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Abstract: Arterial hypertension is one of the main risk factors in the development of cardiovascular
diseases. Therefore, it is important to look for new drugs to treat hypertension. In this study,
we carried out the screening of 19 compounds (triterpenes, diterpenes, sesquiterpenes, lignans,
and flavonoids) isolated from 10 plants used in Mexican traditional medicine to determine
whether they elicited vascular smooth muscle relaxation and, therefore, could represent novel
anti-hypertension drug candidates. The vasorelaxant activity of these compounds was evaluated
on the isolated rat aorta assay and the results obtained from this evaluation showed that three
compounds induced a significant vasodilatory effect: meso-dihydroguaiaretic acid [half maximal
effective concentration (EC50), 49.9 ± 11.2 µM; maximum effect (Emax), 99.8 ± 2.7%]; corosolic
acid (EC50, 108.9 ± 6.7 µM; Emax, 96.4 ± 4.2%); and 5,8,4′-trihydroxy-3,7-dimethoxyflavone
(EC50, 122.3 ± 7.6 µM; Emax, 99.5 ± 5.4%). Subsequently, involvement of the NO/cyclic
guanosine monophosphate (cGMP) and H2S/ATP-sensitive potassium channel (KATP) pathways
on the vasodilator activity of these compounds was assessed. The results derived from this
analysis showed that the activation of both pathways contributes to the vasorelaxant effect of
corosolic acid. On the other hand, the vasodilator effect of meso-dihydroguaiaretic acid and
5,8,4′-trihydroxy-3,7-dimethoxyflavone, partly involves stimulation of the NO/cGMP pathway.
However, these compounds also showed an important endothelium-independent vasorelaxant effect,
whose mechanism of action remains to be clarified. This study indicates that meso-dihydroguaiaretic
acid, corosolic acid, and 5,8,4′-trihydroxy-3,7-dimethoxyflavone could be used as lead compounds for
the synthesis of new derivatives with a higher potency to be developed as drugs for the prevention
and treatment of cardiovascular diseases.

Keywords: corosolic acid; 5,8,4′-trihydroxy-3,7-dimethoxyflavone; meso-dihydroguaiaretic acid
hydrogen sulfide; nitric oxide; vasorelaxation

1. Introduction

Arterial hypertension is considered a major risk factor in the development of several
cardiovascular diseases, such as myocardial infarction and stroke [1–3], which together were
responsible for 15 million deaths in 2015 [4]. Although several drugs are currently used in the treatment
of high blood pressure, less than a third of the hypertension cases are successfully treated [5–8].

It has been broadly demonstrated that endothelial dysfunction, characterized by a diminished
availability of endothelial relaxing factors, significantly contributes to the development of hypertension
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and thus, other cardiovascular diseases [9–11]. Particularly, reduced release of the gasotransmitters
NO and H2S results in an impaired regulation of the vascular tone [12–14]. Therefore, the NO/cyclic
guanosine monophosphate (cGMP) and H2S/ATP-sensitive potassium channel (KATP) pathways are
valuable targets for innovative treatments in hypertension [12–14].

In Mexico, plants are an important element of traditional medicine, and many of them are
considered part of Mexican cultural heritage from prehispanic and colonial times [15,16]. Nevertheless,
relatively few systematic scientific studies have been conducted to fully characterize the chemical
composition and pharmacological activities of Mexican medicinal plants.

In the present study, we carried out a pharmacological screening of 19 secondary metabolites
isolated from 10 plants used in Mexican traditional medicine in order to detect leads that could
be developed as potential drug candidates to treat hypertension. The plant sources of the tested
compouds were: Amphipterygium adstringens (Schltdl.) Standl. (cuachalalate), Celaenodendron mexicanum
Standl. (palo prieto), Crataegus gracilior J.B. Phipps (tejocote), Croton alamosanus Rose (vara blanca),
Croton glabellus L. (cascarillo), Galphimia glauca Cav. (árnica roja), Jatropha neopauciflora Pax (sangre
de grado), Larrea tridentata (Sessé and Moc. ex DC.) Coville (gobernadora), Perezia adnata A. Gray
(pipitzáhuac), and Teloxys graveolens (epazote de zorrillo). These plants are widely used in Mexican
traditional medicine to treat several illnesses, such as gastric ulcers, stomach ache, gastroenteritis,
diarrhea, dysentery, sores and infections of the oral cavity, skin ulcers [17–21], renal disorders and
kidney stones (Larrea tridentata) [17], cough, asthma, tachycardia and to improve coronary blood flow
(Crataegus gracilior) [20,22], and cancer (Croton alamosanus) [23].

