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Abstract: Micellar systems consisting of a surfactant and an additive such as an organic salt or
an acid usually self-organize as a series of worm-like micelles that ultimately form a micellar
network. The nature of the additive influences micellar structure and properties such as aggregate
lifetime. For ionic surfactants such as sodium dodecyl sulfate (SDS), CMC decreases with increasing
temperature to a minimum in the low-temperature region beyond which it exhibits the opposite
trend. The presence of additives in a surfactant micellar system also modifies monomer interactions
in aggregates, thereby altering CMC and conductance. Because the standard deviation of β was
always lower than 10%, its slight decrease with increasing temperature was not significant. However,
the absolute value of Gibbs free enthalpy, a thermodynamic potential that can be used to calculate the
maximum of reversible work, increased with increasing temperature and caffeic acid concentration.
Micellization in the presence of caffeic acid was an endothermic process, which was entropically
controlled. The enthalpy and enthropy positive values resulted from melting of “icebergs” or
“flickering clusters” around the surfactant, leading to increased packing of hydrocarbon chains within
the micellar core in a non-random manner. This can be possibly explained by caffeic acid governing
the 3D matrix structure of water around the micellar aggregates. The fact that both enthalpy and
entropy were positive testifies to the importance of hydrophobic interactions as a major driving force
for micellization. Micellar systems allow the service life of some products to be extended without
the need to increase the amounts of post-harvest storage preservatives used. If a surfactant is not
an allowed ingredient or food additive, carefully washing it off before the product is consumed
can avoid any associated risks. In this work, we examined the influence of temperature and SDS
concentration on the properties of SDS–caffeic acid micellar systems. Micellar properties can be
modified with various additives to develop new uses for micelles. This allows smaller amounts of
additives to be used without detracting from their benefits.

Keywords: caffeic acid; SDS; micellization; critical micelle concentration; anionic amphiphiles;
food additives

1. Introduction

Hydroxycinnamic acids are phenolic compounds of the phenylpropanoid family that occur
naturally as secondary metabolites in plants. A variety of these derivatives of cinnamic acid can in
fact be found in foods, plant-derived products (e.g., beer, wine, olive oil, coffee), herbs, spices, cereals,
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legumes, fruits, nuts, and vegetables [1,2], even in mushrooms [3], in variable amounts depending
on a number of factors including environmental conditions, cultivation technique and plant part [4].
Scheme 1 shows selected hydroxycinnamic acids. Because these phenolic compounds are ubiquitous in
plants, they are usual components of the animal and human diet, albeit in widely variable proportions
around the world. Also, although they can be absorbed in the gastrointestinal tract, they are partially
excreted unchanged or in derivative forms via urine and faeces [5].
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Phenols promote health and reduce disease risk, so they are especially relevant to animal and
human health, pharmacology, food science and industrial production. For example, the health effects
of Mediterranean diet have been widely ascribed to the consumption of phenolic compounds even
though the biologically available amount of substances such as flavonoids in foods may be inadequate
to account for their action and synergistic effects may be present [6]. Some major features of fruit
production are strongly influenced by the presence of phenols. In fact, phenolic compounds influence
fruit quality through a number of sensory properties such as flavour [7], colour [8] or texture [9]. Also,
the outcome of storage and other manipulation processes [10,11] may be compromised by browning
reactions involving phenols and resulting in undesirable colour or taste, or the loss of nutritional value,
all of which can have adverse economic impacts.
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Caffeic acid (CA) is an especially promising nutraceutical by virtue of its strong antioxidant
effects [12–14]. Thus, CA modulates redox balance in cells and protects them from reactive oxygen
species (ROS) forming in their metabolic reactions [15,16]. In fact, CA scavenges free radicals, thereby
stopping oxidation; the effect is ascribed to its two hydroxyl groups and their position on the molecule
facilitating hydrogen bonding interactions. As a result, CA has some potential health benefits especially
prominent among which are anti-carcinogenic action [17–19], and cancer prevention and treatment.
In addition, CA is an effective anti-mutagenic agent with activity against nitrosamines [20]. However,
it remains as a potential carcinogen for humans on some hazard sheets [21]. In food technology, caffeic
acid has proved effective to reduce aflatoxin biosynthesis during nut storage [22]. Obviously, high fat
contents or the presence of salts can trigger degradation. Finally, because consumers are increasingly
favouring naturally occurring products, compounds such as CA may find even wider use.

