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Abstract: Hypertension is a major risk factor for the development of cardiovascular diseases.
This study aimed to elucidate whether the natural product mixture No-ap (NA) containing
Pine densiflora, Annona muricate, and Monordica charantia, or its single components have inhibitory
effects on hypertension-related molecules in Angiotensin II (Ang II)-stimulated H9C2 cells. Individual
functional components were isolated and purified from NA using various columns and solvents,
and then their structures were analyzed using ESI–MS, 1H-NMR, and 13H-NMR spectra. H9C2 cells
were stimulated with 300 nM Ang II for 7 h. NA, telmisartan, ginsenoside, roseoside (Roseo), icariside
E4 (IE4), or a combination of two components (Roseo and IE4) were administered to the cells 1 h
before Ang II stimulation. The expression and activity of hypertension-related molecules or oxidative
molecules were determined using RT-PCR, western blot, and ELISA. Ang II stimulation increased the
expression of Ang II receptor 1 (AT1), tumor necrosis factor-α (TNF-α), monocyte chemoattractant
protein-1 (MCP-1), tumor growth factor-β (TGF-β) mRNA, and nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase activity and the levels of hydrogen peroxide (H2O2) and superoxide
anion (•O2

−) and reduced anti-oxidant enzyme activity. NA significantly improved the expression
or activities of all hypertension-related molecules altered in Ang II-stimulated cells. Roseo or IE4
pretreatment either decreased or increased the expression or activities of all hypertension-related
molecules similar to NA, but to a lesser extent. The pretreatment with a combination of Roseo and IE4
(1:1) either decreased or increased the expression of all hypertension-related molecules, compared to
each single component, revealing a synergistic action of the two compounds. Thus, the combination
of single components could exert promising anti-hypertensive effects similar to NA, which should be
examined in future animal and clinical studies.
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1. Introduction

Hypertension is a major risk factor for the development of cardiovascular diseases including
coronary artery disease, stroke, heart failure, peripheral vascular disease [1]. Angiotensin II (Ang
II) is a vasoactive peptide of the renin–angiotensin system (RAS). The cellular effects of Ang II are
mediated by at least two receptors, Ang II receptor 1 (AT1) and Ang II receptor 2 (AT2). Ang II,
through AT1 or AT2, plays a key role in blood pressure homeostasis [2]. Ang II binds AT1 to induce
NADPH oxidase activation and leads to the production of reactive oxygen species (ROS) [3–5]. Thus,
the increasing of ROS is involved in cardiovascular diseases-related changes such as hypertrophy,
fibrosis, tissue inflammation, or vascular remodeling in the heart [4–6].

Inhibition of the RAS through AT receptor blockers (ARBs) can prevent cardiovascular
disease-related events [7]. ARBs (for example, losartan and telmisartan), which are a new class
of approved anti-hypertensive agents, prevent the hypertensive effects of Ang II by the selective
blockade of AT1 [8,9]. However, ARBs produce undesirable side effects such as headache, fatigue,
and dizziness [7]. Thus, we have much interest in the search for natural products with anti-hypertensive
effects and reduced side effects.

Our company (Hyunsung Vital Co. Ltd., Seoul, Korea) has manufactured a natural product
complex (No-ap, NA) expected to downregulate blood pressure. NA contains three natural materials,
i.e., Pinus densiflora, Annona muricata L., and Monordica charantia.

P. densiflora is widely distributed around the world, particularly in Korea and Japan [10]. Pine bark
or needle have been reported to be effective scavengers of ROS [11,12] and to have a suppressive effect
on the expression of pro-inflammatory mediators [13]. Pine needles have anti-hypertensive effects [14].
A.a muricata L., which is known as graviola or guanabana, is widely found in India, South and Central
America, tropical West Africa, and Asia [15]. It has been reported that a decoction made from A. muricata
can be used for hypertension therapy and that the plant extract has anti-oxidative and anti-hypertensive
properties [16]. M. charantia L. is a common vegetable in Okinawa, where it has been recently used in
the therapy of hypertension, diabetes, and dyslipidemia [17], and its phenolic extract has inhibitory
properties against angiotensin-1-converting enzyme, hypertension, and oxidative stress [18]. Thus, these
findings imply that NA may have anti-hypertensive effects, as it is also supported by its wide use as a
folk remedy and by laboratory experiments [14–16].