The compounds evaluated were previously purified by our research group and our
collaborators [18,19,24–26] and include: (a) triterpenes: 3-α-hydroxymasticadienonic acid (1),
3α-hydroxytirucalla-7,22Z-dien-26-oic acid (2), corosolic acid (3), galphin A (4), galphin B (5),
galphimidin (6), and 3β-trans-p-coumaroyl-oxy-16-β-hydroxy-20(29)-lupene (7); (b) sterols: β-sitosteryl
β-D-glucopyranoside (8); (c) diterpenes: (3R,4R,6S)-p-menth-1-eno-3,6-diol (9), 6,7-diacetylaustro
inulin (10), and 6-O-acetylaustro inulin (11); (d) sesquiterpenes: perezone (12), and pipitzol (13);
(e) lignans: 3′-demethoxy-6-O-demethyl-isoguaiacin (14) and meso-dihydroguaiaretic acid (15); and
(f) flavonoids: 5,4′-dihydroxy-3,7,8-trimethoxyflavone (16), 5-hydroxy-3,7,4′-trimethoxyflavone (17),
5,8,4′-trihydroxy-3,7-dimethoxyflavone (18), and pinostrobin (19) (Figure 1). Although it has been
previously demonstrated that some of these compounds possess biological activities, such as antibacterial
and antifungal [21,25,27], antiprotozoal [18,24,28,29], anti-inflammatory [30], anti-diabetic [31,32], and
anticancer [23], at present, there are no studies aimed at assessing their vasodilatory activity.

In the first phase of this study, we assessed whether the selected compounds elicited vascular smooth
muscle relaxation in the isolated rat aorta. Thereafter, the most potent vasodilator compounds, which also
displayed the highest maximum effects [maximum effect (Emax) ≥ 96%], were evaluated to determine if
the NO/cGMP and H2S/KATP channel pathways were involved in their mechanism of action.
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Figure 1. Chemical structures of studied compounds.

2. Results

The results from the pharmacological evaluation of the selected compounds indicated that
3-α-hydroxymasticadienonic acid (1), corosolic acid (3), galphimidin (6), meso-dihydroguaiaretic
acid (15), 5,8,4′-trihydroxy-3,7-dimethoxyflavone (18), and pinostrobin (19) elicited a significant
vasodilation. All these six secondary metabolites exhibited a maximum vasodilator effect up to
96%, which was higher than that of Acetylcholine (ACh), used as the positive control (Table 1).
meso-Dihydroguaiaretic acid (15) exhibited a comparable potency to that of Ach, while corosolic acid
(3) and 5,8,4′-trihydroxy-3,7-dimethoxyflavone (18) turned out to be approximately two-fold less
potent than the positive control (Figure 2 and Table 1). Based on these results, involvement of the
NO/cGMP and H2S/KATP channel pathways in the mechanisms underlying the vasorelaxant action of
meso-dihydroguaiaretic acid (15) and 5,8,4′-trihydroxy-3,7-dimethoxyflavone (18), both isolated from
Larrea tridentata, and corosolic acid (3) purified from Crataegus gracilior, was analyzed.
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Table 1. Values of half maximal effective concentration (EC50) and maximum effect (Emax) of positive
control (Acetilcholine, ACh) and test compounds.

