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Abstract: Leukemia, the malignancy of the hematopoietic system accounts for 10% of cancer
cases with poor overall survival rate in adults; therefore, there is a high unmet medical
need for the development of novel therapeutics. Eight imidazo[1,2-b]pyrazole-7-carboxamides
have been tested for cytotoxic activity against five leukemia cell lines: Acute promyelocytic
leukemia (HL-60), acute monocytic leukemia (THP-1), acute T-lymphoblastic leukemia (MOLT-4),
biphenotypic B myelomonocytic leukemia (MV-4-11), and erythroleukemia (K-562) cells in vitro.
Imidazo[1,2-b]pyrazole-7-carboxamides hampered the viability of all five leukemia cell lines with
different potential. Optimization through structure activity relationship resulted in the following IC50

values for the most effective lead compound DU385: 16.54 nM, 27.24 nM, and 32.25 nM on HL-60,
MOLT-4, MV-4-11 cells, respectively. Human primary fibroblasts were much less sensitive in the
applied concentration range. Both monolayer or spheroid cultures of murine 4T1 and human MCF7
breast cancer cells were less sensitive to treatment with 1.5–10.8 µM IC50 values. Flow cytometry
confirmed the absence of necrosis and revealed 60% late apoptotic population for MV-4-11, and 50%
early apoptotic population for HL-60. MOLT-4 cells showed only about 30% of total apoptotic
population. Toxicogenomic study of DU385 on the most sensitive MV-4-11 cells revealed altered
expression of sixteen genes as early (6 h), midterm (12 h), and late response (24 h) genes upon
treatment. Changes in ALOX5AP, TXN, and SOD1 expression suggested that DU385 causes oxidative
stress, which was confirmed by depletion of cellular glutathione and mitochondrial membrane
depolarization induction. Imidazo[1,2-b]pyrazole-7-carboxamides reported herein induced apoptosis
in human leukemia cells at nanomolar concentrations.
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1. Introduction

Leukemias and lymphomas accounts for almost 10% of cancer cases worldwide [1]. Leukemias
are heterogeneous diseases due to differential cellular origin along with self-characteristic genetic
abnormalities [2]. The discussion of current therapies is beyond the scope of the present article.
Although bone marrow transplantation reached a break-through in the last decades for the treatment
of childhood leukemias, chemotherapy remains the main option for adults, and especially for the
elderly with much less therapeutic success nowadays. Based on the maturation status, differentiation
level, and/or lineage commitment acute myeloid leukemia cells (AML) have been classified by
the French-American-British classification (FAB) system [3–5]. To determine the specificity of
imidazo[1,2-b]pyrazole-7-carboxamides as potential anti-leukemic agents we have focused on the
following differentially matured AML cells: HL-60 acute promyelocytic leukemia, (FAB M2) [6,7],
MV-4-11 biphenotypic B myelomonocytic leukemia (FAB M4) [8,9], THP-1 acute monocytic leukemia
(FAB M5) [10,11], K-562 erythroleukemia, (FAB M6) [12,13]. One acute lymphoblastic leukemia cell
line (ALL), the MOLT-4 acute T-lymphoblastic leukemia, was also involved in the study.

Pyrazole derivatives are pharmacologically relevant active scaffolds in diverse therapeutic fields,
reviewed recently by Karrouchi et al. [14]. Moreover, the synthesis and the anticancer activity of
N-fused pyrazoles, such as imidazo[1,2-b]pyrazoles have also been reported [15,16]. We have recently
published the synthesis of a library (67 compounds) of novel imidazo[1,2-b]pyrazole-7-carboxamides,
where among different cell lines, HL-60 leukemia cells showed the highest sensitivity upon
treatment [17]. Based on the previous structure–activity relationship (SAR) experience, hit molecules
have been further optimized by changing certain substituents to increase the cytotoxic effect against
different leukemia cells. These efforts resulted in more active compounds with anti-leukemic potential
reported first in this study.

2. Results

2.1. Synthesis of Imidazo[1,2-b]pyrazole-7-carboxamides

Synthesis was performed by the previously presented manner via Groebke-Blackburn-Bienaymé
three component reaction (GBB-3CR) [17]. Briefly, to a suspension of pyrazole precursor (0.50 mmol)
in MeCN (0.5 mL), pivaldehyde (0.55 mmol), HClO4 (20 mol%), and the corresponding isocyanide
(0.55 mmol) were added and stirred at room temperature for 6 h. Then the crude mixture was purified
by filtration followed by washing with cold MeCN or by column chromatography on silica gel (eluent:
hexane/EtOAc) to afford pure imidazo[1,2-b]pyrazoles (Figure 1A). Seven DU-compounds were
prepared for antitumor characterization with a substitution pattern of C2 tert-butyl (tBu), C3 aliphatic
(tBu, tert-octyl (tOctyl) or cyclohexyl (Cy)), and C7 phenyl substituted secondary carboxamides with
electron-donating (ED) groups, such as hydroxyl (OH) and amino (NH2) functions (positioning in ortho-,
meta- or para positions) (Figure 1B). In addition, one imidazo[1,2-b]pyrazole (DU283) incorporating
electron-withdrawing (EWG) function in para position (R1 = 4-F) was selected among the investigated
bicycles as an anti-tumor reference imidazo[1,2-b]pyrazole-7-carboxamide [17]. Spectral analysis of
imidazo[1,2-b]pyrazole-7-carboxamides can be found in Figure S1.