Although there are reports that the different constituents of NA, i.e., P. densiflora needle, A. muricata,
and M. charantia may have anti-hypertensive properties, the single components of this mixture have not
been isolated and examined [14–16]. This study investigated for the first time whether NA has inhibitory
effects on the hypertension-related molecules in Ang II-stimulated H9C2 cells. After confirmation of
the anti-hypertensive effects, this study aimed to identify the single functional components of NA
and to investigate whether they have anti-hypertensive properties individually. We observed that the
pretreatment with a combination of roseoside and icariside E4, which showed strong activity among
the five single components identified in NA, had anti-hypertensive effects by downregulating ROS
generated via the expression of AT1 and the activity of NADPH oxidase.

2. Results

2.1. Effects of NA on the Expression of Hypertension-Related Molecules in Ang II-Stimulated H9C2 Cells

AT1 is an important effector controlling blood pressure (BP) and blood volume in the cardiovascular
system [3]. We first examined the effects of NA on AT1 expression in Ang II-stimulated H9C2 cells.
AT1 expression was increased in the Ang II-stimulated H9C2 cells, compared with negative control
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(NC, treated with phosphate-buffered saline) cells. NA (60, 100, 200 µg/mL) reduced AT1 expression in
a dose-dependent manner (Figure 1A). A high dose of NA reduced AT1 expression similar to telmisartan
(Telmis), which is known as an AT1 blocker preventing Ang II-induced oxidative stress and vascular
remodeling in hypertension [9]. Pretreatment with 200 µg/mL (corresponding to the high dose of NA)
of ginsenoside (Gin), which was used as one of the natural positive controls for the natural product
mixture (NA), had no effect on AT1 expression in Ang II-stimulated H9C2 cells.

Figure 1. Effects of the natural product mixture (No-ap, NA) on the expression of hypertension-related
molecules or oxidative stress in the Ang II-stimulated H9C2 cells. H9C2 cells (1 × 106 cells) were
stimulated with 300 nM Ang II for 7 h. No-ap (NA), telmisartan (Telmis), or ginsenoside (Gin) were
administered 1 h before Ang II stimulation. The expression of AT1, TNF-α, MCP-1, TGF-β was
determined in mRNA extracts isolated from H9C2 cells using RT-PCR. The activity of NADPH oxidase,
catalase, and SOD, and the amounts of H2O2 and •O2

− were determined in cell lysates isolated from
H9C2 cells using an ELISA kit. The reactions were analyzed using an ELISA plate reader at 450 nm for
the activities of NADPH oxidase and SOD and •O2

− amounts, and at 590 nm for H2O2 amounts and
catalase activity. (A) Expression of AT1 and cytokines. (B) Activity of NADPH oxidase. (C) Amounts
of H2O2. (D) Amounts (fold change %) of •O2

−. (E) Activities of catalase and SOD. #, Numbers below
the band images, indicating the mean values (n = 4 independent experiments) obtained from the ratio
of the band density of each group to those of the corresponding controls and loading control GAPDH.
The results represent the mean ± SEM (n = 4) obtained from four independent experiments performed
in triplicates. NC, negative control; Ang II, angiotensin II stimulation; AT1, angiotensin II receptor 1;
TNF-α, tumor necrosis factor-α; MCP-1, monocyte chemoattractant protein-1; TGF-β, tumor growth
factor-β; NADPH, nicotinamide adenine dinucleotide phosphate; H2O2, hydrogen peroxide; •O2

−,
superoxide anion; SOD, superoxide dismutase. ***, p < 0.001 versus the NC. +, p < 0.05; ++, p < 0.01; +++,
p < 0.001 versus the Ang II stimulation.

