667 m, 1607 m, 1593 m,
1531 m, 1510 s, 1485 m, 1429 m, 1416 m, 1402 m, 1337 m, 1323 m, 1242 m, 1190 m, 1177 m, 1159 m,
1126 m, 1055 m, 1001 w, 955 w, 924 w, 889 m, 860 m, 849 m, 802 m, 785 m; δH(500 MHz; DMSO-d6)
9.76 (1H, s, NH), 9.39 (1H, s, NH), 9.28 (1H, s, OH), 7.88–7.84 (5H, m, Ar H and NH), 7.40 (1H, d, J 2.0,
Ar H), 7.22 (1H, br s, NH), 7.05 (1H, dd, J 8.2, 2.1, Ar H), 6.98 (1H, d, J 8.2, Ar H), 2.08 (3H, s, CH3);
δC(125 MHz; DMSO-d6) 167.3 (s), 155.1 (s), 154.8 (s), 147.3 (s), 146.5 (s), 141.8 (s), 137.2 (s), 130.1 (d),
128.1 (d), 127.8 (s), 118.5 (s), 118.1 (d), 110.7 (d), 106.2 (d), 15.5 (q); m/z (ESI+) 370 (MH+, 100%); HRMS
found for MH+ 370.09655, C17H16N5O3S requires 370.09684.

3-[(2,2-Dioxido-1,3-dihydrobenzo[c]thiophen-5-yl)amino]-5-[(3-hydroxy-4-methylphenyl)amino]-4H-1,2,6-
thiadiazin-4-one (3). Similar treatment of 3-chloro-5-[(3-hydroxy-4-methylphenyl)amino]-4H-1,2,6-
thiadiazin-4-one (7) (53.9 mg, 0.200 mmol) with 5-amino-1,3-dihydrobenzo[c]thiophene 2,2-dioxide
(40.3 mg, 0.220 mmol) after 4 h gave after chromatography (n-hexane/acetone, 50:50) the title
compound 3 (56.9 mg, 68%) as orange needles, m.p. > 300 ◦C (from EtOH/THF); Rf 0.74
(n-hexane/acetone, 50:50); (found: C, 52.06; H, 3.92; N, 13.37. C18H16N4O4S2 requires C, 51.91; H, 3.87;
N, 13.45%); λmax(EtOH)/nm 208 (log ε 4.62), 338 (4.73), 454 (3.89); υmax/cm−1 3335 w, 3316 w, 2970 w,
2949 w, 2924 w, 2870 w, 1614 m, 1587 m, 1530 m, 1504 s, 1487 m, 1460 m, 1454 m, 1433 m, 1381 m,
1300 m, 1263 m, 1217 m, 1186 m, 1177 m, 1165 m, 1123 m, 1105 m, 1091 m, 1047 w, 1001 w, 980 w, 910 w,
806 m, 731 w; δH(500 MHz; DMSO-d6) 9.69 (1H, s, NH), 9.36 (1H, s, NH), 9.27 (1H, s, OH), 7.89 (1H, s,
Ar H), 7.72 (1H, d, J 8.2, Ar H), 7.39 (1H, s, Ar H), 7.32 (1H, d, J 8.4, Ar H), 7.04 (1H, d, J 8.2, Ar H),
6.98 (1H, d, J 8.2, Ar H), 4.50 (2H, s, CH2), 4.43 (2H, s, CH2), 2.07 (3H, s, CH3); δC(125 MHz; DMSO-d6)
155.1 (s), 154.7 (s), 147.2 (s), 146.7 (s), 138.9 (s), 137.3 (s), 132.5 (s), 130.1 (d), 126.1 (d), 126.0 (s), 119.5 (d),
118.5 (s), 116.1 (d), 110.7 (d), 106.2 (d), 56.3 (t), 55.7 (t), 15.4 (q); m/z (ESI+) 417 (MH+, 21%), 391 (100),
214 (24); HRMS found for MH+ 417.06829, C18H17N4O4S2 requires 417.06857.