2.2. Imidazo[1,2-b]pyrazole-7-carboxamides Hampered the Viability of Leukemia Cells with Different Potential

The substitutions chosen were based on the previously established structure–activity relationship
(SAR) results [17], with the goal to design compounds with improved anti-leukemic effect.
Seven compounds out of eight hampered the viability of all five tested leukemia cell lines with
different potential. Superior efficiency was obtained for DU325 and DU385 (Table 1). The presence
of tBu as a bulky group in the R2 position in combination with 4-NH2 and 4-OH moieties in the R1

determined the strength of anti-leukemic efficiency. In addition, the hydroxyl moiety located in para
position on the aromatic ring (R1 = 4-OH) provided the highest cytotoxicity (DU385). Optimization
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resulted in the following IC50 values for the most effective lead compound DU385: 16.54 nM, 27.24 nM,
and 32.25 nM on HL-60, MOLT-4, MV-4-11, respectively (Table 1).Molecules 2018, 23, x 3 of 14 

 

 
Figure 1. (A) General procedure for the preparation of imidazo[1,2-b]pyrazoles via Groebke-
Blackburn-Bienaymé three components reaction (GBB-3CR). (B) Structures of imidazo[1,2-b]pyrazole-
7-carboxamides. 

2.2. Imidazo[1,2-b]pyrazole-7-carboxamides Hampered the Viability of Leukemia Cells with Different 
Potential 

The substitutions chosen were based on the previously established structure–activity 
relationship (SAR) results [17], with the goal to design compounds with improved anti-leukemic 
effect. Seven compounds out of eight hampered the viability of all five tested leukemia cell lines with 
different potential. Superior efficiency was obtained for DU325 and DU385 (Table 1). The presence of 
tBu as a bulky group in the R2 position in combination with 4-NH2 and 4-OH moieties in the R1 
determined the strength of anti-leukemic efficiency. In addition, the hydroxyl moiety located in para 
position on the aromatic ring (R1 = 4-OH) provided the highest cytotoxicity (DU385). Optimization 
resulted in the following IC50 values for the most effective lead compound DU385: 16.54 nM, 27.24 
nM, and 32.25 nM on HL-60, MOLT-4, MV-4-11, respectively (Table 1).  

In the case of DU441, incorporating a tOctyl function in R2 position, demonstrated an excellent 
anti-leukemic activity (60.48 nM IC50 value for MOLT-4). However, the tested DU443 with the same 
R2 substituent did not show a similar result (104.2 nM IC50 value for MOLT-4) (Table 1). Accordingly, 
the substitution of R1 = OH to NH2 (if R2 = tert-Octyl) decreased the measured biological effects 
(DU443). Incorporating an EWG group in the framework (R1 = 4-F; DU283) led to less active antitumor 
behavior (146.2 nM IC50 value for MOLT-4) (Table 1). 

On the other hand, all 4-OH-phenyl substituted carboxamides proved to be very efficient against 
leukemia cell lines independent from the quality of R2 group. Each aliphatic functionalized, tBu, 

Figure 1. (A) General procedure for the preparation of imidazo[1,2-b]pyrazoles via Groebke-Blackburn-
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Table 1. IC50 values (nM) of analogs determined by resazurin assay upon treatment by
imidazo[1,2-b]pyrazole-7-carboxamides.

HL-60 MOLT-4 MV-4-11 THP-1 K-562 Human Fibroblasts

DU283 266.9 146.2 209.4 352.5 493.7 n.d.
DU325 # 66.31 39.35 50.21 73.78 194.9 n.d.
DU385 # 16.54 27.24 32.25 25.88 54.31 n.d.
DU441 # 62.04 60.48 87.56 94.9 190.9 n.d.
DU442 # 58.71 51.03 68.08 95.22 163.6 n.d.
DU443 130.7 104.2 173.7 108.9 303.1 n.d.
DU455 2169 1211 2892 2354 inactive n.d.
DU456 446.5 324.8 524.5 761.4 901.8 n.d.

In the case of DU441, incorporating a tOctyl function in R2 position, demonstrated an excellent
anti-leukemic activity (60.48 nM IC50 value for MOLT-4). However, the tested DU443 with the same
R2 substituent did not show a similar result (104.2 nM IC50 value for MOLT-4) (Table 1). Accordingly,
the substitution of R1 = OH to NH2 (if R2 = tert-Octyl) decreased the measured biological effects
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(DU443). Incorporating an EWG group in the framework (R1 = 4-F; DU283) led to less active antitumor
behavior (146.2 nM IC50 value for MOLT-4) (Table 1).

On the other hand, all 4-OH-phenyl substituted carboxamides proved to be very efficient against
leukemia cell lines independent from the quality of R2 group. Each aliphatic functionalized, tBu,
tOctyl besides Cy (DU442) compounds with R1 = 4-OH demonstrated high cytotoxic potential (IC50

values were: 58.71 nM, 51.03 nM, 68.08nM on HL-60, MOLT-4, MV-4-11 cells, respectively (Table 1).
Compounds (DU325, DU385, DU441, and DU442) with an IC50 value under 100 nM were selected for
subsequent experiments (Table 1).