Plant/Compound EC50 (µM) Emax (%)

acetilcholine (ACh) 58.8 ± 8.9 69.5 ± 5.7
Amphypterygium adstringens
3-α-hydroxymasticadienonic acid (1) 206.1 ± 11.6 98.2 ± 3.1
Celaenodendron mexicanum
3α-hydroxytirucalla-7,22Z-dien-26-oic acid (2) 331.3 ± 42.1 99.5 ± 6.1
Crataegus gracilior
Corosolic acid (3) 108.9 ± 6.7 96.4 ± 4.2
Croton alamosanus
5-hydroxy-3,7,4′-trimethoxyflavone (17) 377.1 ± 37.1 80.5 ± 3.7
(3R,4R,6S)-p-menth-1-ene-3,6-diol (9) 1622.8 ± 73.8 99.5 ± 8.3
Croton glabellus
6-O-acetylaustro inulin (10) 413.5 ± 22.4 47.1 ± 2.8
6,7-diacetylaustro inulin (11) 261.0 ± 9.1 99.5 ± 3.8
Galphimia glauca
Galphin A (4) 592.3 ± 21.7 99.5 ± 9.1
Galphin B (5) 1030.7 ± 39.4 99.5 ± 23.2
Galphimidin (6) 145.9 ± 9.2 99.5 ± 5.3
Jatropha neopauciflora
3β-trans-p-coumaroyl-oxy-16-β-hydroxy-20(29)-lupene (7) 63.2 ± 5.8 27.5 ± 1.9
β-sitosteryl β-D-glucopyranoside (8) 314.7 ± 19.7 71.2 ± 5.3
Larrea tridentata
meso-dihydroguaiaretic acid (15) 49.9 ± 11.2 99.8 ± 2.7
5,4′-dihydroxy-3,7,8-trimethoxyflavone (16) 587.8 ± 33.4 80.5 ± 5.6
5,8,4′-trihydroxy-3,7-dimethoxyflavone (18) 122.3 ± 7.6 99.5 ± 5.4
3′-demethoxy-6-O-demethyl-isoguaiacin (14) 604.5 ± 60.1 91.70 ± 7.3
Perezia adnata
perezone (12) 524.5 ± 32.5 99.5 ± 2.2
pipitzol (13) 249.4 ± 10.2 59.8 ± 2.4
Teloxys graveolens
pinostrobin (19) 234.9 ± 9.9 99.5 ± 4.8
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2.1. Participation of the Endothelium in the Vasorelaxant Response of Compounds 3, 15, and 18

Figure 3 shows the concentration-response curves (CRCs) for corosolic acid (3), meso-
dihydroguaiaretic acid (15), and 5,8,4′-trihydroxy-3,7-dimethoxyflavone (18) in the presence and
absence of endothelium.
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Figure 3. Concentration-response curves of the vasodilator effect of (a) corosolic acid (3), (b)
meso-dihydroguaiaretic acid (15), and (c) 5,8,4′-trihydroxy-3,7-dimethoxyflavone (18) in the presence
and absence (E-) of endothelium. A typical trace in which meso-dihydroguaiaretic acid (15) inhibited
Phe-induced contraction in endothelium-intact (d), and -denuded aorta (e). Analysis by an unpaired
t-test was made to test for differences between EC50s of each compound in the presence and absence of
endothelium (3, p < 0.0001; 15, p < 0.0001; 18, p = 0.0093).

The vasorelaxation induced by corosolic acid (3) was almost completely blocked in the absence of
endothelium, which suggested that endothelial factors mediate its vasodilatory effect. On the other
hand, endothelial denudation caused a significant rightward shift of the CRC to meso-dihydroguaiaretic
acid (15) and 5,8,4′-trihydroxy-3,7-dimethoxyflavone (18), indicating the contribution of both
endothelium-independent and dependent pathways in their mechanism of action.

2.2. Participation of the NO/cGMP and H2S/KATP Channel Pathways in the Vasodilator Response of
Compounds 3, 15, and 18

The effect of NG-nitro-l-arginine methyl ester (L-NAME, 100 µM), an inhibitor of endothelial
nitric oxide synthase, on the vasorelaxation induced by compound 3 closely resembled that which
occurred in the absence of endothelium, clearly supporting that activation of the NO/cGMP pathway
importantly contributes to corosolic acid (3)-vasodilation. Regarding meso-dihydroguaiaretic acid
(15)-induced vasodilation, it was significantly reduced (p = 0.006), but not completely blocked, in the
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presence of L-NAME, indicating that the effect of this lignan partly depends on stimulation of the
NO/cGMP pathway. On the other hand, the inhibition of endothelial nitric oxide synthase (eNOS)
with L-NAME produced a slight rightward shift of the CRC of 5,8,4′-trihydroxy-3,7-dimethoxyflavone
(18) (p = 0.99) (Figure 4).
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Figure 4. Vasodilatory effect of (a) corosolic acid (3), (b) meso-dihydroguaiaretic acid (15), and
(c) 5,8,4′-trihydroxy-3,7-dimethoxyflavone (18) in the absence (control) and presence of L-NAME
(100 µM). Analysis by one-way analysis of variance (ANOVA) was made between the curves of each
compound in the absence and presence of NG-nitro-l-arginine methyl ester (L-NAME) followed by a
post hoc Tukey’s test (3, p < 0.0001; 15, p = 0.006; 18, p = 0.991).