N-Methyl-2-([5-({3-[(methylsulfonyl)methyl]phenyl}amino)-4-oxo-4H-1,2,6-thiadiazin-3-yl]-amino}-benzamide
(4). Similar treatment of 2-[(5-chloro-4-oxo-4H-1,2,6-thiadiazin-3-yl)amino]-N-methyl- benzamide (8)
(59.3 mg, 0.200 mmol) with 3-[(methylsulfonyl)methyl]aniline (40.8 mg, 0.220 mmol) after 3 h gave
after chromatography (t-BuOMe) the title compound 4 (58.6 mg, 66%) as orange needles, m.p. > 300 ◦C
(from DMA); Rf 0.23 (t-BuOMe); (found: C, 50.98; H, 4.25; N, 15.56. C19H19N5O4S2 requires C, 51.22;
H, 4.30; N, 15.72%); λmax(THF)/nm 240 (log ε 4.54), 267 (4.37), 354 (4.78), 443 (4.19); υmax/cm−1 3347
w, 3287 w, 2936 w, 1628 m, 1614 m, 1605 m, 1593 m, 1582 m, 1530 s, 1518 s, 1493 m, 1489 m, 1450 m,
1429 m, 1410 m, 1333 m, 1302 m, 1292 m, 1287 m, 1242 m, 1227 w, 1169 m, 1148 w, 1117 m, 1088 w,
972 m, 945 w, 851 w, 789 m, 777 m, 750 m, 729 w; δH(300 MHz; DMSO-d6) 12.09 (1H, s, NH), 9.72 (1H, s,
NH), 8.68 (1H, d, J 4.4, Ar H), 8.52 (1H, d, J 8.3, Ar H), 7.89 (1H, s, Ar H), 7.75 (2H, dd, J 7.4, 7.4, Ar H),
7.52 (1H, dd, J 7.7, 7.7, Ar H), 7.36 (1H, dd, J 7.8, 7.8, Ar H), 7.10 (2H, dd, J 7.8, 7.8, Ar H), 4.47 (2H, s,
CH2), 2.94 (3H, s, CH3), 2.82 (3H, d, J 4.4, CH3); δC(125 MHz; DMSO-d6) 168.5 (s), 155.1 (s), 147.1 (s),
146.6 (s), 139.0 (s), 131.7 (d), 129.4 (s), 128.6 (d), 128.1 (d), 125.4 (d), 121.6 (d), 121.4 (d), 120.5 (s),
119.5 (d), 118.1 (d), 59.5 (t), 26.1 (q), one C (q) resonance missing; m/z (ESI+) 446 (MH+, 17%), 391 (100);
HRMS found for MH+ 446.09443, C19H20N5O4S2 requires 446.09512.
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N-Methyl-2-({5-[(4-morpholinophenyl)amino]-4-oxo-4H-1,2,6-thiadiazin-3-yl}amino)benzamide (5). Similar
treatment of 2-[(5-chloro-4-oxo-4H-1,2,6-thiadiazin-3-yl)amino]-N-methylbenzamide (8) (59.3 mg,
0.200 mmol) with 4-morpholinoaniline (39.2 mg, 0.220 mmol) after 3 h gave after chromatography
(n-hexane/acetone, 50:50) the title compound 5 (60.9 mg, 69%) as red plates, m.p. 285–287 ◦C (from
EtOH/THF); Rf 0.42 (n-hexane/acetone, 50:50); (found: C, 57.25; H, 4.91; N, 19.33. C21H22N6O3S requires
C, 57.52; H, 5.06; N, 19.17%); λmax(DCM)/nm 356 (log ε 4.61), 457 (3.82); υmax/cm−1 3329 w, 2963 w,
2916 w, 2851 w, 1614 m, 1593 m, 1585 m, 1526 m, 1511 s, 1504 s, 1449 m, 1435 m, 1412 m, 1402 m, 1317 m,
1287 m, 1267 m, 1240 m, 1167 w, 1123 m, 1088 w, 1070 w, 1053 w, 932 m, 810 m, 748 m; δH(500 MHz;
DMSO-d6) 12.04 (1H, s, NH), 9.49 (1H, s, NH), 8.67 (1H, s, NH), 8.50 (1H, d, J 8.3, Ar H), 7.73 (1H, d, J 7.6,
Ar H), 7.63 (2H, d, J 8.8, Ar H), 7.51 (1H, dd, J 7.6, 7.6, Ar H), 7.09 (1H, dd, J 7.4, 7.4, Ar H), 6.93 (2H, d, J
8.8, Ar H), 3.74 (4H, dd, J 3.9, 3.9, CH2), 3.06 (4H, dd, J 3.6, 3.6, CH2), 2.81 (3H, d, J 4.2, CH3); δC(125 MHz;
DMSO-d6) 168.5 (s), 155.0 (s), 147.3 (s), 147.1 (s), 146.1 (s), 139.1 (s), 131.7 (d), 130.9 (s), 128.1 (d), 121.3 (d),
120.8 (d), 120.4 (s), 117.9 (d), 115.3 (d), 66.0 (t), 48.8 (t), 26.1 (q); m/z (ESI+) 439 (MH+, 100%); HRMS found
for MH+ 439.15424, C21H23N6O3S requires 439.15469.