It has been reported that inflammation has a crucial role in the pathogenesis of hypertension [19–21].
The inflammatory process, with ROS generation and increase in cytokines’ releases, is a hallmark
of hypertension [20,21]. Thus, in order to investigate whether NA prevents inflammation in Ang
II-stimulated H9C2 cells, the expression of inflammatory cytokines was examined. The expression
levels of tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1 (MCP-1), and tumor
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growth factor-β (TGF-β) were increased in Ang II-stimulated H9C2 cells (Figure 1A). NA pretreatment
significantly suppressed the expression of these inflammatory cytokines caused by Ang II in a
dose-dependent manner. A high dose of NA showed stronger inhibitory responses than Telmis. Gin did
not show any effects in all cases. Therefore, hereafter, we will not consider Gin effects.

2.2. Effects of NA on Oxidative Stress in Ang II-Stimulated H9C2 Cells

It has been reported that Ang II-induced hypertension by ROS generated via nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase [22,23]. Thus, we examined the effects of NA on NADPH
oxidase activity in Ang II-stimulated H9C2 cells. NA pretreatment reduced NADPH oxidase activity in
Ang II-stimulated H9C2 cells (Figure 1B).

Next, we examined the effects of NA on the generation of ROS or on anti-oxidant enzyme activity
in Ang II-stimulated H9C2 cells. The production of hydrogen peroxide (H2O2) or superoxide anion
(•O2

−) increased by Ang II stimulation was diminished in NA-pretreated cells in a dose-dependent
manner (Figure 1C,D). The activities of catalase or superoxide dismutase (SOD) were decreased in Ang
II-stimulated H9C2 cells. NA pretreatment increased anti-oxidant enzyme activity (catalase and SOD)
in Ang II-stimulated H9C2 cells in a dose-dependent manner, similar to Telmis (Figure 1E).

2.3. Purification and Identification of Bioactive Ingredients in NA

As a natural product mixture, NA contains P. densiflora (75.0%), A. muricata (12.5%), M. charantia
(12.5%). NA was extracted with methanol and successively partitioned with ethyl acetate and n-BuOH
to afford ethyl acetate, n-BuOH, and water fractions. The n-BuOH fraction was subjected to silica
gel and YMC RP-18 silica gel column chromatography, and five compounds (1–5) were identified.
Their spectroscopic data and comparisons with previous data confirmed that these compounds were
roseoside (1) [24], isolariciresinol 9-O-β-D-xyloside (2) [25], massonianoside B (3) [26], icariside E4
(4) [27], and nicotiflorin (5) [28] (Figure 2, Supplementary Materials Figures S1–S15).

Figure 2. Chemical structures of the compounds isolated from NA. NA (1.9 kg) was fractioned
using various organic chemicals and columns as described in “Materials and Methods”. Finally, five
single components were identified from NA, and then the structure of each component was analyzed
using ESI–MS, 1H-NMR, and 13C-NMR spectra. The inhibitory effects on the expression of AT1
of each fraction separated with organic chemicals were determined (data not shown). Structures
of (1), (2), (3), (4), and (5) indicate roseoside, isolariciresinol 9-O-β-D-xyloside, massonianoside B,
icariside E4, and nicotiflorin, respectively. The molecular formulas of the components roseoside and
icariside E4, which demonstrated biological activity, re C19H30O8 (MW, 386.1941) and C26H34O10
(MW, 506.5480), respectively.
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2.4. Effects of the Isolated Components Roseoside and Icariside E4 on the Expression of Hypertension-Related
Molecules in Ang II-Stimulated H9C2 Cells