Interestingly, the anti-leukemic behavior was diminished in those where a hydroxyl group was in
ortho or meta position (DU455 and DU456). The effect on human primary fibroblasts used as control
cells were much less cytotoxic reducing the viability maximum to 60%, suggesting that the compounds
reported herein were not as much as cytotoxic to non-malignant primary cells compared to leukemia
cells (Table 1, Figure S7).

Cells were treated with imidazo[1,2-b]pyrazole-7-carboxamides in different concentrations
(12.3 nM, 37 nM, 111 nM, 333 nM, 1 µM, 3 µM) in duplicates for 72 h. Viability was examined
by a resazurin assay, as described in Section 4.4. Materials and Methods. Hashmark (#) labeled
compounds were selected for further investigation. Dose response curves can be found in Figure S2
(HL-60), Figure S3 (MOLT-4), Figure S4 (MV-4-11), Figure S5 (THP-1), Figure S6 (K-562), Figure S7
(human primary fibroblasts). n.d. = not determined because the dose-response curves had a plateau
around 0.7–0.6 (70–60%) viability with maximum 30–40% effect.

Cytotoxicity was further investigated on 4T1 murine mammary carcinoma and MCF7 human
breast adenocarcinoma cancer cells to determine whether the cytotoxic effect was specific against
leukemia cells or the compounds possessed a general antitumor effect. The four selected compounds
diminished the viability of both 4T1 and MCF7 cells in micromolar concentrations irrespective of the
culture method (minimum IC50 = 1.559 µM of DU442 on MCF7 2D, maximum IC50 = 10.8 µM of DU325
on 4T1 3D (Table 2). The micromolar effective dose is not pharmacologically feasible compared to the
nanomolar activity against leukemias, so imidazo[1,2-b]pyrazole-7-carboxamides were considered as
potential anti-leukemic drug candidates instead of general antitumoral compounds.

Table 2. IC50 values (µM) of analogs on 4T1 and MCF7 breast cancer cells determined by resazurin
assay upon treatment by imidazo[1,2-b]pyrazole-7-carboxamides.

4T1 2D 4T1 3D MCF7 2D MCF7 3D

DU325 3.938 10.800 3.445 8.216
DU385 4.558 9.520 3.531 8.853
DU441 3.363 4.914 3.032 3.537
DU442 2.255 5.656 1.559 5.514

Cells were treated with imidazo[1,2-b]pyrazole-7-carboxamides in different concentrations
(0.625 µM, 1.125 µM, 2.50 µM, 5 µM, 10 µM, 20 µM) in duplicates for 72 h. Viability was examined
by resazurin assay as described in Section 4.4. Materials and Methods. Dose response curves can be
found in Figure S8.

2.3. Leukemia Cells Died by Apoptosis Upon Treatment by Imidazo[1,2-b]pyrazole-carboxamides

To determine whether the anti-leukemic effect of imidazo[1,2-b]pyrazole-7-carboxamides relies
on apoptosis or necrosis flow cytometry Annexin V propidium iodide staining was performed. Four
compounds with IC50 values under 100 nM have been selected for apoptotic studies on the most
sensitive three cell lines (HL-60, MOLT-4, MV-4-11). Flow cytometry confirmed the absence of necrosis
and revealed about 55%, 60%, 40%, 60% late apoptotic population (AnnV+/PI+) for MV-4-11 cells upon
treatment by DU325, DU385, DU441, DU442, respectively (Figure 2A). While all compounds induced
only 20% late apoptotic population (AnnV+/PI+) for HL-60 cells, the early apoptotic populations
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(AnnV+/PI−) for HL-60 cells were about 55%, 50%, 45%, 50% upon treatment by DU325, DU385,
DU441, DU442, respectively (Figure 2B). This suggests that MV-4-11 cells are the most sensitive to
drug candidates. MOLT-4 cells showed only about 25–30% of total apoptotic population (early + late)
indicating that lymphoid leukemias are less sensitive toward apoptosis than myeloid leukemia cells
(Figure 1C).
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Figure 2. Imidazo[1,2-b]pyrazole-7-carboxamides induced phosphatidylserine exposure on human
leukemia cells after 24 h. (A) MV-4-11, (B) HL-60, (C) MOLT-4 cells were incubated with 200 nM
imidazo[1,2-b]pyrazole-7-carboxamides as described in Section 4.5 Materials and Methods. The results
are shown as arithmetic mean values of the summary of living cells (AnnV−/PI−), early (AnnV+/PI−)
and late apoptotic cells (AnnV+/PI+) of three samples ± SD. Necrosis (AnnV−/PI+) did not occur.
Corresponding flow cytometry data (SSC-FSC and AnnV/propidium iodide dot plots) can be found in
Figure S9 (MV-4-11), Figure S10 (HL60), Figure S11 (MOLT-4).