To determine whether the H2S/KATP pathway participated in the vasodilatory effect of compounds
3, 15, and 18, the effect of propargylglycine (PAG; 1 mM), an inhibitor of cystathionine gamma-lyase
(CSE), was assessed. This inhibitor significantly decreased the maximum vasodilator effect of corosolic
acid (3) from ~97% to ~50%, which supported the idea that the H2S/KATP channel pathway is
also involved in the vasorelaxant mechanism of this compound. By contrast, the presence of PAG
did not significantly modify the CRCs of meso-dihydroguaiaretic acid (15) and 5,8,4′-trihydroxy-
3,7-dimethoxyflavone (18), discarding involvement of the H2S/KATP pathway in their effect (Figure 5).
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Figure 5. Vasodilatory effect of (a) corosolic acid (3), (b) meso-dihydroguaiaretic acid (15), and (c)
5,8,4′-trihydroxy-3,7-dimethoxyflavone (18) in the absence (control) and presence of propargylglycine
(PAG, 1 mM). Analysis by one-way ANOVA was made between the curves of each compound in
the absence and presence of PAG followed by a post hoc Tukey’s test (3, p = 0.001; 15, p = 0.803;
18, p = 0.102).
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2.3. Involvement of K+ Channels in the Vasodilation Evoked by Compounds 3, 15, and 18

To test whether the activation of K+ channels was implicated in the vasodilatory effect of
compounds 3, 15, and 18, tetraethylammonium (TEA) was used to block K+ channels. TEA
pre-treatment significantly reduced the corosolic acid (3)-vasorelaxant effect, without significantly
altering the CRCs of meso-dihydroguaiaretic acid (15) and 5,8,4′-trihydroxy-3,7-dimethoxyflavone (18)
(Figure 6).
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and (c) 5,8,4′-trihydroxy-3,7-dimethoxyflavone (18) in the absence (control) and presence of
tetraethylammonium (TEA, 10 mM). Analysis by one-way ANOVA was made between the curves of
each compound in the absence and presence of TEA followed by a post hoc Tukey’s test (3, p < 0.0001;
15, p = 0.868; 18, p = 0.429).

3. Discussion

In the present study, we carried out the pharmacological evaluation of 19 natural products, which
we had previously isolated from 10 plants widely used in Mexican traditional medicine, in the search
of leads that could be used to develop new therapeutic agents to treat cardiovascular diseases.

All compounds tested caused a concentration-related relaxation of L-phenylephrine-contracted
rat aortic rings. It is important to highlight that 3-α-hydroxymasticadienonic acid (1), corosolic
acid (3), galphimidin (6), meso-dihydroguaiaretic acid (15), 5,8,4′-trihydroxy-3,7-dimethoxyflavone
(18), and pinostrobin (19) exhibited a maximum vasodilator effect higher than that of acetylcholine.
Of these six compounds, the most potent were corosolic acid (3), meso-dihydroguaiaretic acid (15), and
5,8,4′-trihydroxy-3,7-dimethoxyflavone (18), which belong to structural classes of natural products
that have shown vasodilatory effects [33].

Considering that stimulation of the NO/cGMP and H2S/KATP pathways in endothelial cells
importantly contributes to vasorelaxation, we investigated whether the presence of endothelium
and activation of these biochemical pathways were involved in the vasorelaxant effect elicited by
compounds 3, 15, and 18.