We first confirmed that two single components [roseoside (Roseo) and icariside E4 (IE4)], among the
five isolated components, had biological activity. Three components (isolariciresinol 9-O-β-D-xyloside,
massonianoside B, and nicotiflorin) did not have any effects on the expression of AT1 (data not
shown). Roseo or IE4 (20, 30, 50 µg/mL) pretreatment significantly reduced the expression of all
hypertension-related molecules (mRNA and protein) in Ang II-stimulated H9C2 cells in a dose-dependent
manner, compared to Ang II stimulation alone (Figure 3). Treatment with 70µg/mL of Roseo or 100µg/mL
of IE4 reduced the expression of all hypertension-related molecules by approximately 48% and 50%,
respectively, compared to Ang II stimulation. However, only Roseo showed downregulating activity at a
dose above 70 µg/mL (data not shown). Both components showed inhibitory effects on the expression of
all hypertension-related molecules, although neither one exhibited inhibitory effects similar to those of
Telmis or NA. Thus, we tried a combination pretreatment. A ratio of 1:1 for the combination pretreatment
of Roseo and IE4 was used in preliminary experiments. The combination of Roseo and IE4 in a 1:1 ratio
(each used in a dose of 25 µg/mL; total dose, 50 µg/mL) reduced the expression of all hypertension-related
molecules by approximately 50–72% in Ang II-stimulated H9C2 cells. Thus, the combination pretreatment
of Roseo and IE4 showed a strong synergistic inhibitory effect on the expression of all hypertension-related
molecules in Ang II-stimulated H9C2 cells.

Figure 3. Effects of roseoside and icariside E4, alone or in combination, on the expression of
hypertension-related molecules in the Ang II-stimulated H9C2 cells. The experimental details of the
stimulation of H9C2 cells and their treatment with different compounds were described in Figure 1
legend. Telmis (10 µM), roseoside (Roseo; 20, 30, or 50 µg/mL), icariside E4 (IE4; 20, 30, or 50 µg/mL),
and Roseo/E4 combinations (20, 30, or 50 µg/mL, 1:1 ratio) were administered 1 h before Ang II
stimulation. The expression of all hypertension-related molecules was determined in mRNA or protein
extracts isolated from H9C2 cells using RT-PCR and Western blot, respectively. (A) Expression of all
hypertension-related molecules’ mRNA. (B) Protein expression of all hypertension-related molecules. Both,
combination of Roseo and IE4 (1:1 ratio; each component used at a dose of 10, 15, 25 µg/mL; total doses for
the different mixtures at a 1:1 ratio were 20, 30, 50 µg/mL). Ang II, angiotensin II stimulation. #, Numbers
below the band images indicate the mean values (n = 4) obtained as described in Figure 1 legend.
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2.5. Respective Effects of Roseoside and Icariside E4 on Oxidative stress in Ang II-Stimulated H9C2 Cells

We examined the effects of Roseo or IE4 on NADPH oxidase activity in Ang II-stimulated H9C2
cells. Roseo or IE4 pretreatment reduced NADPH oxidase activity in Ang II-stimulated H9C2 cells
(Figure 4A).

Figure 4. Effects of roseoside, icariside E4, and their combination on oxidative stress in Ang
II-stimulated H9C2 cells. The experimental details of the stimulation of H9C2 cells and their
treatment with different compounds were described in Figure 1 legend. Telmis (10 µM), Roseo (20, 30,
or 50 µg/mL), IE4 (20, 30, or 50 µg/mL), and combinations of Roseo and IE4 (20, 30, or 50 µg/mL,
1:1 ratio) were administered to the cells 1 h before Ang II stimulation. The activities of NADPH oxidase,
catalase, and SOD, and the amounts of H2O2 and •O2

− were determined in cell lysates isolated from
H9C2 cells using an ELISA kit. The reactions were analyzed using an ELISA plate reader as described
in Figure 1 legend. (A) Activity of NADPH oxidase. (B) Amounts of H2O2. (C) Amounts (fold change
%) of •O2

−. (D) Activities of catalase and SOD. The results represent the mean ± SEM (n = 4) obtained
from four independent experiments performed in triplicates. ***, p < 0.001 versus NC. +, p < 0.05; ++,
p < 0.01; +++, p < 0.001 versus Ang II stimulation.