2.4. Toxicogenomic Data upon Treatment by Imidazo[1,2-b]pyrazole-7-carboxamide DU385

To have a deep insight into the disturbance of cellular homeostasis of leukemic cells due to
treatment by imidazo[1,2-b]pyrazole-7-carboxamides we have designed a toxicogenomic panel for a
gene expression study (Table S1). The most sensitive MV-4-11 cells were treated by the most active
lead compound DU385 as described in the Section 4.6 Materials and Methods. Functional categories of
the investigated genes have been listed in Table S2. The toxicogenomic panel consists of genes which
have been previously reported by Puskas et al. [18] and Zhang et al. in connection with drug induced
cytotoxicity: Among others EGR1, GDF15, ATF3, FGF21 [19]. The expression of genes, published by
Wang et al. involved in the differentiation and cytotoxicity of HL-60 cells induced by retinoids was
also monitored in our study: SLC21A3, LGALS1, LBR, ALOX5AP, TXN, UBC, BCL2A1, CALR [20].
We implemented genes from our previous toxicogenomic study: ANXA2, GADD153, HSPA1A,
SOD1 [21]. G-protein coupled receptor 84 (GPR84), a key player of β-catenin mediated signaling
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maintaining leukemogenesis was also investigated [22]. Finally, the expression of interleukin-6 (IL6)
and tumor necrosis factor alpha (TNF) inflammatory cytokines was investigated [23,24].

The determined temporal pattern of differential expression divided the tested genes into three
groups as: Early (6 h) (Figure 3A), midterm (12 h) (Figure 3B), and late response (24 h) genes upon
treatment (Figure 3C).
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Figure 3. The expression of genes associated with drug induced cytotoxicity has been studied by
quantitative real-time PCR after treatment with 40 nM or 200 nM DU385 compound for 6 h (A), 12 h
(B), and 24 h (C), as described in Section 4.6 Materials and Methods. * p < 0.05, ** p < 0.01, *** p < 0.001.

As an early stress response, fibroblast growth factor 21 (FGF21), solute carrier organic anion
transporter 1A2 (SLC21A3), and IL6 genes were repressed 5.6 (log2 = −2.5), 3.4 (log2 = −1.8),
and 2.25 (log2 = −1.5) times upon 40 nM treatment, respectively (Figure 3A). After 12 h
incubation, not only FGF21 and SLC21A3, but also early growth response 1 (EGR1), showed
decreased expression (2.8 times repression, log2 = −1.5) (Figure 3B). It proved the concept that
imidazo[1,2-b]pyrazole-7-carboxamides perturb the homeostasis of leukemia cells; nine genes
(GDF15, ATF3, LGALS1, LBR, GADD153, UBC, BCL2A1, HSPA1A, CALR) associated with drug
induced cytotoxicity have been significantly upregulated after 12 h stimulation (Figure 3B). Among
the late response genes, some associated with oxidative stress were dysregulated, ALOX5AP
increased 4 times (log2 = 2), whilst TXN and SOD1 downregulated around 4 times (log2 = −2
and log2 = −1.8, respectively) upon 200 nM 24 h treatment (Figure 3C). The expression of the
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endoplasmic reticulum associated chaperon, calreticulin (CALR), also decreased (log2 =−1.1). Probably
as a compensatory mechanism, the expression of FGF21 (log2 = 2.4), SLC21A3 (log2 = 2.6) and
BCL2A1 elevated (log2 = 3.5). Interleukin-6 (IL6) has been recently reported to contribute to the
chemoresistance of pediatric AML [23], and we showed the overexpression (log2 = 3.3) of IL6 after
24 h treatment (Figure 3C).

2.5. Imidazo[1,2-b]pyrazole-7-carboxamide DU385 Exerted Oxidative Stress of MV-4-11 Cells

Changes in the gene expression of oxidative stress-related genes (ALOX5AP, TXN, SOD1) opened
the way for the investigation of cellular glutathione (GSH) level upon treatment. The luminescence in
the assay is proportional with the GSH level, which can be reduced by reactive oxygen species (ROS)
via oxidation or reaction with the thiol group [25]. Hydrogen peroxide validating the assay as a positive
control was effective to decrease the GSH level prominently in 1 mM after 6, 12, and 24 h (Figure 4A).
The imidazo[1,2-b]pyrazole-7-carboxamide, DU385, was effective to generate ROS and the loss of GSH
after 24 h to the 75% or 50% of the untreated cells with 40 nM and 200 nM treatment, respectively.
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Reduction of the glutathion (GSH) level (A) and the loss of the mitochondrial membrane potential
(MMP) (B) were detected after 24 h as described in Section 4.7 Materials and Methods. * p < 0.05,
** p < 0.01, *** p < 0.001.

Since oxidative stress may subsequently confound mitochondrial homeostasis, the mitochondrial
membrane potential was measured by JC-1 assay. After 24 h, the percentage of cells with decreased
mitochondrial membrane potential three and four times increased after the treatment with 40 nM or
200 nM DU385, respectively (Figure 4B, Figure S12).
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3. Discussion

We have shown the anti-leukemic effect of imidazo[1,2-b]pyrazole-7-carboxamides (Figure 1
and Figure S1) using the resazurin viability assay (Table 1, Figures S2–S6). The dose-response
curves of the lead compound DU385 determined the following IC50 values: 16.54 nM, 27.24 nM,
and 32.25 nM on HL-60, MOLT-4, MV-4-11 cells, respectively. Importantly, human primary fibroblasts
were much less sensitive in the applied concentration range (12.3 nM–3 µM) suggesting selective
cytotoxic effect, especially on leukemia cells (Table 1, Figure S7). Since carcinoma cells establish
solid tumors in vivo, breast cancer cells were grown as three-dimensional (3D) spheroids compared
to traditional tissue culture dishes (2D) (Table 2, Figure S8). Monolayer cultures ignore the role of
microenvironmental factors, such as structural niche, with the plethora of molecular and cellular
constituents [26]. Three dimensional cell cultures as drug discovery models better represent the in vivo
situation like the partial oxygen tension, local pH, or extracellular matrix composition [27]. Although
monolayer cultures were much sensitive to treatment, the effect was much lower (between 1.5–10.8 µM
IC50 values, Table 2) both in 2D and 3D models of murine 4T1 or human MCF7 breast carcinoma cells,
compared to the nanomolar IC50 values in leukemias (Table 1).

