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Abstract: Background: Identifying possible drug-target interactions (DTIs) has become an important
task in drug research and development. Although high-throughput screening is becoming available,
experimental methods narrow down the validation space because of extremely high cost, low success
rate, and time consumption. Therefore, various computational models have been exploited to infer DTI
candidates. Methods: We introduced relevant databases and packages, mainly provided a comprehensive
review of computational models for DTI identification, including network-based algorithms and machine
learning-based methods. Specially, machine learning-based methods mainly include bipartite local model,
matrix factorization, regularized least squares, and deep learning. Results: Although computational
methods have obtained significant improvement in the process of DTI prediction, these models have
their limitations. We discussed potential avenues for boosting DTI prediction accuracy as well as
further directions.

Keywords: drug-target interaction prediction; computational models; network-based methods; machine
learning-based methods; drug repositioning

1. Introduction

Drug discovery is a complicated, costly and low-success process. It is estimated that it takes about
10∼15 years and 0.8∼1.5 billion dollars from initially presenting the abstract concept to putting it into
market for a new drug. Despite pharmaceutical companies investing enormous costs and time, only about
10% of drugs are successfully evaluated by FDA every year [1,2]. Nobel Laureate James Black presented
that the most solid foundation for new drug discovery is beginning from old drugs [3]. Drug repurposing,
which repositions the existing drugs to find new treatment clues of the old drugs, can shorter drug research
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and development time, reduce unexpected drug toxicity, and promote drugs to enter clinical phases as
soon as possible [4–6]. Jin et al. [7] represented that repositioned drugs account for about 30% of the newly
FDA-approved drugs and vaccines.

DTI identification, aiming to find potential targets/drugs for the existing drugs/targets, has been
an important step in drug repositioning. With the integration of numerous heterogeneous biological
data, a variety of computational approaches have been exploited to systematically infer possible
DTIs. Some research [4,8] has been better summarized. Inspired by these summarizations, in this
study, we discussed relevant data repositories, different computational models and their advantages,
and challenges for DTI identification.

2. Data Representation and Repositories

2.1. Benchmark Data Set

The majority of computational models for DTI identification used the datasets provided by
Yamanishi et al. [9]. The details are shown in Table 1. Yamanishi et al. [9] provided three types of
data: drug similarity matrix SD ∈ <n×n, target similarity matrix ST ∈ <m×m, and drug-target interaction
network Y ∈ <n×m where yij = 1 if the drug di and the target tj is linked; otherwise, yij = 0 .

Table 1. Datasets provided by Yamanishi et al. [9].

Dataset Drugs (nd) Targets (nt) Interactions

enzyme 445 664 2926
ion channel 210 204 1476

GPCRs 223 95 635
nuclear receptor 54 26 90

2.2. Flowchart

Various DTI inference algorithms have been designed over the past two decades. These methods
usually integrated the datasets provided by Yamanishi et al. [9] and other biological information from
various public databases into their proposed computational models, and then trained the models,
finally scoring the interaction probabilities for unknown drug-target pairs. We briefly represented the
flowchart as Figure 1.
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Figure 1. The flowchart of standard drug-target interactions (DTI) identification models.
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2.3. DTI Relevant Databases

Various experimental data provides abundant information for DTI identification and significantly
improved the performances of DTI prediction models. It is feasible to merge these DTI data from different
databases. To address the conflict problems between data values from different repositories in the
process of data merging, for example, Liu et al. [10] set a priority for each DTI and give precedence
to the more reliable data source. Liu et al. [10] merged different compound-protein interaction data
retrieved from Matador, DrugBank, and STITCH. Matador and DrugBank are manually curated databases.
STITCH is a comprehensive repository collected from four different sources: manually curated databases,
experimental validation, text mining and model prediction. Particularly, STITCH assigns each DTI a score
ranging from 0 to 1000. Each score indicates confidence degree of each DTI supported by the above four
types of evidence. In addition, Liu et al. [10] considered that DTIs from Matador and DrugBank are
supported by biochemical experiments and the literature and gave these DTIs the highest score of 1000.

Lou et al. [11] designed a novel Network integration pipeline for DTI prediction, DTINet.
DTINet developed other ways of DTI data merging from a multiple-views perspective based on the
following steps:

Step 1 Extracting related data from different databases: (i) drugs, DTIs and drug-drug interactions
from DrugBank; (ii) proteins, and protein-protein interactions from HPRD [12]; (iii)
diseases, drug-disease and protein-disease associations from the Comparative Toxicogenomics
Database [13]; (iv) side-effects and drug-side-effect associations from SIDER [14].

Step 2 Excluding isolated entities (nodes) which have no edges in the network.
Step 3 Integrating four types of nodes and six types of associations (edges) in Step 1 and constructing

a heterogeneous network.
Step 4 Building multiple similarity networks to further increase the network heterogeneity.
Step 5 Removing homologous proteins or similar drugs from constructed heterogeneous networks

to reduce the potential redundancy in the DTIs: (i) removing the DTIs involving homologous
proteins with sequence identity scores larger than 40%; (2) removing the DTIs involving similar
drugs with Tanimoto coefficients larger than 60%; (3) removing the DTIs involving the drugs
with Jaccard similarity scores of side effects larger than 60%; (4) removing the DTIs involving
the proteins or drugs associated with similar diseases (Jaccard similarity scores larger than 60%;
(5) removing the DTIs involving either homologous proteins with sequence identity scores larger
than 40% or similar drugs with Tanimoto coefficients larger than 60%.