Next, we examined the effects of Roseo and IE4 on the generation of ROS and on anti-oxidant
enzyme activity in Ang II-stimulated H9C2 cells. The generation of H2O2 or •O2

− increased by Ang II
stimulation was diminished after Roseo or IE4 pretreatment in a dose-dependent manner (Figure 4B,C).
Both Roseo and IE4 pretreatments increased the anti-oxidant activity (catalase and SOD), which was
decreased by Ang II-stimulated H9C2 cells (Figure 4D). Roseo pretreatment showed reduction of ROS
and increase of anti-oxidant enzyme activity similar to Telmis, whereas IE4 pretreatment showed
smaller effects than Roseo or Telmis.

The combination pretreatment of Roseo and IE4 at a ratio of 1:1 (each used at the dose of 25 µg/mL;
total dose, 50 µg/mL) reduced the activity of NADPH oxidase and the generation of H2O2 and •O2

−

in a dose-dependent manner in Ang II-stimulated H9C2 cells. The combination pretreatment increased
the activity of catalase or SOD in a dose-dependent manner. Thus, the combination pretreatment
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of Roseo and IE4 at a 1:1 ratio showed stronger synergistic inhibitory effects on the suppression of
oxidative stress and on the increase of anti-oxidant enzyme activities in Ang II-stimulated H9C2 cells,
compared to the single components (Figure 4).

3. Discussion

We demonstrated that the natural product complex NA suppresses the expression of AT1,
the generation of ROS (H2O2 and •O2

−), and the expression of inflammatory cytokines (TNF-α,
MCP-1, and TGF-β) produced via NADPH oxidase, which are related to hypertension, and that it
increases the expression of anti-oxidant enzymes (catalase and SOD) in Ang II-stimulated H9C2 cells.
Our data also demonstrate that two components, Roseo and IE4, among five identified components
isolated and purified from NA, whose structures were also analyzed in this study, have functional
activities in hypertension.

The component Roseo isolated from various plants, including A. muricata contained in NA, has
a variety of functional activities. It relaxes precontracted aortic rings in an endothelium-dependent
manner [29], increases insulin secretion [30], inhibits rat liver microsomal glucose-β-phosphate [31],
potentiates the inhibitory activity against angiotensin-converting enzyme, although itself shows no
activity against an its enzyme [32], shows inhibitory effects on lipopolysaccharide (LPS)-induced nitric
oxide (NO) production in RAW264.7 cells [33], prevents oxidative stress [34], and has a depigmentation
effect in melanocytes by inhibiting melanin synthesis [35]. However, it has not been reported yet that
Roseo directly suppresses hypertensive effects caused by the upregulation of ROS.

The other component, IE4, isolated and purified from plants, such as Ulmus pumila L. and
Tabebuia roseo-alba, has various functional activities. It inhibits NO production [36], shows anti-oxidant
activity [37], demonstrates anti-nociceptive activity in a chemical pain-induced model [38], and may
be beneficial in the traditional treatment of Alzheimer’s disease by preventing blood–brain barrier
damage and inflammatory cell infiltration into the brain [39]. IE4, purified from pine trees, such
as P. densiflora, Pinus thunbergii, and Pinus morrisonicola Hayata, also delays the coagulation time by
inhibiting thrombin activity [40] and inhibits the release of β-hexosaminidase in RBL-2H3 cells [41].
However, it has not been reported yet that IE4 purified from P. densiflora, which is the most abundant
component of NA, directly suppresses the hypertensive effects caused by the upregulation of ROS.
There is only a report indicating that IE4 isolated from P. morrisonicola H. could be a promising
anti-hypertensive candidate by blocking voltage-operating Ca2+ channels [42].