2-({5-[(3-Hydroxy-4-methylphenyl)amino]-4-oxo-4H-1,2,6-thiadiazin-3-yl}amino)benzamide (10). Similar
treatment of 3-chloro-5-[(3-hydroxy-4-methylphenyl)amino]-4H-1,2,6-thiadiazin-4-one (7) (53.9 mg,
0.200 mmol) with 2-aminobenzamide (30.0 mg, 0.220 mmol) after 3 h gave after filtration of the reaction
mixture and washing with H2O (5 mL) and EtOH (5 mL) the title compound 10 (67.6 mg, 91%) as
orange needles, m.p. 290 ◦C (decomp., from EtOH/THF); Rf 0.44 (DCM/Et2O, 90:10); (found: C, 55.42;
H, 4.16; N, 18.77. C17H15N5O3S requires C, 55.28; H, 4.09; N, 18.96%); λmax(EtOH)/nm 232 (log ε 4.14),
262 inf (3.94), 326 inf (4.42), 352 (4.59), 453 (3.85); υmax/cm−1 3411 br, 1643 m, 1582 s, 1530 s, 1518 s,
1510 s, 1503 s, 1452 m, 1400 m, 1310 m, 1231 m, 1177 m, 1124 m, 999 w, 833 w, 750 m; δH(500 MHz;
DMSO-d6) 12.36 (1H, s, NH), 9.45 (1H, s, OH), 8.56 (1H, d, J 8.4, Ar H), 8.21 (1H, br s, NH), 7.83 (1H, d,
J 7.9, Ar H), 7.67 (1H, br s, NH), 7.51 (1H, dd, J 7.7, 7.7, Ar H), 7.39 (1H, d, J 1.7, Ar H), 7.09-7.05 (2H, m,
Ar H), 6.97 (1H, d, J 8.1, Ar H), 2.07 (3H, s, CH3), one NH resonance missing; δC(125 MHz; DMSO-d6)
170.6 (s), 155.1 (s), 155.0 (s), 147.2 (s), 146.4 (s), 139.8 (s), 137.3 (s), 132.0 (d), 130.1 (d), 128.8 (d), 121.1 (d),
119.3 (s), 118.5 (s), 117.8 (d), 110.5 (d), 106.1 (d), 15.4 (q); m/z (ESI+) 370 (MH+, 100%), 369 (M+, 25);
HRMS found for MH+ 370.09656, C17H16N5O3S requires 370.09684.

3-{[4-(1H-Imidazol-2-yl)phenyl]amino}-5-[(3-hydroxy-4-methylphenyl)amino]-4H-1,2,6-thiadiazin-4-one (11).
Similar treatment of 5-chloro-3-{[4-(1H-imidazol-2-yl)phenyl]amino}-4H-1,2,6-thiadiazin-4-one (21)
(61.1 mg, 0.200 mmol) with 5-amino-2-methylphenol (27.1 mg, 0.220 mmol) after 18 h gave after
filtration of the reaction mixture and washing with H2O (5 mL) and EtOH (5 mL) the title compound 11
(63.0 mg, 80%) as orange plates, m.p. > 300 ◦C (from EtOH/THF); Rf 0.62 (DCM/THF, 50:50); (found:
C, 58.19; H, 4.31; N, 21.26. C19H16N6O2S requires C, 58.15; H, 4.11; N, 21.42%); λmax(THF)/nm 351
(log ε 4.50), 456 (3.56); υmax/cm−1 3358 w, 3314 w, 3167 w, 1593 m, 1579 m, 1526 m, 1508 m, 1504 s,
1445 m, 1422 m, 1319 m, 1248 m, 1231 w, 1126 w, 1101 w, 1049 w, 947 w, 926 w, 887 w, 858 w, 829 m,
814 w, 772 w, 760 w, 708 m; δH(300 MHz; DMSO-d6) 12.36 (1H, s, NH), 9.65 (1H, s, NH), 9.36 (1H, s,
NH), 9.28 (1H, s, OH), 7.87 (4H, s, Ar H), 7.40 (1H, d, J 1.9, Ar H), 7.21 (1H, s, Ar H), 7.05 (1H, dd,
J 8.1, 1.9, Ar H), 6.98 (2H, d, J 7.7, Ar H), 2.08 (3H, s, CH3); δC(75 MHz; DMSO-d6) 155.1 (s), 154.7 (s),
147.1 (s), 146.8 (s), 145.5 (s), 138.7 (s), 137.3 (s), 130.1 (d), 128.6 (d), 125.3 (s), 125.0 (d), 119.1 (d), 118.4 (s),
117.1 (d), 110.6 (d), 106.1 (d), 15.4 (q); m/z (ESI+) 393 (MH+, 100%); HRMS found for MH+ 393.11204,
C19H17N6O2S requires 393.11282.