Incorporating R1 hydroxyl group in para position with a tBu (DU385), tOctyl (DU441), or Cy
(DU442) functions in R2 position, demonstrated an excellent anti-leukemic activity. Moreover, R1 para
NH2 group combined with R2 tOctyl (DU325) had an anti-leukemic effect at nanomolar concentration.
This potent anti-leukemic activity was diminished in those compounds where the R1 hydroxyl group
was in ortho or meta position (DU455 and DU456), or the R2 tOctyl function was combined with
the R1 NH2 group (DU443). Incorporating an EWG group in the framework (R1 = 4-F; DU283) led to
a less active analog. All four selected compounds, DU325, DU385, DU441, and DU442 induced
apoptosis of biphenotypic B myelomonocytic leukemia MV-4-11, acute promyelocytic leukemia
HL-60, and the T-lymphoblastic leukemia MOLT-4 cells with different potential (Figure 2 and
Figures S9–S11). None of the compounds induced necrosis. Myeloid cells were more sensitive
to imidazo[1,2-b]pyrazole-7-carboxamides than the lymphoid MOLT-4, regarding the apoptotic process
detected by flow cytometry.

Toxicogenomic screen was performed on MV-4-11 cells, the most susceptible cells for
apoptosis. MV-4-11 cells were treated by the lead compound DU385. We have determined
the expression pattern of early (6 h), midterm (12 h), and late response (24 h) genes upon
imidazo[1,2-b]pyrazole-7-carboxamide stress (Figure 3). Early stress-related genes, FGF21 and
SLC21A3 were repressed at both 6 h and 12 h treatments complemented with the decline of EGR1
expression at 12 h (Figure 3A,B). Early endoplasmic reticulum stress-associated genes, activating
transcription factor 3 (ATF3), and DNA damage inducible transcript 3 (GADD153), elevated with
chaperons like calreticulin (CALR) and heat shock protein family A (Hsp70) member 1A (HSPA1A)
from 12 h of incubation. Other genes associated with differentiation and cell adhesion: Growth
differentiation factor 15 (GDF15), galectin-1 (LGALS1), lamin B receptor (LBR) were upregulated
at 12 h. Polyubiquitin genes and Bcl family members regulate cell survival and apoptosis [28,29],
ubiquitin C has been described as a stress-response gene [30,31] activated at 12 h in MV-4-11 cells.
The apoptosis regulator BCL2A1 (Bfl-1/A1) also elevated at 12 and 24 h upon stimulation, which has
been described as anti-apoptotic [32], but also as pro-apoptotic via proteasome mediated turnover or
calpain like cleavage [33]. During apoptosis detected at 24 h, genes responsible for oxidative stress
response were dysregulated, ALOX5AP increased, and TXN and SOD1 downregulated upon 200 nM
24 h treatment (Figure 3C). Elevated levels of GDF15, ATF3, FGF21, SLC21A3, and IL6, were coupled
with 20% early and 60% late apoptotic cells at 24 h (Figure 2A).

Changes in the gene expression of oxidative stress-related genes (ALOX5AP, TXN, SOD1) initiated
the investigation of cellular GSH level. The amount of intracellular GSH dropped upon DU385
treatment only after 24 h. The consistency in the GSH level with DU385 treatment after 6 and 12 h may
indicate that the generation of ROS is not a fast stress response (like to H2O2), rather a well-organized
process after 24 h. Since oxidative stress induces mitochondrial dysfunction, and disturbance in the



Molecules 2018, 23, 2845 9 of 15

mitochondrial membrane potential can lead to apoptosis [34], the MMP was measured upon treatment
by JC-1 assay. We have shown that mitochondria of MV-4-11 leukemia cells were depolarized when
treated with 40 nM or 200 nM DU385 after 24 h.

Since leukemia cells used in this study were immature cells, malignant cells of myeloid
or lymphoid precursors, authors may speculate that cells differentiate after treatment and the
mitochondrial pathway of apoptosis is followed after differentiation (Figure 4). Granulation
(side scatter = SSC) of the treated MV-4-11 (Figures S9 and S12), HL-60 (Figure S10) and
MOLT-4 (Figure S11) cells increased after treatment, which proposes the differentiation concept.
Apoptosis followed after differentiation to chemotherapy has already been published for immature
leukemias [35–37], e.g., all-trans retinoic acid (ATRA) acts via that mechanism, which is applied
in the clinical protocols [38]. Authors hypothesize that human fibroblasts and mouse 4T1 or
human MCF7 breast carcinoma cells are less sensitive to DU385, probably because these are already
differentiated cells with less apoptotic susceptibility or more complex anti-apoptotic mechanisms.
Anyhow, further research is needed to reveal the cause of the sensitivity of immature leukemias to
imidazo[1,2-b]pyrazole-7-carboxamide DU385.