Hypertension is the most common cardiovascular risk factor. Ang II, which is known as one
of many factors causing cardiovascular injury in hypertension, elicits many pathophysiological
actions by inducing ROS generation via the activation of vascular NADPH oxidase [20,22,23,43].
Ang II stimulation can increase blood pressure in association with immune response activation and
inflammation [21]. Infiltration of inflammatory cells into areas around blood vessels that occurs
simultaneously with other events of the inflammatory process, such as the increase of ROS generation
and of the levels of cytokines and chemokines, is a hallmark of hypertension [9,21,22]. Thus, our data
suggest that NA may suppress blood pressure and vascular remodeling in hypertension mainly caused
by RAS through downregulating of ROS produced via AT1 expression and NADPH oxidase activity,
as demonstrated by the data showing that NA reduced hypertensive responses through inhibiting
downstream pathways via AT1 expression and NADPH oxidase (which generates ROS), and then
the generated ROS increased the release of the cytokine TNF-α and the chemokines MCP-1, which is
known to induce inflammation and cell infiltration [44], respectively, and increased TGF-β, which is
known to induce vascular remodeling in hypertension [9,22]. In addition, our data indicate that NA
increased endogenous anti-oxidant enzymes (catalase and SOD) in Ang II-stimulated H9C2 cells.
The endogenous anti-oxidant glutathione peroxidase (GPx), which scavenges H2O2, is not affected by
Ang II stimulation in cardiac fibroblasts [45] and vascular adventitial fibroblasts [46]. Thus, we did not
check GPx activity because the catalase also scavenges H2O2. However, it is necessary to investigate
the differences between cell types.
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Our observations also suggest that the components Roseo and IE4, isolated and purified
from NA, may independently suppress hypertension-related molecules such as ROS, cytokines
and chemokines, and TGF-β, which are typically associated with oxidative stress, inflammation,
and vascular remodeling in hypertension, by increasing endogenous anti-oxidant enzymes in Ang
II-stimulated H9C2 cells. In addition, we also show that combinations of Roseo and IE4 (1:1 ratio)
may have strong synergistic or additive effects.

In conclusion, these in vitro results support the conclusion that the functional compounds Roseo
and IE4 have significant anti-hypertensive effects on Ang II-stimulated H9C2 cells. Our data suggest
that Roseo and IE4 from NA, which have anti-oxidant, anti-inflammatory, and anti-vascular remodeling
properties in hypertension and less side effects than the whole mixure NA, have a potential as
health functional food supplements for hypertension and should be further evaluated in animal and
clinical models.

4. Materials and Methods

4.1. Materials

NA, a natural product mixture, was donated by Hyunsung Vital Co. Ltd. (Seoul, Korea) which
makes a variety of healthy functional foods. NA contains P. densiflora (75.0%), A. muricata (12.5%),
and M. charantia (12.5%). These plants were extracted using hot water (90 ◦C) for 24 h, and the extract
was evaporated by a Liquefied extractor (Hyunsung Vital Co. Ltd., Seoul, Korea) to yield a powder of
NA. This powder was named NA (No-ap), natural product mixture.

4.2. Purification and Identification of Bioactive Ingredients

NA (1.9 kg) was extracted using methanol (4 L, 95%) at room temperature for 2 days. The methanol
extract (556.4 g) was concentrated under pressure, dissolved in distilled water (2 L), and successively
partitioned with ethyl acetate and n-BuOH to afford ethyl acetate (23.0 g, A), n-BuOH (122.1 g, B),
and water fractions.

The n-BuOH extract (120 g) was separated by vacuum liquid chromatography using a silica
gel column with a gradient solvent mixture of CHCl3–MeOH (30:1, 25:1, 20:1, 15:1, 10:1, 8:1, 6:1, 4:1,
2:1, 1:1, and 100% MeOH) to afford 11 subfractions (B-1 to B-11). Next, subfraction B-6 (2.1 g) was
subjected to YMC RP-C18 silica gel column and was eluted with a solvent mixture of MeOH–H2O
(1:2), yielding compound 1 (20.0 mg), compound 2 (10.0 mg), compound 3 (30.0 mg), and compound 4
(10.0 mg). Further purification of subfraction B-9 via YMC RP-C18 silica gel column, using mixtures of
MeOH−H2O (1:1.5), and preparative HPLC yielded compound 5 (10.0 mg).