4-({5-[(3-Hydroxy-4-methylphenyl)amino]-4-oxo-4H-1,2,6-thiadiazin-3-yl}amino)benzoic acid (12). Similar
treatment of 3-chloro-5-[(3-hydroxy-4-methylphenyl)amino]-4H-1,2,6-thiadiazin-4-one (7) (53.9 mg,
0.200 mmol) with 4-aminobenzoic acid (30.2 mg, 0.220 mmol) after 30 min gave after filtration of the
reaction mixture and washing with H2O (5 mL) and EtOH (5 mL) the title compound 12 (26.8 mg,
36%) as orange needles, m.p. > 300 ◦C (from dioxane); Rf 0.56 (DCM/Et2O, 90:10); (found: C, 54.98; H,
3.90; N, 15.16. C17H14N4O4S requires C, 55.13; H, 3.81; N, 15.13%); λmax(MeOH)/nm 212 (log ε 4.35),
235 (4.04), 269 (3.75), 349 (4.55), 447 (3.68); υmax/cm−1 3362 w, 3327 w, 2924 w, 1591 s, 1547 s, 1530 s,
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1414 m, 1479 m, 1421 m, 1391 s, 1385 s, 1315 m, 1248 m, 1229 m, 1206 m, 1179 m, 1152 s, 1128 m, 1111 m,
1001 w, 860 w, 837 w, 822 w, 785 m, 752w , 737 w, 710 w; δH(500 MHz; DMSO-d6) 10.25 (1H, br, CO2H),
9.46 (1H, s, NH), 9.25 (1H, s, OH), 7.83 (2H, d, J 8.0, Ar H), 7.66 (2H, d, J 8.1, Ar H), 7.16 (1H, s, Ar H),
6.95 (2H, s, Ar H), 2.08 (3H, s, CH3), one NH resonance missing; δC(125 MHz; DMSO-d6) 168.5 (s),
155.7 (s), 154.5 (s), 146.9 (s), 146.7 (s), 138.9 (s), 137.3 (s), 135.9 (s), 129.9 (d), 129.4 (d), 118.4 (s), 117.9 (d),
110.1 (d), 106.1 (d), 15.6 (q); m/z (ESI+) 371 (MH+, 17%), 370 (M+, 100); HRMS found for M+ 370.07236,
C17H14N4O4S requires 370.07358.

2-({5-[(3-Hydroxy-4-methylphenyl)amino]-4-oxo-4H-1,2,6-thiadiazin-3-yl}amino)benzonitrile (13). Similar
treatment of 3-chloro-5-[(3-hydroxy-4-methylphenyl)amino]-4H-1,2,6-thiadiazin-4-one (7) (53.9 mg,
0.200 mmol) with 2-aminobenzonitrile (26.0 mg, 0.220 mmol) after 4 h gave after chromatography
(DCM/Et2O, 90:10) the title compound 13 (57.9 mg, 82%) as orange needles, m.p. 229–230 ◦C (from
benzene/MeCN); Rf 0.67 (DCM/Et2O, 90:10); (found: C, 58.09; H, 3.57; N, 19.82. C17H13N5O2S requires
C, 58.11; H, 3.73; N, 19.93%); λmax(DCM)/nm 264 (log ε 3.90), 332 inf (4.36), 345 (4.53), 443 (3.82);
υmax/cm−1 3383 br, 3341 w, 2218 w (C≡N), 1587 s, 1562 s, 1557 s, 1503 m, 1454 w, 1427 m, 1365 w,
1312 m, 1263 m, 1238 m, 1211 m, 1196 m, 1153 s, 112 3s, 999 m, 972 m, 874 m, 862 m, 853 m, 802 m, 727 m;
δH(300 MHz; DMSO-d6) 9.53 (1H, s, NH), 9.51 (1H, s, NH), 9.28 (1H, s, OH), 7.99 (1H, d, J 8.3, Ar H), 7.84
(1H, dd, J 7.8, 1.4, Ar H), 7.71 (1H, ddd, J 7.6, 7.6, 1.5, Ar H), 7.37 (1H, d, J 2.0, Ar H), 6.98 (1H, d, J 8.2,
Ar H), 2.08 (3H, s, CH3); δC(75 MHz; DMSO-d6) 155.1 (s), 154.5 (s), 147.5 (s), 146.7 (s), 140.8 (s), 137.1 (s),
134.0 (d), 133.0 (d), 130.1 (d), 124.2 (d), 122.1 (d), 118.7 (s), 116.8 (s), 110.8 (d), 106.4 (d), 104.9 (s), 15.4 (q);
m/z (ESI+) 352 (MH+, 100%); HRMS found for MH+ 352.08600, C17H14N5O2S requires 352.08627.

