

Supplementary Materials

Article

Synthesis, spectroscopic analysis and assessment of the biological activity of new hydrazine and hydrazide derivatives of 3-formylchromone

Krzysztof Słomiak ^{1,*}, Andrzej Łazarenkow ¹, Lilianna Chęcińska ², Joachim Kusz ³, Justyn Ochocki ¹ and Jolanta Nawrot-Modranka ¹

- ¹ Department of Bioinorganic Chemistry, Medical University of Lodz, Muszyńskiego 1, 90-151 Łódź, Poland; andrzej.lazarenkow@umed.lodz.pl (A.Ł); justyn.ochocki@umed.lodz.pl (J.O.); jolanta.nawrot-modranka@umed.lodz.pl (J.N-M.)
- ² Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163/165, 90-236 Łódź, Poland; lilianna.checinska@chemia.uni.lodz.pl
- ³ Department of Physics of Crystals, Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland; joachim.kusz@us.edu.pl
- * Correspondence: krzysztof.slomiak@umed.lodz.pl; Tel.: +48-42-677-92-20

Received: date; Accepted: date; Published: date

Table of contents

Table S1. Selected geometric parameters for 1, 3, 5, 8 and 10.	page
2	
Table S2: Aromatic $\pi^{}\pi$ interactions (Å,°) for structures 1 , 5 , 8 , 10 .	page
3	
Figure S3: Cell proliferation study concentration-response curves for tested compour	ds on
page 4	
cell lines: L929 EA.hy926.	
Figure S4: 1H NMR and 13C NMR Spectra	page

12

	1	1	3	5	5	8	10
O1–C2	1.3476(16)	1.3477(17)	1.348(3)	1.341(3)	1.340(2)	1.3473(11)	1.313(2)#
O1–C9	1.3736(16)	1.3766(17)	1.359(3)	1.370(3)	1.374(3)	1.3738(10)	1.373(2)
O2–C4	1.2360(16)	1.2362(16)	1.234(3)	1.226(2)	1.229(2)	1.2364(10)	1.234(2)
C2-C3	1.3498(19)	1.3502(19)	1.336(3)	1.336(3)	1.333(3)	1.3550(12)	1.347(3)#
C3-C4	1.4544(18)	1.4594(19)	1.445(3)	1.449(3)	1.445(3)	1.4611(11)	1.433(3)#
C4-C10	1.4622(18)	1.4701(19)	1.454(3)	1.462(3)	1.458(3)	1.4651(12)	1.458(2)
C9–C10	1.3891(19)	1.3870(19)	1.380(3)	1.381(3)	1.377(3)	1.3944(11)	1.394(2)
C3–C11	1.4622(18)	1.4644(19)	1.444(3)	1.453(3)	1.451(3)	1.4628(12)	1.480(3)#
N1-N2	1.3608(16)	1.3677(16)	1.350(3)	1.369(2)	1.383(2)	1.3711(10)	1.364(2)
N1-C11	1.2831(18)	1.2811(18)	1.278(3)	1.268(3)	1.266(3)	1.2861(11)	1.279(2)
N2-C12*	1.3755(18)	1.3788(18)	1.372(3)	1.349(3)	1.339(3)	1.3905(11)	1.386(2)
O3–C12	-	-	-	1.223(2)	1.235(2)	-	_
C12–C13	_	-	_	1.472(3)	1.479(3)	_	_
C2O1C9	118.26(11)	118.38(11)	118.4(2)	118.3(2)	118.2(2)	118.45(7)	117.05(14) #
O1–C2–C3	125.24(13)	125.03(13)	125.4(2)	125.5(2)	125.3(2)	125.16(8)	126.62(9)#
C2-C3-C4	119.83(12)	119.85(13)	119.0(2)	119.7(2)	119.8(2)	119.45(8)	120.11(18)#
O2–C4–C3	123.04(12)	122.83(13)	121.9(2)	122.5(2)	122.4(2)	122.50(8)	122.77(17)#
C3-C4-C10	114.56(12)	114.67(12)	115.4(2)	114.6(2)	115.0(2)	114.99(7)	113.80(15)#
C2-C3-C11	121.07(12)	121.23(13)	121.1(2)	121.3(2)	121.8(2)	121.82(8)	120.60(18)
C3-C11-N1	119.49(13)	120.31(13)	120.9(2)	119.5(2)	121.6(2)	120.30(8)	121.20(15)
C11-N1-N2	116.58(12)	116.49(12)	117.4(2)	117.4(2)	114.6(2)	115.77(7)	116.56(14)
N1-N2-C12	118.37(12)	118.07(12)	120.3(2)	118.4(2)	119.5(2)	118.60(7)	117.71(14)
N2-C12-O3	-	-	_	121.9(2)	122.4(2)	-	_
C13-C12-O3	_	_	_	121.4(2)	121.8(2)	_	_
C2-C3-C11-N1	-0.2(2)	7.4(2)	4.7(4)	-19.6(3)	-25.4(3)	-3.86(13)	-11.0(3) #
C11-N1-N2-C12	-177.85(13)	172.82(13)	-178.5(2)	-177.0(2)	176.6(2)	-165.72(8)	-171.53(16)
N1-N2-C12-C13	164.16(13)	173.59(12)	-179.6(2)	-174.5(2)	-178.4(2)	-160.69(8)	-167.04(15)
O2-C4-C3-C11	0.5(2)	-0.1(2)	-0.1(4)	-3.3(3)	-2.5(3)	1.84(13)	179.35(17)#
N2-C12-C13-C14	-179.49(14)	-179.65(13)	-179.5(3)	25.4(3)	21.3(3)	179.77(8)	179.02(16)