4.3. Cardiomyocytic H9C2 Cell Line Culture

The rat cardiomyocytic H9C2 cell line (H9C2 cells) was obtained from the Korean Cell line
Bank (KCLB, Seoul, Korea). H9C2 cells were grown in Dulbecco’s modified eagle medium (DMEM)
(HyClone, Logan, UT, USA) supplemented with 1% L-glutamine, 1% antibiotic penicillin/streptomycin
solution (Sigma-Aldrich, St. Louis, MO, USA), and 10% fetal bovine serum (HyClone, Logan, UT, USA).
H9C2 cells were maintained at 37 ◦C in a humidified atmosphere with CO2, and the media were
replaced every 3 days [47].

4.4. Cell line Stimulation and Treatment

H9C2 cells (1 × 106 cells) were stimulated with 300 nM angiotensin II (Ang II; Sigma-Aldrich, St.
Louis, USA) and then incubated for 7 h [47]. The cells were centrifuged (470× g, 3 min) to separate
the supernatants and pellet the cells. The cells were used to determine the expression of all molecules
related to hypertension. NA (60, 100 or 200 µg/mL), telmisartan (Telmis; 10 µM), ginsenoside
(Gin; 200 µg/mL), roseoside (Roseo; 20, 30 or 50 µg/mL), icariside E4 (IE4; 20, 30 or 50 µg/mL),
the last two as purified components isolated from NA, and combinations of Roseo and IE4 (1:1 ratio,
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20, 30, or 50 µg/mL) were administered to the cells 1 h before Ang II stimulation. As a negative control
(NC), phosphate-buffered saline (PBS) was used, which was also Ang II solvent. Telmis, which is a
drug used in the clinic, was used as a positive control. The optimal concentrations of Ang II stimulation,
NA, Gin, Roseo, and IE4 were determined in preliminary experiments (data not shown). Gin was used
as a natural positive control for the natural product mixture (NA).

4.5. Reverse Transcription-Polymerase Chain Reaction (RT-PCR)

Total mRNA was isolated from H9C2 cells (1 × 106 cells) using TRIzol reagent (Invitrogen,
Life Technologies Ltd., Waltham, CA, USA). RT-PCR was performed in a final volume of 20 µL, using a
high-capacity cDNA Reverse Transcription kit (Applied Biosystems, Foster City, CA, USA) and a G-taq
kit (Cosmogenetech, Seoul, Korea) in an automated thermal cycler (Bio-Rad, Laboratories, Hercules,
CA, USA). The PCR assays were performed for 35 cycles. Each cycle consisted of the following steps:
denaturation at 94 ◦C for 30 s, annealing at 51 ◦C for 45 s, and extension at 72 ◦C for 1 min. The results
were expressed as a ratio to GAPDH mRNA. The PCR products were analyzed using 1% agarose
gel and visualized under UV light after staining with StaySafe nucleic acid gel stain (Real Biotech
Corporation, Banqiao, Taiwan) [48].

The primer sequences used were as follows: AT1 sense, 5′-CAT AGG ACT GGG CCT AAC CA-3′;
AT1 anti-sense, 5′-GCC GTA AAA CAG AGG GTT CA-3′; TNF-α sense, 5′-TTC TGT CCC TTT CAC
TCA CTG G-3′; TNF-α anti-sense, 5′-TTG GTG GTT TGC TAC GAC GTG G-3′; MCP-1 sense, 5′-GAA
GGA ATG GGT CCA GAC AT-3′; MCP-1 anti-sense, 5′-ACG GGT CAA CTT CAC ATT CA-3′; TGF-β
sense, 5′-CTC TCC ACC TGC AAG ACC AT-3′; TFG-β anti-sense, 5′-CTG CCG TAC AAT TCC AGT
GA-3′; GAPDH sense, 5′-AAC TTT GGC ATT GTG GAA GG-3′; GAPDH anti-sense, 5′-ACA CAT
TGG GGG TAG GAA CA-3′.