3-({5-[(3-Hydroxy-4-methylphenyl)amino]-4-oxo-4H-1,2,6-thiadiazin-3-yl}amino)benzonitrile (14). Similar
treatment of 3-chloro-5-[(3-hydroxy-4-methylphenyl)amino]-4H-1,2,6-thiadiazin-4-one (7) (53.9 mg,
0.200 mmol) with 3-aminobenzonitrile (26.0 mg, 0.220 mmol) after 1 h gave after chromatography
(DCM/Et2O, 90:10) the title compound 14 (65.8 mg, 94%) as yellow needles, m.p. 258–259 ◦C (from
EtOH/THF); Rf 0.61 (DCM/Et2O, 90:10); (found: C, 58.05; H, 3.71; N, 19.85. C17H13N5O2S requires C,
58.11; H, 3.73; N, 19.93%); λmax(THF)/nm 281 (log ε 4.09), 341 (4.76), 447 (3.09); υmax/cm−1 3345 w,
2237 w (C≡N), 1578 m, 1574 m, 1535 s, 1510 s, 1505 s, 1487 m, 1476 m, 1325 m, 1312 m, 1296 m, 1244 m,
1165 m, 1123 m, 999 m, 858 m, 789 m; δH(300 MHz; DMSO-d6) 9.90 (1H, s, NH), 9.40 (1H, s, NH),
9.28 (1H, s, OH), 8.25 (1H, s, Ar H), 8.13 (1H, d, J 8.1, Ar H), 7.53 (1H, dd, J 7.8, 7.8, Ar H), 7.46 (1H, d,
J 7.6, Ar H), 7.39 (1H, d, J 1.9, Ar H), 7.05 (1H, dd, J 8.2, 1.9, Ar H), 6.98 (1H, d, J 8.3, Ar H), 2.08 (3H, s,
CH3); δC(75 MHz; DMSO-d6) 155.1 (s), 154.7 (s), 147.4 (s), 146.4 (s), 140.0 (s), 137.1 (s), 130.1 (d), 129.9 (d),
125.7 (d), 123.8 (d), 121.6 (d), 118.8 (s), 118.6 (s), 111.3 (s), 110.7 (d), 106.3 (d), 15.4 (q); m/z (ESI+) 352
(MH+, 100%), 351 (M+, 27); HRMS found for MH+ 352.08583, C17H14N5O2S requires 352.08627.