In conclusion, imidazo[1,2-b]pyrazole-7-carboxamides reported herein, causing oxidative
stress and apoptosis in nanomolar concentrations are promising drug candidates against human
myeloid leukemias.

4. Materials and Methods

4.1. Ethical Statement

Participant informed consent was obtained prior to surgical intervention for the isolation of human
primary fibroblasts. All tissue collection complied with the Guidelines of the Helsinki Declaration and
was approved by the Regional and Institutional Research Ethics Committee (2799, 3517).

4.2. Skin Biopsies and Cell Culture of Human Primary Fibroblasts

Healthy volunteers (age 18–60 years) were enrolled into the study. The punch biopsies were
taken from healthy subjects from the breast area undergoing plastic surgery. Primary fibroblasts
were obtained from the skin by enzymatic digestion according to a standard protocol. Briefly, skin
specimens were first washed in Salsol A solution (Human Rt, Gödöllő, Hungary) supplemented with
2% antibiotic/antimycotic solution (Sigma-Aldrich, St. Louis, MO, USA). Skin samples were then
cut into narrow strips and incubated in Dispase solution (Roche Diagnostics, Mannheim, Germany)
overnight at 4 ◦C. The epidermis was subsequently separated from the dermis. Fibroblasts were
obtained by incubating the dermis in Digestion Mix solution (Collagenase, Hyaluronidase and
Deoxyribonuclease) for 2 h at 37 ◦C. Cell suspensions were filtered through a 100 µm nylon mesh
(BD Falcon, San Jose, CA, USA), and cells were pelleted by centrifugation (Thermo Fisher Scientific,
Waltham, MA, USA, Megafuge 16). Fibroblasts were grown in low glucose DMEM/F12 medium
containing 15% FCS, 1% antibiotic/antimycotic (PAA, Pasching, Austria) and 1% L-glutamine solution
(PAA). Fibroblasts were cultured at 37 ◦C and 5% CO2 in humidified conditions. Depending on the
cell growth, the medium was changed every 2–4 days, and cells were passaged at 80% of confluence.

4.3. Cell Culturing, 3D Spheroid Formation and Treatments

The following cells were purchased from the American Type Culture Collection (ATCC,
Manassas, WV, USA): HL-60 acute promyelocytic leukemia, THP-1 acute monocytic leukemia, MOLT-4
acute T-lymphoblastic leukemia, MV-4-11 biphenotypic B myelomonocytic leukemia, and K-562,
erythroleukemia maintained in RPMI 10% FCS (Gibco, Thermo Fisher Scientific, Waltham, MA,
USA) using tissue culture dishes (Corning Life Sciences, Corning, NY, USA). The human breast
adenocarcinoma MCF-7 and mouse mammary carcinoma 4T1 cells were also purchased from the
ATCC. The MCF-7 cells were maintained in Dulbecco’s Modified Eagle Medium/Nutrient Mixture
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F-12 (DMEM/F12) 10% fetal calf serum (FCS, Gibco), and the 4T1 were maintained in Roswell Park
Memorial Institute 1640 medium (RPMI-1640) with 10% FCS. The pH of the cell culture media was
controlled to be between 7.2–7.4 prior use. All used media were supplemented with 2 mM GlutaMAX,
and 100 U/mL penicillin, 100 µg/mL streptomycin (Life Technologies, Carlsbad, CA, USA) before use.
Cells were passed every three days and placed in a humidified incubator at 37 ◦C 5% CO2 (Sanyo,
Osaka, Japan).

The 3D spheroid production using pellet culture system was previously described by
Johnstone, B et al. [39]. Briefly, the MCF-7 and 4T1 cells were gently detached from the conventional
tissue culture flasks using trypsin, washed with PBS, counted, and then suspended to have 6000 cells in
100 µL medium per well. The cellular suspensions were dispended into cell repellent, U shaped
CellStar® 96 microplates (Cellstar® Cell-Repellent Microplate, Greiner Bio-One, Kermsmünster,
Austria) and centrifuged at 1200 g for 10 min. After spheroid formation (one spheroid/well),
the spherical aggregates were directly used for viability assay without any detaching procedures
and transfer steps. The cell repellent plates were incubated and maintained together with conventional
2D cell culture plates at 37 ◦C in a humidified incubator in an atmosphere of 5% CO2 (Sanyo).

Compounds were dissolved in dimethyl sulfoxide (DMSO) at 10 mM concentration freshly before
being used. Since DMSO can be toxic for cellular systems above 1%, the stock solution was further
diluted in serial dilutions in all cases in the appropriate cell culture media. The intermediate dilution
of compounds for Figure 1 was 15 µM (666.7× dilution) in the appropriate cell culture media, and it
was three times serially diluted to 5 µM, 1.667 µM, 555 nM, 185 nM, 61.7 nM, then each intermediate
dilution was further diluted 5× when it was added to the cells, so the treatments were 3 µM, 1 µM,
333 nM, 111 nM, 37.5 nM, 12.3 nM. The intermediate dilution of compounds for Figures 2–4 was
100 µM (100× dilution), it was serially diluted to 1 µM (100× dilution), and it was further diluted to
200 nM (5× dilution), then each intermediate dilution was further diluted 5× when it was added to
the cells, so the treatments were 200 nM (5×), 40 nM (5×).