Micellar systems are colloids with useful properties for industrial and food applications.
For example, they can be used to prepare isotropic, thermodynamically stable mixtures of polar
and non-polar solvents to solubilize hydrophobic food-related substances such as aromas or all types
of preservatives. Also, they can be used to trap unwanted chemicals such as degradation precursors
or off-odour compounds. Sodium dodecyl sulphate (SDS), a surfactant that tends to aggregate into
micelles, has been widely studied as a model for micellar structures. Whereas European legislation
banned the use of SDS as a direct additive for food, the US-FDA has recognised it as a multi-purpose
additive [23].

In this work, we expanded previous analyses of the influence of temperature and SDS
concentration on various SDS–phenolic acid micellar systems [24,25]. Micellar properties can be
modified by using various additives with a potential impact on micelle uses. For example, some
additives may be used in smaller amounts without sacrificing their benefits. In this work, we examined
the properties of micellar systems consisting of caffeic acid and SDS.

2. Results and Discussion

The conductance of a solution is a linear function of the concentration of its components.
Also, structural changes in a colloidal solution are known to modify their properties. For example,
the formation of micellar aggregates interferes with the way electrons flow through the system. For this
reason, conductance measurements allow the point where aggregates form to be accurately identified.
The critical micelle concentration (CMC) of the SDS–caffeic acid micellar system was determined from
specific conductance versus surfactant concentration curves. The graph exhibited two distinct regions
differing in slope, namely: the surfactant monomer region and the micellar aggregate region (see
Figure 1). The point where the two branches intersect is taken to represent the CMC of the surfactant.
For SDS in water, CMC has been found to range from 8 to 8.3 m mol kg−1 [26].

Because interactions between monomers are affected by thermal agitation, which may facilitate or
hinder aggregation depending on the nature of the particular molecules, CMC is strongly influenced
by temperature [27,28]. For ionic surfactants such as SDS, CMC decreases with increasing temperature
to a minimum in the low-temperature region beyond which it exhibits the opposite trend. The presence
of additives in a surfactant micellar system also modifies monomer interactions in aggregates,
thereby altering CMC and conductance. Table 1 illustrates the behaviour of the SDS–caffeic acid
micellar system in this respect.
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Figure 1. Typical specific conductance vs surfactant concentration plot for SDS in an aqueous colloid
solution. [CA] = 3 × 10−4 M. Temperature: ( ) 25 ◦C, (#) 55 ◦C.

Table 1. CMC (mM kg−1) and mean degree of micellization (β) in the SDS–CA micellar system at
variable mole ratios as calculated from electrical conductivity plots. The uncertainly values are below
10%.

[CA] × 10−5 mol
kg−1

Temperature (◦C)

25 30 35 40 45 50 55

CMC β CMC β CMC β CMC β CMC β CMC β CMC β

30 7.39 0.70 7.13 0.74 7.03 0.77 7.04 0.74 7.03 0.71 6.92 0.75 6.81 0.64
15 7.83 0.77 7.56 0.76 7.41 0.77 7.35 0.60 7.30 0.67 7.15 0.68 7.01 0.57
7.5 8.16 0.66 7.77 0.69 7.58 0.67 7.55 0.73 7.53 0.64 7.37 0.76 7.21 0.57
3.0 8.32 0.74 7.85 0.67 7.67 0.60 7.62 0.68 7.58 0.60 7.41 0.63 7.25 0.66
1.5 8.34 0.79 8.11 0.74 7.92 0.67 7.86 0.64 7.69 0.60 7.62 0.65 7.45 0.61

Figure 2 illustrates the decrease in CMC with increasing caffeic acid concentration. CMC also
decreased with increasing temperature at each CA level. R2 was invariably higher than 0.9232, so
CMC was a linear function of the caffeic acid concentration. Indeed, the degree of micelle aggregation
(β) was seemingly independent of the additive concentration and temperature. Because the standard
deviation of β was always lower than 10%, its slight decrease with increasing temperature was not
significant. We thus took β to be 0.68 ± 0.11.
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Figure 2. Influence of temperature and the caffeic acid concentration on CMC for the SDS–caffeic acid
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(4) 35 ◦C, (3) 40 ◦C, (�) 45 ◦C, (�) 50 ◦C and (�) 55 ◦C.