Earlier studies have proved that naturally occurring lupane-, oleanane-, and ursane-type
triterpenes elicit vasodilator effects [34–38]. The vasodilation produced by the lupane-type
triterpene betulinic acid and the oleanane-type triterpenes moronic, morolic, and 3,4-seco-olean-18-
enen-3,28-dioic acids is endothelium-dependent [35]. While, according to different scientific groups,
the vasorelaxation evoked by oleanolic acid might be either nearly fully endothelium-dependent or
endothelium-dependent and independent [36,38], the cause of this discrepancy has been attributed to
the compound employed to pre-contract the vessels, phenylephrine [38] or norepinephrine [36].
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In the case of the present study, blockade of the vasodilator activity produced by corosolic
acid (3) in endothelium-denuded aortas provided evidence that the mechanism underlying this
triterpene-induced vasodilation was endothelium-dependent. Supporting this finding, the inhibition
of both eNOS and CSE significantly decreased corosolic acid-induced vasodilation, indicating
the participation of the NO/cGMP and the H2S/KATP pathways in its effect. These signaling
pathways activate different potassium channels, subsequently hyperpolarizing the vascular smooth
muscle cell membrane, leading to a decrease in the intracellular free calcium level, which finally
produces vasodilation [39–44]. In this study, we evaluated whether potassium channel blockers
impaired vasodilation provoked by compound 3. TEA significantly diminished corosolic acid-evoked
vasodilation, which confirmed the activation of signaling pathways for NO and H2S.

Corosolic acid (3) is an ursane-type triterpene, which has a similar structure to that of ursolic acid
but with an alpha OH group at position 2. Interestingly, our research group previously demonstrated
that ursolic acid and uvaol (the alcohol corresponding to ursolic acid) produce an endothelium
dependent vasorelaxation, which involves stimulation of the NO/cGMP and H2S/KATP pathways.
Molecular docking studies showed that both triterpenes are able to bind with high affinity to
endothelial NOS and CSE in allosteric binding sites located relatively far from the catalytic sites [34].
We found that corosolic acid (3) (EC50 = 108.9 ± 3.2 µM; Emax = 96.4 ± 4.2%) is approximately two fold
less potent than ursolic acid (EC50 = 47.1± 7.6 µM; Emax = 97.7± 3.9%) and uvaol (EC50 = 43.6± 5.6 µM;
Emax = 93.4 ± 5.1%) [34]. However, these three compounds exhibited a similar maximum vasodilator
effect. Considering the great structure resemblance between ursolic acid and corosolic acid (3), it is
very likely that this latter compound directly activates eNOS and CSE in a similar way to ursolic acid.
Both compounds bear a β-OH group at position 3 and an α-carboxyl group at position 28. According
to the molecular docking studies of ursolic acid, 3 β-OH forms hydrogen bonds with Asp 480 in eNOS
and His 99 in CSE. Whereas, 28 α-carboxyl forms a hydrogen bond with His373 and an electrostatic
interaction with Arg367 in eNOS [34]. All these interactions are key in stabilizing protein-ligand
binding. It is quite possible that these same types of interactions are established between corosolic acid
(3) and its enzymatic targets.

In a recent study, Waldbauer et al. carried out a bioassay-guided fractionation of the methanol/
water (70:30) extract form apple pomace, employing the 14C-L-arginine to 14C-L-citrulline conversion
assay, in a human endothelium cell line, to monitor eNOS activity. Eleven triterpenoid acids, including
ursolic and corosolic acids, were isolated from the most active fractions. None of the individual
triterpenes increased eNOS activity, but the reconstituted compound mixture did significantly stimulate
eNOS [45]. It is important to mention that the range of concentrations of ursolic (1 to 7.5 µM) and
corosolic (1 to 15 µM) acids employed to test the activation of eNOS in endothelial cells was lower
than in the current study (2.1 µM to 2.1 mM), which may be the reason why Waldbauer et al. did not
observe any effect on eNOS.

Several studies have been reported about the biological activities elicited by corosolic acid (3),
including anti-inflammatory [30], anti-obesity [46], antitumoral [47], and antidiabetic effects [31,32].
However, its action on vascular smooth muscle has not so far been investigated. Yamaguchi et al. (2006)
reported that corosolic acid (0.072%), administered in a high fat diet during 14 weeks, lowered blood
pressure in male spontaneously hypertensive corpulent rat (SHR-cp) rats, an animal model of metabolic
syndrome [48], but the molecular mechanism underlying the hypotensive effect of this triterpene
was not clarified. Corosolic acid-induced vasodilator activity may account for the anti-hypertensive
properties observed in the SHR-cp rats.