4-({5-[(3-Hydroxy-4-methylphenyl)amino]-4-oxo-4H-1,2,6-thiadiazin-3-yl}amino)benzonitrile (15). Similar
treatment of 3-chloro-5-[(3-hydroxy-4-methylphenyl)amino]-4H-1,2,6-thiadiazin-4-one (7) (53.9 mg,
0.200 mmol) with 4-aminobenzonitrile (26.0 mg, 0.220 mmol) after 1 h gave after chromatography
(DCM/Et2O, 90:10) the title compound 15 (61.5 mg, 88%) as yellow needles, m.p. 280 ◦C (decomp.,
from EtOH/THF); Rf 0.61 (DCM/Et2O, 90:10); (found: C, 58.00; H, 3.62; N, 19.85. C17H13N5O2S
requires C, 58.11; H, 3.73; N, 19.93%); λmax(THF)/nm 355 (log ε 4.46), 445 (3.65); υmax/cm−1 3366 w,
3323 w, 2974 w, 2220 w (C≡N), 1620 w, 1614 w, 1601 m, 1580 m, 1535 m, 1531 m, 1518 s, 1510 s,
1487 m, 1414 m, 1325 m, 1248 w, 1231 w, 1177 m, 1123 m, 1092 w, 1049 m, 999 m, 964 w, 910 w, 853 w,
837 m, 797 m, 729 w; δH(500 MHz; DMSO-d6) 10.02 (1H, s, NH), 9.44 (1H, s, NH), 9.30 (1H, s, OH),
8.02 (1H, d, J 8.9, Ar H), 7.76 (1H, d, J 8.9, Ar H), 7.38 (1H, d, J 2.1, Ar H), 7.05 (1H, dd, J 8.1, 2.1, Ar H),
6.98 (1H, d, J 8.3, Ar H), 2.08 (3H, s, CH3); δC(125 MHz; DMSO-d6) 155.1 (s), 154.9 (s), 147.8 (s), 146.1 (s),
143.5 (s), 137.1 (s), 132.9 (d), 130.2 (d), 119.3 (s), 118.77 (d), 118.72 (s), 110.8 (d), 106.4 (d), 103.5 (s),
15.5 (q); m/z (ESI+) 352 (MH+, 100%), 351 (M+, 56); HRMS found for MH+ 352.08593, C17H14N5O2S
requires 352.08627.
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4-({5-[(3-Hydroxy-4-methylphenyl)amino]-4-oxo-4H-1,2,6-thiadiazin-3-yl}(oxazol-4-ylmethyl)amino)-benzamide
(16). Similar treatment of 3-chloro-5-[(3-hydroxy-4-methylphenyl)amino]-4H-1,2,6-thiadiazin-4-one
(7) (53.9 mg, 0.200 mmol) with 4-[(oxazol-4-ylmethyl)amino]benzamide (20) (47.3 mg, 0.220 mmol)
after 3 h gave after chromatography (DCM/t-BuOMe, 50:50) the title compound 16 (66.9 mg, 74%) as
yellow needles, m.p. 235–237 ◦C (from EtOH/THF); Rf 0.43 (DCM/t-BuOMe, 90:10); (found: C, 56.12;
H, 3.97; N, 18.59. C21H18N6O4S requires C, 55.99; H, 4.03; N, 18.66%); λmax(THF)/nm 312 inf (log ε

4.54), 347 (4.81), 422 (4.01); υmax/cm−1 3404 w, 3377 w, 3358 w, 3120 w, 1678 m, 1593 s, 1547 m, 1524 m,
1479 s, 1470 s, 1422 m, 1342 m, 1269 m, 1238 m, 1182 m, 1177 m, 1124 m, 1113 m, 1059 m, 1051 m,
997 m, 984 m, 920 m, 848 m, 831 m, 826 m, 761 m, 756 m; δH(300 MHz; DMSO-d6) 10.03 (1H, s, NH),
9.69 (1H, s, NH), 9.33 (1H, s, OH), 8.34 (1H, d, J 0.8, NH), 8.01 (1H, d, J 0.8, NH), 7.71 (1H, d, J 8.8,
Ar H), 7.37 (1H, d, J 1.9, Ar H), 7.06 (1H, dd, J 8.2, 2.0, Ar H), 7.00 (1H, d, J 8.3, Ar H), 6.92 (1H, dd, J 5.8,
5.8, Ar H), 6.72 (1H, d, J 8.8, Ar H), 4.25 (2H, d, J 5.7, CH2), 2.08 (3H, s, CH3); δC(75 MHz; DMSO-d6)
163.7 (s), 155.4 (s), 155.1 (s), 152.1 (s), 151.9 (s), 149.9 (s), 145.0 (s), 137.4 (s), 136.6 (s), 136.1 (d), 130.1 (d),
129.4 (d), 119.8 (s), 119.3 (s), 111.3 (d), 106.9 (d), 38.2 (t), 15.5 (q), one C (d) resonance missing; m/z
(ESI+) 451 (MH+, 100%); HRMS found for MH+ 451.11757, C21H19N6O4S requires 451.11830.