4.4. Resazurin Viability Assay

The human primary fibroblasts, 4T1 or MCF7 cells (6000), and leukemia (HL-60, MOLT-4, MV-4-11,
THP-1, K-562) cells (20,000) were seeded into 96-well plates (Corning Life Sciences, Corning, NY, USA)
in media. Adherent cells were cultured overnight before treatment. Effects of DU compounds
were examined in the following concentrations: 12.3 nM, 37 nM, 111 nM, 333 nM, 1 µM, 3 µM
in 100 µl after 72 h incubation, for leukemias and control human primary fibroblasts. Treatment
conditions were 0.625 µM, 1.125 µM, 2.50 µM, 5 µM, 10 µM, 20 µM for 4T1 or MCF7 cells, for 72 h.
Viability assay was carried out as described previously in Reference [40]. Briefly, resazurin reagent
(Sigma-Aldrich) was dissolved in PBS (pH 7.4) at 0.15 mg/mL concentration, sterile filtered (0.22 µm,
Merck Millipore), and aliquoted at −20 ◦C. We applied resazurin 20 µL stock to 100 µL/well culture.
After 2 h incubation at 37 ◦C, 5% CO2 (Sanyo) fluorescence (530nm excitation/580nm emission) was
recorded on a multimode microplate reader (Cytofluor4000, PerSeptive Biosytems, Framingham,
MA, USA). Viability was calculated with relation to untreated control cells (1 corresponds to 100%
viability on the y axis, Figures S2–S8), and blank wells containing media without cells. IC50 values
(50% inhibiting concentration) were calculated by GraphPad Prism® (version 5.01, La Jolla, CA, USA).

4.5. Detection of Phosphatidylserine Exposure

Apoptosis was measured by flow cytometry as described previously in References [40,41]. Briefly,
cells (200,000) were plated in 24-well tissue culture plates (Corning Life Sciences) and treated with
the indicated compounds at 200 nM in 500 µL media. After 24 h, the supernatants were harvested.
Cells were harvested with the corresponding supernatant and centrifuged down (2000 rpm, 5 min,
Eppendorf, Hamburg, Germany). Pellet was resuspended in Annexin V binding buffer (0.01 M HEPES,
0.14 M NaCl and 2.5 mM CaCl2). Annexin V-Alexa Fluor® 488 (Life Technologies, 2.5:100) was added
to the cells, which were then kept for 15 min in the dark at room temperature. Before the acquisition,
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propidium iodide (10 µg/mL, Sigma-Aldrich, St. Louis, MO, USA) was added in Annexin V binding
buffer to dilute Annexin V-Alexa Fluor® 488 5×. Cells (20,000 events) were analyzed on a FACSCalibur
flow cytometer using CellQuest software (version 3.3, Becton Dickinson, Franklin Lakes, NJ, USA).
The percentage of the FL1 (530/30 nm filter, Annexin V-Alexa Fluor® 488) positive, and FL3 (670 nm
filter, propidium iodide) negative early apoptotic cells and FL1 positive and FL3 positive late apoptotic
cells were determined. The total apoptotic population included both early and late apoptotic cells.
Column charts were created by GraphPad Prism® 5. Corresponding flow cyrometry data (SSC-FSC
and AnnV/propidium iodide dot plots) can be found in Figure S9 (MV-4-11), Figure S10 (HL60), Figure
S11 (MOLT-4).

4.6. Quantitative-Real Time PCR

MV-4-11 cells (10 × 106) were plated in 100 mm tissue culture dishes (Corning Life Sciences,
Corning, NY, USA) in RPMI 10% FCS. At different time points, cells were treated in 10 mL total
volume with test compound DU385 at 40 nM or 200 nM for 6 h, 12 h, or 24 h. After treatment,
nucleic acid preparation was done by using the RNA purification kit (Direct-zolTM RNA MiniPrep
Kit, Zymo Research, Irvine, CA, USA), according to an already published protocol in Reference [40].
The quality and quantity of the isolated RNA were measured with NanoDrop1000 Version 3.8.1.
(Thermo Fisher Scientific, Waltham, MA, USA). Reverse transcription from 3 µg of total RNA was
performed with the High-Capacity cDNA Archive Kit (Applied Biosystems, Foster, CA, USA) in a total
volume of 30 µL according to the manufacturer’s protocol. After dilution with 130 µL of ultrapure
water (Applied Biosystems), cDNA was used as template for gene expression analysis. Quantitative
real-time PCR (qRT-PCR) was performed on the LightCycler® 96 System (Roche, Basel, Switzerland),
using gene-specific primers with SYBR Green protocol, as described previously in Reference [42].
Briefly, for cycling, each 10 µL PCR reaction contained 1 µL cDNA (18.75 ng), 250 nM primers, and 5 µL
qPCRBIO SyGreen Mix Lo-ROX (2×, PCR Byosystems, London, UK). Primer sequences and accession
numbers are listed in Table S1. The PCR protocol was as follows: Enzyme activation at 95 ◦C for 2 min,
45 cycles of denaturation at 95 ◦C for 10 s, annealing at 60 ◦C, and extension at 60 ◦C for 10 s. All the
PCRs were performed with three replicates. After amplification, the melting curve was checked to
verify the specificity of the PCR reactions. The Ct values were normalized to GAPDH gene for each
time point. The presented relative gene expression ratios were ∆∆CT values (log2). All values were
presented as mean ± standard deviation (SD).