Although NO and H2S independently elicit a smooth muscle relaxation, there is growing evidence
that interaction between the NO/cGMP and H2S/KATP pathways leads to an enhancement of the
vasorelaxant effect [49], through various mechanisms, which include: stimulation of eNOS activity,
stabilization of soluble guanylate cyclase, inhibition of phosphodiesterases, activation of protein
kinases [12,49,50], and generation of nitroxyl (HNO), a potent vasodilator [51–53]. Since corosolic acid
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(3) activates both pathways, it might be considered a valuable lead compound for the development of
new drugs useful for the treatment of cardiovascular diseases related to endothelial dysfunction.

Regarding meso-dihydroguaiaretic acid (15), a variety of biological activities, such as
antioxidant [54], anti-inflammatory [55], cytotoxic, and antineoplasic [56,57] effects, have been ascribed
to this compound. Concerning the cardiovascular system, it has been documented that this lignan is a
moderate platelet-activating factor (PAF) antagonist [58] and an inhibitor of vascular smooth muscle
cell proliferation [59]. The present study provides heretofore unknown evidence that compound
15 is capable of inducing vasodilation, via mechanisms that involve endothelium-dependent and
independent pathways. The endothelium-dependent component is mainly produced by activation of
the NO/cGMP pathway.

Previous studies demonstrated that nordihydroguaiaretic acid, a lignan structurally related to
15, which instead of possessing methoxyl substituents in positions 3 and 3′ has hydroxyl groups,
enhances the expression and activity of eNOS in endothelial cells [60] and activates large conductance
calcium-dependent potassium (BK) channels in arterial smooth muscle cells [61]. It has been proposed
that BK channels opening by nordihydroguaiaretic acid is produced by a direct action on the BK
alfa subunit and an increased calcium release from the sarcoplasmic reticulum [62]. In contrast to
these findings, our results showed that activation of the potassium channels is not involved in the
vasodilator effect elicited by meso-dihydroguaiaretic acid (15). The reason for this difference might
be attributed to the presence of methoxy groups on carbons 3 and 3′ in compound 15. In accordance
with this hypothesis, it has been suggested that the presence of the hydroxy group in position 5 in
5-hydroxyflavone is a structural requirement for a possible interaction with BK channels [63].

Considering that stimulation of the potassium channels is not implicated in the vasorelaxant
mechanism of meso-dihydroguaiaretic acid (15), it is possible that activation of the NO/cGMP pathway
induced by this lignan produces vasodilation through alternative mechanisms, including the inhibition
of calcium influx from voltage-dependent calcium channels and calcium release by the inositol
1,4,5-trisphosphate receptor or increase of the reuptake of cytosolic calcium into the sarcoplasmic
reticulum [64]. It is worth highlighting that compound 15 elicited a vasodilator effect with a similar
potency to that of ACh, which supports its potential value as a lead compound for the development of
new antihypertensive drugs.

On the other hand, the present study represents the first demonstration that 5,8,4′-
trihydroxy-3,7-dimethoxyflavone (18) is capable of relaxing the arterial smooth muscle. Removal
of endothelium significantly decreased, but not completely blocked, the vasorelaxation induced by
this flavone, indicating that both endothelial-dependent and independent vasodilation pathways
are involved in its mechanism of action. The vasorelaxing effect was significantly diminished
in the presence of L-NAME, which evidenced that activation of the NO/cGMP pathway partly
contributes to endothelium dependent 5,8,4′-trihydroxy-3,7-dimethoxyflavone-induced vasodilation.
Considering the slight rightward shift of the CRCs in the absence of endothelium (p = 0.009)
and in the presence of L-NAME (p = 0.99), it is evident that this compound mainly produces its
vasodilator effect through an endothelium-independent mechanism. Our results are in accordance
with previous studies which proved that methoxy-flavones, structurally related to compound 18,
elicit vasodilation [65,66], at least partly, through an endothelium-dependent mechanism that involves
activation of the NO/cGMP pathway [65]. However, our findings differ from those of other researchers
who found that certain methoxy-flavones produce an endothelium-dependent vasodilatory effect via
activation of the potassium channels [67,68]. Apparently, differences in the type and position of the
substituents on the basic flavone skeleton greatly influence the mechanism underlying the vasodilator
effect of these compounds, as evidenced by the fact that 5,4′-dihydroxy-3,7,8,3′-tetramethoxyflavone
produces an endothelium-independent vasorelaxation, mediated by potassium channels activation [69],
whereas 3,5,7,3′,4′-pentamethoxyflavone induces a vasorelaxant effect, which provokes the release
of NO and H2S, but surprisingly without activating potassium channels [70,71]. In the case of
5,8,4′-trihydroxy-3,7-dimethoxyflavonen (18), our results indicate that this compound mainly produces
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its vasodilator effect through an endothelium-independent mechanism, which may involve a calcium
channel blockade [72,73]. However, this remains to be elucidated.