3-[(3-Hydroxy-4-methylphenyl)amino]-5-{[2-(hydroxymethyl)phenyl]amino}-4H-1,2,6-thiadiazin-4-one (17).
Similar treatment of 3-chloro-5-[(3-hydroxy-4-methylphenyl)amino]-4H-1,2,6-thiadiazin-4-one (7)
(53.9 mg, 0.200 mol) with (2-aminophenyl)methanol (27.1 mg, 0.220 mol) after 7 h gave after filtration
of the reaction mixture and washing with H2O (5 mL) and EtOH (5 mL) the title compound 17 (46.1 mg,
65%) as orange needles, m.p. 242–243 ◦C (from EtOH/THF); Rf 0.29 (DCM/t-BuOMe, 90:10); (found:
C, 57.17; H, 4.59; N, 15.82. C17H16N4O3S requires C, 57.29; H, 4.53; N, 15.72%); λmax(THF)/nm 265
(log ε 4.03), 323 (4.71), 334 inf (4.62), 441 (3.89); υmax/cm−1 3453 w, 3370 w, 3319 w, 3312 w, 2907 w,
1601 w, 1589 m, 1568 m, 1535 m, 1530 m, 1526 m, 1497 s, 1460 m, 1454 m, 1422 m, 1416 m, 1310 m,
1252 m, 1231 w, 1213 w, 1202 w, 1186 w, 1175 w, 1132 w, 1003 m, 934 w, 844 m, 806 m, 748s; δH(300 MHz;
DMSO-d6) 9.94 (1H, s, NH), 9.38 (1H, s, NH), 9.28 (1H, s, OH), 8.08 (1H, d, J 7.8, Ar H), 7.39–7.29 (3H,
m, Ar H), 7.06–6.96 (3H, m, Ar H), 5.72 (1H, s, OH), 4.60 (2H, s, CH2), 2.08 (3H, s, CH3); δC(75 MHz;
DMSO-d6) 155.1 (s), 154.7 (s), 146.9 (s), 146.8 (s), 137.6 (s), 137.3 (s), 130.9 (s), 130.1 (d), 128.4 (d),
127.7 (d), 122.7 (d), 119.5 (d), 118.4 (s), 110.5 (d), 106.0 (d), 62.3 (t), 15.4 (q); m/z (ESI+) 357 (MH+, 98%),
356 (M+, 100); HRMS found for MH+ 357.10121, C17H17N4O3S requires 357.10159.

3-[(3-Hydroxy-4-methylphenyl)amino]-5-{[2-(hydroxymethyl)-3-(trifluoromethyl)phenyl]amino}-4H-1,2,6-
thiadiazin-4-one (18). Similar treatment of 3-chloro-5-[(3-hydroxy-4-methylphenyl)amino]-4H-1,2,6-
thiadiazin-4-one (7) (53.9 mg, 0.200 mol) with [2-amino-6-(trifluoromethyl)phenyl]methanol (42.1 mg,
0.220 mol) after 4 h gave after filtration of the reaction mixture and washing with H2O (5 mL)
and EtOH (5 mL) the title compound 18 (55.5 mg, 65%) as orange needles, m.p. 241–242 ◦C (from
EtOH/c-hexane); Rf 0.60 (DCM/t-BuOMe, 80:20); (found: C, 51.23; H, 3.17; N, 13.26. C18H15F3N4O3S
requires C, 50.94; H, 3.56; N, 13.20%); λmax(THF)/nm 278 (log ε 4.31), 284 (4.30), 340 (4.96), 351 inf
(4.89), 447 (4.16); υmax/ cm−1 3537 w, 3366 w, 3171 w, 1582 m, 1541 m, 1537 s, 1508 m, 1504 s, 1483 m,
1443 m, 1323 m, 1306 m, 1287 m, 1273 w, 1175 m, 1134 m, 1123 m, 1107 m, 1092 m, 1013 w, 997 m,
978 w, 851 w, 789 m; δH(500 MHz; DMSO-d6) 10.20 (1H, s, NH), 9.43 (1H, s, NH), 9.28 (1H, s, OH),
8.38 (1H, d, J 8.2, Ar H), 7.54 (1H, dd, J 8.0, 8.0, Ar H), 7.43 (1H, d, J 7.8, Ar H), 7.37 (1H, d, J 2.1, Ar
H), 7.05 (1H, dd, J 8.1, 2.1, Ar H), 6.98 (1H, d, J 8.3, Ar H), 6.07 (1H, dd, J 4.5, 4.5, Ar H), 4.71 (2H, d,
J 3.9, CH2), 2.08 (3H, s, CH3); δC(125 MHz; DMSO-d6) 155.1 (s), 154.7 (s), 147.1 (s), 146.7 (s), 140.2 (s),
137.2 (s), 130.2 (d), 128.5 (s), 128.2 (d), 127.2 (q, 2JCF 30.1), 124.1 (q, 1JCF 274.2), 123.8 (d), 119.4 (q, 3JCF

5.8), 118.6 (s), 110.6 (d), 106.2 (d), 56.9 (t), 15.5 (q); δF(282 MHz; DMSO-d6) -56.5 (s, CF3); m/z (ESI+) 425
(MH+, 100%), 424 (M+, 9); HRMS found for MH+ 425.08829, C18H16F3N4O3S requires 425.08897.