Table S1. Selected geometric parameters $(\text{\AA}, ^{\circ})$ for 1, 3, 5, 8 and 10.

* - for **5**, the N2–C12 bond differs in its type in comparison to the remaining structures;

^{*#*} - for **10**, the geometric parameters involving the disordered C2 and C3 atoms are presented only for major component A.

3	of

17

Compound	Interaction	$Cq(I)\cdots Cq(I)$	α	Cg(I)perp	$Cg(\mathbf{J})_{perp}$	Slippage
1	$Cg(1)\cdots Cg(1)^i$	3.530(1)	0.0(1)	-3.281(1)	-3.381(1)	1.302
	$Cg(1)\cdots Cg(2)^{i}$	3.520(1)	2.3(1)	-3.269(1)	-3.314(1)	1.188
	$Cg(3)\cdots Cg(3)^{ii}$	3.805(1)	0.0(1)	-3.483(1)	-3.483(1)	1.531
	$Cg(5)\cdots Cg(7)^{iii}$	3.498(1)	5.5(1)	-3.422(1)	3.368(1)	0.947
	$Cg(6)\cdots Cg(7)^{iv}$	3.627(1)	3.8(1)	-3.327(1)	-3.402(1)	1.256
5	$Cg(7)\cdots Cg(5)^{i}$	3.726(1)	8.0(1)	-3.326(1)	-3.445(1)	1.419
8	$Cg(2)\cdots Cg(1)^i$	3.493(1)	1.1(1)	3.346(1)	-3.365(1)	0.937
	$Cg(3)\cdots Cg(3)^{i}$	3.921(1)	0.0(1)	3.552(1)	-3.552(1)	1.662
10	$Cg(1)\cdots Cg(1)^i$	3.415(1)	0.0(1)	3.409(1)	3.409(1)	0.187
	$Cg(2)\cdots Cg(3)^{ii}$	3.889(1)	3.3(1)	-3.523(1)	-3.533(1)	1.625

Table S2: Aromatic $\pi - \pi$ interactions (Å, °) for structures **1**, **5**, **8**, **10**.

 $Cg \cdots Cg$ – distance between ring centroids; α - dihedral angle between planes I and J; $Cg(I)_{\text{perp}}$ and $Cg(J)_{\text{perp}}$ - (interplanar spacing) perpendicular distance of Cg(I) on ring J and Cg(J) on ring I, respectively; slippage - distance between Cg(I) and perpendicular projection of Cg(J) on ring I.

Cg(1) (in molecule 1) and Cg(5) (in molecule 2) – a centre-of-gravity of heterocyclic ring; Cg(2) (in molecule 1) and Cg(6) (in molecule 2) – a centre-of-gravity of benzene ring (condensed with a heterocyclic one); Cg(3) (in molecule 1) and Cg(7) (in molecule 2) – a centre-of-gravity of phenyl ring.

Symmetry codes: **1** (i) -*x*,1-*y*,1-*z*; (ii) -*x*,1-*y*,-*z*; (iii) 1-*x*,2-*y*,1-*z*; (iv) -*x*,2-*y*,1-*z*; **5** (i) 1-*x*,-*y*,1-*z*; **8** (i) -1+*x*,*y*,*z*; **10** (i) 1-*x*,2-*y*,1-*z*; (ii) 1-*x*,1-*y*,1-*z*.

Cells viability [%]

Cells viability [%]

Concentration of compound [µmol/L]

Figure S4: ¹H NMR and ¹³C NMR Spectra

¹H NMR Spectra (DMSO-d₆), 5:

¹H NMR Spectra (DMSO-d₆), 6:

¹H NMR Spectra (DMSO-d₆), 8:

¹³C NMR Spectra (DMSO-d₆), 1:

¹³C NMR Spectra (DMSO-d₆), 3:

¹³C NMR Spectra (DMSO-d₆), 5:

96 88 80 Chemical Shift (ppm) 144 136 128 120