4. Materials and Methods

4.1. Reagents and Chemicals

Reagents, standards, and solvents used in the pharmacological assays were obtained from
Sigma-Aldrich (St. Louis, MO, USA).

4.2. Isolation, Purification and Structural Characterization of Phytochemicals

The phytochemicals evaluated were previously isolated and purified by several chromatographic
methods from different plants. The purity of the compounds was determined by one
dimension or two-dimension thin layer chromatography and in some cases using high
performance liquid chromatography. The chemical structure of compounds was determined
by 1D or 2D Nuclear Magnetic Resonance techniques as described previously: A. adstringens:
3-α-hydroxymasticadienonic acid (1) [74], C. mexicanum: 3α-hydroxytirucalla-7,22Z-dien-26-oic acid
(2) [18], C. gracilior: corosolic acid (3) [26], C. alamosanus: (3R,4R,6S)-p-menth-1-eno-3,6-diol (9), 5-
hydroxy-3,7,4′-trimethoxyflavone (17), C. glabellus: 6,7-diacetylaustro inulin (10), and 6-O-acetylaustro
inulin (11) [75], G. glauca: galphin A (4), galphin B (5), galphimidin (6) [24], J. neopauciflora:
3β-trans-p-coumaroyl-oxy-16-β-hydroxy-20(29)-lupene (7), β-sitosteryl β-D-glucopyranoside (8) [19],
L. tridentata: 3′-demethoxy-6-O-demethyl-isoguaiacin (14), meso-dihydroguaiaretic acid (15),
5,4′-dihydroxy-3,7,8-trimethoxyflavone (16), 5,8,4′-trihydroxy-3,7-dimethoxyflavone (18) [25], P. adnata:
perezone (12), and pipitzol (13) [76], and T. graveolens: pinostrobin (19) [28].

4.3. Experimental Animals

All experimental procedures were performed in accordance with guidelines of the Mexican Official
Standard NOM-062-ZOO-1999 [74], and approved by the Bioethics Committee of the Deparment of
Postgraduate, Research and Innovation of the Autonomous University of Querétaro, México (Approval
number 290/SPII/2018). Wistar male rats (250–300 g) were provided by the Institute of Neurobiology
of the National Autonomous University of Mexico, Campus Juriquilla. Animals were housed in
standard cages under controlled temperature conditions with a 12:12 h light-dark cycle. Water and
food were provided ad libitum.

4.4. Determination of the Vasodilator Effect of the Selected Secondary Metabolites

4.4.1. Isolated Rat Aorta Assay

Rats were sacrificed by decapitation. The thoracic aorta was surgically removed and placed in a
Petri dish containing ice-cold (4 ◦C) Krebs-Henseleit solution with the following composition (mM):
126.8 NaCl; 5.9 KCl; 1.2 KH2PO4; 1.2 MgSO4; 5.0 D-glucose; 30 NaHCO3; 2.5 CaCl2 (pH 7.4), bubbled
with a mixture of carbogen (95% O2 and 5% CO2). Then, the intraluminal space of the aorta was
rinsed with fresh solution to prevent clot formation, cleaned from surrounding connective tissue,
and sliced into rings (3–4 mm in length). Aortic rings were mounted between two metallic hooks,
with one being fixed and the other attached to an isometric transducer, and placed into organ baths
chambers containing pre-warmed Krebs-Henseleit solution (37 ◦C) gassed with carbogen. The aortic
segments were allowed to equilibrate for 60 min under a resting tension of 1.5 g. During the resting
period, the organ bath solution was replaced every 10 min. In order to stimulate the vascular smooth
muscle, the tissues were contracted with KCl solution (100 mM). Once a stable contractile tone had
been reached, the bathing medium was replaced every 10 min to restore the initial resting tension.
Afterwards, the aortic rings were contracted with 1 µM L-phenylephrine (Phe); the contractile force
induced was defined as 100%, and once the plateau was reached, the test compounds were cumulatively
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added. Acetylcholine was dissolved in distilled water, while the selected compounds were dissolved
in dimethyl sulfoxide (DMSO) and diluted in distilled water. The highest concentration of DMSO was
0.2% (v/v). When used, pharmacological inhibitors were added to the organ bath chambers 20 min
before the addition of Phe. Changes in tension caused by the tested concentrations were detected
by Grass FT03 force transducers coupled to a Grass 7D Polygraph (Grass Instrument Co, Quincy,
MA, USA); they were expressed as percentages of relaxation based on the contraction generated by
adding Phe [77].