4.7. Detection of the Oxidative Stress

Glutathion measurement was carried out as previously described in Reference [43]. MV-4-11 cells
were plated (2 × 104) in a 96-well tissue culture plate (Corning Life Sciences, Corning, NY, USA), and
were incubated with 40 nM, 200 nM DU385 compound or 10 µM and 1 mM H2O2 (Sigma-Aldrich)
in RPMI 10% FCS for 6, 12, and 24 h, in a humidified atmosphere of 95% air and 5% CO2. Cells were
harvested, washed in PBS, centrifuged (2000 rpm, 5 min), suspended in 100 µL PBS. Then, 50 µL
aliquots of prepared 2× GSH-GloTM Reagent (GSH-GloTM Glutathione assay; Promega, Madison,
WI, USA) were added to 50 µL of cells and incubated at room temperature in a black 96-well microtiter
plate (Tomtec, Budapest, Hungary) for 30 min. Thereafter, 100 µL of reconstituted Luciferin Detection
Reagent (Promega, Medison, WI, USA) was added to each well, and cells were incubated for 15 min
further. The amount of light produced (cps = counts per second) was detected by a plate reader
(1420 Victor, Wallac, Perkin Elmer, Waltham, MA, USA). Data were visualized by a GraphPad Prism® 5.

Mitochondrial membrane potential was measured as described previously in Reference [44].
Briefly, MV-4-11 cells (2 × 105) were plated in 24-well tissue culture plates (Corning
Life Sciences, Corning, NY, USA) in RPMI 10% FCS and were treated in 500 µL media
containing 40 nM or 200 nM DU385 compound. Untreated controls cells were supplemented
with 500 µL cell culture media. After 24 h, the cells were harvested and centrifuged
(2000 rpm, 5 min). The pellet was suspended and incubated for 15 min in 5 µg/mL JC-1
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(5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolocarbocyanine iodide, Chemodex, St. Gallen,
Switzerland) containing media in final volume 300 µL at 37 ◦C. Finally, using FL2 (cells with steady
state mitochondria) (585/42 nm)–FL1 (cells with depolarized mitochondria) (530/30 nm) channels, the
red–green fluorescence intensity of 2 × 104 events was acquired immediately on a FACSCalibur flow
cytometer. Data were analyzed using CellQuestTM software (CellQuest Pro v5.1, Becton Dickinson,
Franklin Lakes, NJ, USA). Bar graphs showed the percentage of FL1 positive cells visualized by
GraphPad Prism® 5.

4.8. Statistical Analysis

Statistical analysis was performed using two-tailed, heteroscedastic Student′s t-test to evaluate
the statistical significance (set at * p< 0.05, ** p < 0.01, *** p < 0.001) between two given experimental
groups: Pairwise comparison of each sample to the untreated control.

Supplementary Materials: The following are available online, Figure S1: Spectral data of imidazo[1,2-b]pyrazole
carboxamides, Figure S2: Dose-response curves of imidazo[1,2-b]pyrazole-7-carboxamides on HL-60
cells, Figure S3: Dose-response curves of imidazo[1,2-b]pyrazole-7-carboxamides on MOLT-4 cells,
Figure S4: Dose-response curves of imidazo[1,2-b]pyrazole-7-carboxamides on MV-4-11 cells, Figure S5:
Dose-response curves of imidazo[1,2-b]pyrazole-7-carboxamides on THP-1 cells, Figure S6: Dose-response
curves of imidazo[1,2-b]pyrazole-7-carboxamides on K-562 cells, Figure S7: Dose-response curves of
imidazo[1,2-b]pyrazole-7-carboxamides on human primary fibroblast cells, Figure S8: Dose-response curves
of imidazo[1,2-b]pyrazole-7-carboxamides on murine (4T1) and human (MCF7) breast cancer cells grown as a
monolayer (2D) or spheroid (3D), Figure S9: Detection of phosphatidylserine exposure on MV-4-11 cells, Figure
S10: Detection of phosphatidylserine exposure on HL-60 cells, Figure S11: Detection of phosphatidylserine
exposure on MOLT-4 cells, Figure S12: Detection of the mitochondrial membrane potential.

Author Contributions: G.J.S., A.D., L.H.J., I.K. and L.G.P. conceived and designed the experiments. G.J.S., J.A.B.,
A.D., R.A., L.Z.F., V.L.V., I.M., E.K., B.G. and P.B. performed the experiments. G.J.S., A.D., L.H.J., I.K. and L.G.P.
analyzed the data, G.J.S., A.D., L.G.P., L.H.J. and I.K. wrote the paper.

Funding: This research was funded by GINOP-2.3.2-15-2016-00030 and GINOP-2.3.2-15-2016-00001 from the
National Research, Development and Innovation Office (NKFI), Hungary.
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