4.6. Determination of the Activity of NADPH Oxidase, Superoxide Dismutase, and Catalase and the Levels
of Hydrogen Peroxide and Superoxide Anion

The activities of NADPH oxidase, catalase, and SOD, and the amounts of H2O2 and •O2
− were

measured in the lysates of H9C2 cells stimulated with Ang II using a NADPH oxidase assay kit, a H2O2

assay kit (Abcam, Cambridge, UK), a •O2
− assay kit, a SOD assay kit (Cell Biolabs. Inc., San Diego,

CA, USA), and a catalase activity kit (Biovision, Milpitas, CA, USA), respectively. Briefly, H9C2 cells
(1 × 106 cells) were washed three times with PBS and placed in lysis buffer (PBS containing 1% Triton
X-100). Standard diluents (100 µL), lysates obtained from each sample (100 µL), and 100 µL of reaction
mixture (50 µL enzyme working solution and 50 µL probe) were added in 96-well plates; the plates were
then incubated on a plate shaker at room temperature for the time periods indicated (30 min for NADPH
oxidase, SOD, and catalase; 1 h for H2O2 and •O2

−). The optical density was read at 450 nm for NADPH
oxidase, •O2

−, and SOD, and at 590 nm for H2O2 and catalase. Standard curves were made using serial
dilutions of a standard sample, and then the activity was calculated according to the manufacturer’s
instructions. The lowest detection limit for NADPH oxidase was below 20 pg/mL, for H2O2 it was
0.04 pmol/µL, for •O2

− and SOD it was 1.2 mU/µL, and for catalase it was 0.078 pg/mL.

4.7. Western Blot Analysis

H9C2 cells (1 × 106 cells) harvested from Ang II-stimulated cells were suspended in a low-salt
lysis buffer [50 mM Tri-HCl (pH 7.9), 1.0 mM EDTA, 150 mM NaCl, 1.0% NP40, 5 mM NaF,
0.25% Na deoxycholate, 2 mM NaVO3, protease inhibitors cocktail] and allowed to swell on
ice for 30 min. The cells were then homogenized using a micropipette. After centrifugation,
the supernatants obtained from the cell extracts were analyzed by 10% SDS-polyacrylamide
gel electrophoresis and electrophoretically transferred to nitrocellulose membranes (Amersham
Biosciences, Piscataway, NJ, USA). The membranes were washed with PBS containing 0.1% Tween
20 (PBST) and then blocked for 1 h in PBST containing 5% skim milk. After washing the membranes
with PBST, they were treated with primary antibodies against actin, AT1, TNF-α (Cell Signaling
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Technology, Beverly, MA, USA), MCP-1, or TGF-β (Abcam, Cambridge, UK) diluted with PBST (1:1000).
The membranes were washed with PBST and treated with horseradish peroxidase (HRP)-conjugated
goat anti-mouse or HRP-conjugated goat anti-rabbit IgG (diluted to 1:5000) (Bethyl Laboratories,
Montgomery, TX, USA) in PBST for 1 h. After washing, the protein bands were visualized by Enhanced
Chemi-Luminescence (ECL; Amersham Biosciences, Piscataway, NJ, USA) using a chemiluminometer
(Bio-Rad, Laboratories, CA, USA) [48].

4.8. Statistical Analysis

The experimental data are shown as means ± SEM (n = 4). The unpaired Student’s t-test was
used to compare two groups. Multiple-group comparisons were performed using two-way ANOVA
followed by Scheffe’s post-hoc test, using the SPSS software (SPSS Inc., Chicago, IL, USA). Values of
p < 0.05 were considered to indicate statistical significance. Densitometry analyses of Western blots
and RT-PCR were performed with Quantity One (version 4.6.3; Bio-Rad, Hercules, CA, USA) and the
results are indicated as means ± SEM (n = 4), obtained from the ratio of each band density to those of
the control and the loading control of four independent experiments.
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