As noted earlier, ∆G0
m was calculated from the temperature-dependence of CMC (Equation (3)).

As can be seen in Table 2, ∆G0
m was negative throughout the temperature and CA concentration

ranges; therefore, micellization was invariably spontaneous. It should be noted that the absolute
value of ∆G0

m increased with increasing temperature and CA concentration, probably as a result of a
structural effect of caffeic acid on water.

Table 2. ∆G0
m values (kJ mol−1) for SDS–CA micelles as obtained by substituting CMC and β values

into Equation (3). The uncertainly values are below 10%.

[CA] × 10−5 mol kg−1
T (◦C)

25 30 35 40 45 50 55

30 −37.1 −37.9 −38.6 −39.2 −39.9 −40.6 −41.3
15 −36.9 −37.7 −38.4 −39.0 −39.7 −40.4 −41.1
7.5 −36.7 −37.6 −38.3 −38.9 −39.6 −40.3 −41.0
3.0 −36.7 −37.5 −38.2 −38.9 −39.5 −40.2 −41.0
1.5 −36.6 −37.4 −38.1 −38.7 −39.5 −40.1 −40.8

The influence of temperature on ∆G0
m at different caffeic acid concentrations allowed us to to

estimate the changes in standard micellization enthalpy (∆H0
m) and standard micellization entropy

(∆S0
m). Figure 3 illustrates the influence of temperature on ∆G0

m and Table 3 shows the values
obtained at each CA concentration. R2 was always higher than 0.9985, so ∆G0

m was linearly dependent
on temperature.
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Figure 3. Influence of T (K) on ∆G0
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Table 3. ∆H0
m (kJ mol−1) and ∆S0

m (kJ mol−1 K−1) for the SDS–caffeic acid system as calculated
from the variation of ∆G0

m with T. The uncertainly values are below 10%.

[CA] × 10−5 mol kg−1 ∆H0
m kJ mol−1 ∆S0

m kJ mol−1 K−1 R2

30 3.9 0.14 0.9992
15 4.2 0.14 0.9992
7.5 4.9 0.14 0.9979
3.0 5.0 0.14 0.9988
1.5 4.7 0.14 0.9988

Micellization in the presence of CA was an endothermic process and ∆H0
m decreased with

increase in CA concentration, the two bearing a linear relationship (R2 = 0.9127). Also, ∆S0
m was

positive, so the micellization process was entropically controlled. These positive values resulted from
melting of “icebergs” or “flickering clusters” around the surfactant leading to increased packing of
hydrocarbon chains within the micellar core in a non-random manner [28]. ∆S0

m also bore a linear
relationship to the CA concentration (R2 = 0.8363). Raising such a concentration possibly led to caffeic
acid governing the 3D matrix structure of water around the micellar aggregates. The fact that both
∆H0

m and ∆S0
m were positive testifies to the importance of hydrophobic interactions as a major

driving force for micellization.

3. Materials and Methods

3.1. Binding Mechanism

The proposed mechanism for CA binding to SDS micelles is depicted in Scheme 2.
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Scheme 2. Proposed mechanism for CA binding to SDS micelles.

Based on the pseudo-phase model, interactions between SDS and CA are assumed to occur
in different domains. In the scheme, W and M designate aqueous and micellar pseudo-phases,
respectively. The binding constant is given by

KS =
[CA]M

[CA]W [SDSn]
(1)

Also, the concentration of micellized surfactant, [SDSn], is assumed to be

[SDSn] = [SDSt]−CMC (2)

where [SDSt] is the total concentration of SDS and CMC is the critical micelle concentration.