2-Cyclopentyl-4-{5-[(3-hydroxy-4-methylphenyl)amino]-4-oxo-4H-1,2,6-thiadiazin-3-yl}-benzoic acid (19).
A stirred mixture of 3-chloro-5-[(3-hydroxy-4-methylphenyl)amino]-4H-1,2,6-thiadiazin-4-one (7)
(53.9 mg, 0.200 mol), 4-borono-2-cyclopentylbenzoic acid (24) (51.5 mg, 0.220 mol), Na2CO3 (21.2 mg,
0.200 mol) and Pd(Ph3P)4 (11.6 mg, 0.0100 mol, 5 mol %), in dioxane/H2O 5:3 (0.8 mL) was deaerated by
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bubbling of Ar through it for 5 min and then heated to ca. 100 ◦C under Ar until complete consumption
of the starting thiadiazine (TLC, 3 h). The mixture was then cooled to ca. 20 ◦C, diluted with DCM
(10 mL) and extracted with saturated Na2CO3 (2 × 10 mL). The combined aqueous phase was then
acidified with 2 M HCl to a pH of 3 and then extracted with DCM (3 × 10 mL), the organic phase dried
(Na2SO4), filtered and evaporated under reduced pressure to give the title compound 19 (72.9 mg,
86%) as yellow plates, m.p. 277–278 ◦C (from c-hexane); Rf 0.40 (DCM/t-BuOMe, 80:20); (found: C,
62.67; H, 4.91; N, 9.85. C22H21N3O4S requires C, 62.40; H, 5.00; N, 9.92%); λmax(THF)/nm 278 (log ε

4.02), 358 (4.37), 422 inf (3.92); υmax/ cm−1 3455 w, 3321 w, 2955 w, 2866 w, 1694 m, 1620 m, 1595 m,
1547 s, 1422 m, 1310 m, 1267 m, 1234 w, 1175 m, 1119 m, 999 w, 941 w, 901 w, 858 w, 804 w, 797 w, 733 w;
δH(500 MHz; DMSO-d6) 13.04 (1H, br, COOH), 10.00 (1H, s, NH), 9.38 (1H, s, OH), 8.23 (1H, dd, J 1.5,
Ar H), 7.87 (1H, dd, J 8.2, 1.6, Ar H), 7.72 (1H, d, J 8.2, Ar H), 7.41 (1H, d, J 2.0, Ar H), 7.11 (1H, dd,
J 8.1, 2.1, Ar H), 7.01 (1H, d, J 8.2, Ar H), 3.81–3.76 (1H, m, CH), 2.09 (3H, s, CH3), 2.08-2.04 (2H, m,
CH2), 1.76–1.82 (2H, m, CH2), 1.70–1.61 (2H, m, CH2), 1.60–1.52 (2H, m, CH2); δC(75 MHz; DMSO-d6)
169.2 (s), 159.6 (s), 155.1 (s), 152.2 (s), 150.4 (s), 145.4 (s), 137.6 (s), 136.4 (s), 132.4 (s), 130.2 (d), 128.8 (d),
126.5 (d), 125.0 (d), 119.8 (s), 111.7 (d), 107.3 (d), 41.0 (d), 34.4 (t), 35.2 (t), 15.5 (q); m/z (ESI+) 424 (MH+,
100%), 423 (M+, 4); HRMS found for MH+ 424.13167, C22H22N3O4S requires 424.13255.

Supplementary Materials: The following are available online, Figure S1: Design of TDZs 1–5, Table S1: DSF
kinome selectivity panel, Table S2: X-ray crystallography data, Figure S2: Validation of modelling docking poses
showing the same hinge contacts as standard 2,4-dianilinopyrimidines, Figure S3 and S4: CaMKK2 FRET results
for advanced thiadiazinone analogues, Table S3: CaMKK2 Enzyme assay raw data results for TDZs 10–12 and
STO-609, 1H and 13C-NMR spectra of all new compounds.
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