4.4.2. Participation of the Endothelium in the Vasorelaxant Response of Compounds 3, 15, and 18

To determine whether the vasorelaxant response of compounds 3, 15, and 18 was dependent on
the vascular endothelium, assays on aorta segments without endothelium were performed. In these
experiments, the endothelium was removed by flushing the lumen of the aorta with 0.2% desoxycholic
acid in saline solution 0.9%, as previously reported [77]. The absence of endothelium was confirmed
at the start of the experiments, showing that the addition of 1 µM of ACh did not induce more than
5% relaxation.

4.5. Evaluation of the Participation of the NO/cGMP and H2S/KATP Channel Pathways in the Vasodilator
Response of Compounds 3, 15, and 18

Involvement of the NO/cGMP and the H2S/KATP channel pathways in the vasodilator effect of
compounds 3, 15, and 18 was evaluated by incubating intact endothelium aortic rings for 20 min in the
presence of inhibitors of specific enzymes of each of these pathways: (1) NO/cGMP pathway: 100 µM
NG-nitro-l-arginine methyl ester (L-NAME, inhibitor of eNOS); and (2) H2S/KATP channel pathway:
10 mM dl-propargylglycine (PAG, inhibitor of CSE) [34,78,79].

To assess whether activation of the K+ channels was involved in the vasodilation produced by
compounds 3, 15, and 18, the effect of pretreatment with the non-selective potassium channel blocker,
1 mM TEA, was evaluated [80,81].

4.6. Statistical Analysis

Evaluations of each concentration of the tested substances were performed on aortas obtained
from at least three different rats (n = 3) with two replicas.

All values are expressed as the mean ± standard error of the mean (SEM). The resulting data
obtained from each evaluation were fitted to a sigmoidal equation, plotted, and analyzed to calculate
EC50 and Emax (GraphPad Prism 7.02, San Diego, CA, USA).

In the case of endothelium-dependent evaluations, analysis by an unpaired t-test was conducted
to test differences between the EC50s of each compound in the presence and absence of endothelium.
While CRC in the presence of inhibitors was analyzed by one-way analysis of variance (ANOVA)
followed by the Turkey test to evaluate any significant differences between the means. Values of
p < 0.01 were considered to be significant.

5. Conclusions

This study demonstrates that 19 natural products obtained from plants widely employed
in Mexican traditional medicine are able to modify the tone of arterial smooth muscle. The
most potent vasodilatory compounds were corosolic acid (3), meso-dihydroguaiaretic acid (15),
and 5,8,4′-trihydroxy-3,7-dimethoxyflavone (18). These secondary metabolites represent valuable
leads for the development of drugs useful in the treatment of cardiovascular diseases. Corosolic
acid induces vasodilation by a mechanism that involves activation of the NO/cGMP and
H2S/KATP pathways. Additionally, the vasodilator effect of meso-dihydroguaiaretic acid and
5,8,4′-trihydroxy-3,7-dimethoxyflavone partly involves stimulation of the NO/cGMP pathway.
However, these compounds also showed an important endothelium-independent vasorelaxant effect,
whose mechanism of action remains to be clarified. Our findings confirm that plants traditionally
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used with medicinal purposes constitute an important reservoir of bioactive compounds that deserves
intensive scientific exploration.
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