3.2. Conductivity Measurements

All reactants were supplied by Sigma Aldrich (Steinheim, Germany) and used without further
purification. All solutions were prepared in distilled and deionized water (Adesco, Granollers, Spain).
The experimental procedure is described in detail elsewere [24,25]. Conductance (κ) measurements
accurate to within±0.1% were made with a Crison GLP-32 conductimeter (Mettler-Toledo, L’Hospitalet
de Llobregat, Spain) with a cell constant of 0.1 cm−1 that was calibrated with two different KCl
standards (0.0100 KCl mol L−1, κ = 1413 µS cm−1 and 0.1000 KCL mol L−1, κ = 12.88 mS cm−1, both at
25 ◦C) supplied by Crison. The conductance of SDS solutions of variable concentration ranging from
0.1 to 0.004 mol L−1 was measured at a constant temperature and after addition of caffeic acid to a
concentration of 0–7 ×·10–5 mol L–1 at 25–55 ◦C. A Techne TE-8D RB-5 thermostatic bath (Cole-Parmer,
Staffordshire, UK) was used to keep samples at the desired temperature ±0.1 ◦C. Also, samples were
magnetically stirred during measurements.

3.3. CMC Determination

By virtue of their sensitivity and reproducibility, conductivity measurements provide an accurate
method for determining CMC in anionic and cationic surfactants [29]. CMC is calculated from the
point of intersection of two lines in conductivity versus surfactant concentration plot in two regions
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corresponding to surfactant monomers ([SDS] « CMC) and aggregates ([SDS] » CMC). Figure 1
illustrates the determination of CMC at two different temperatures and in the presence of CA as
an additive.

3.4. Micellization Thermodynamics

The molar standard Gibbs energy change for the micelle aggregation process can be calculated
from the following equation [30]:

∆G◦m = (1 + β)RT ln XCMC (3)

where T is temperature, R the universal gas constant and XCMC the critical micelle concentration as a
mole fraction. β is the degree of micellization [31] and is calculated as the ratio between the slopes of
conductance–concentration curves in the pre-micellar and post-micellar region (see Figure 1):

β =
S2

S1
(4)

The standard enthalpy and entropy of micellization (∆H0
m and ∆S0

m, respectively) can be used
to calculate ∆G0

m as follows:
∆G◦m = ∆H◦m − T∆S◦m (5)

4. Conclusions

Micellar systems consisting of a surfactant and an additive such an organic salt or an acid usually
self-organize into a series of worm-like micelles that ultimately form a micellar network. The nature
of the additive influences some properties of the micellar structure including aggregate lifetime. For
ionic surfactants such as SDS, CMC decreases with increasing temperature to a minimum in the
low-temperature region beyond which it exhibits the opposite trend. The presence of additives in a
surfactant micellar system also modifies monomer interactions in aggregates, thereby altering CMC
and conductance. Because the standard deviation of β was always lower than 10%, its slight decrease
with increasing temperature was not significant. However, the absolute value of Gibbs free enthalpy, a
thermodynamic potential that can be used to calculate the maximum of reversible work, increased
with increasing temperature and caffeic acid concentration. Micellization in the presence of caffeic
acid was an endothermic process, which was entropically controlled. The enthalpy and enthropy
positive values resulted from melting of “icebergs” or “flickering clusters” around the surfactant,
leading to increased packing of hydrocarbon chains within the micellar core in a non-random manner.
This can be possibly explained by caffeic acid governing the 3D matrix structure of water around the
micellar aggregates. The fact that both enthalpy and enthropy were positive testifies to the importance
of hydrophobic interactions as a major driving force for micellization. Preservatives for storage of
postharvest products facilitate micellar association, thereby extending their service life without the
need to use increased amounts of additives. According to Laguerre et al. [32], the deeper the phenolic
is in the micelle, the less antioxidant the phenolic. If a surfactant not allowed as an ingredient or
food additive is to be used, then carefully washing it off before consuming the product can avoid its
potentially adverse impact on health.
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