Parts of DTI repositories are described as follows:

2.3.1. DrugBank

The DrugBank database [15] (https://www.drugbank.ca/) provides 12,701 drug entries, which includes
2536 FDA-approved small molecules, 1279 FDA-approved biotech drugs, 130 nutraceuticals and more than
5822 experimental drugs. DrugBank describes drug details including chemical structures, pharmacological
and pharmaceutical information. Further, DrugBank provides 5144 non-redundant proteins linking these
drug entries and protein details including sequences, structures and pathways.

2.3.2. SuperTarget

The SuperTarget database [16] (http://insilico.charite.de/supertarget/) provides comprehensive data
services and links with nine websites: BindingDB, RCSB PDB, PubChem, UniProt, KEGG, DrugBank,
SuperCyp, SIDER, and ConsensuspathDB. It consists of six different types of entities: drugs, proteins,
side-effects, pathways, ontologies and a special subgroup of targets (the cytochromes 450). The database

https://www.drugbank.ca/ 
http://insilico.charite.de/supertarget/ 
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contains 332,828 interactions between 6219 proteins and 195,770 compounds. The drugs can be searched
by drug name, PubChem ID, ATC-code, and side-effects. The targets can be retrieved by target name,
EC-number, UniProt name, accession number, PDB ID, and KEGG target ID. In addition, SuperTarget
provides 282 drug-target-related pathways, 6532 drug-target-related ontologies, and 63 cytochromes.

2.3.3. STITCH

The STITCH database [17] (http://stitch.embl.de/) contains 1.6 bn interactions between 0.5 million
chemicals and 9.6 million proteins from 2031 organisms.

2.3.4. ZINC

The ZINC database [18] (http://zinc.docking.org/) is a free and curated collection of
commercially-available compounds for virtual screening. It provides more than 350,000,000 purchasable
compounds in ready-to-dock and 3D formats and can search compounds by one or more ZINC IDs,
a specific target or targets, component ring names, common compound names, CAS/MDL Number,
and vendor or catalog-specific code.

2.3.5. IUPHAR/BPS Guide to PHARMACOLOGY

IUPHAR/BPS Guide to PHARMACOLOGY [19] (http://www.guidetopharmacology.org/)
is an open-access website and provides an expert-driven guide to pharmacological targets. The website
provides interaction information between 9459 ligands and 2917 targets. Ligands contains FDA-approved
drugs, synthetic organics, inorganics, antibodies, labelled ligands, metabolites, natural products,
endogenous peptides and other peptides. Targets contains G protein-coupled receptors, ion channels,
nuclear hormone receptors, kinases, catalytic receptors, transporters, enzymes, and other protein targets.

2.3.6. SIDER

The SIDER database [20] (http://sideeffects.embl.de/) contains 139,756 drug-side effect pairs between
5868 side effects and 1430 drugs.

2.3.7. BindingDB

BindingDB [21] (http://www.bindingdb.org/bind/index.jsp) is a web-accessible database mainly
focusing the interactions between drugs and proteins which can be candidate drug targets acting on small,
drug-like molecules. It contains 1,558,402 binding data between 697,594 small molecules and 7233 protein
targets. In addition, it provides 2291 protein-ligand crystal structures for proteins with 100% sequence
identity and 5816 crystal structures for proteins with 85% sequence identity.

2.3.8. TTD

Therapeutic Target Database (TTD) [22] (https://db.idrblab.org/ttd) is an open-access website that
can download different types of biological information including drug structure, therapeutic targets,
pathway information, and drug combinations. The database provides 2104 drug resistance mutations
targeting 63 diseases, 758 targets from 12,615 patients of 70 diseases, 629 targets across various tissues
from 2565 healthy individuals, 2612 target combination, and 25,333 multi-target drugs.

2.3.9. MATADOR

The MATADOR database [16] (http://matador.embl.de/) is a manually annotated chemical-protein
interaction website. The database differs from other resources in that it provides any direct and indirect

http://stitch.embl.de/ 
http://zinc.docking.org/
http://www.guidetopharmacology.org/ 
http://sideeffects.embl.de/ 
http://www.bindingdb.org/bind/index.jsp 
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http://matador.embl.de/ 
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interactions between chemical and proteins assembled by automated text-mining and manual curation.
Each interaction can be deduced by retrieving the PubMed or OMIM database.

2.3.10. ChEMBL

The ChEMBL database [23] (https://www.ebi.ac.uk/chembl/) is a open-access website about
bioactive drug-like small molecules. It provides 15,207,914 activities from 2,275,906 compound records
and 12,091 targets. The properties of small molecular drugs contain 2-D structures, calculated properties
including logP, molecular weight, and Lipinski parameters, and abstracted bioactivities including binding
constants, pharmacology, and ADMET.

2.3.11. DCDB

The DCDB database [24] (http://www.cls.zju.edu.cn/dcdb/) summarizes action pattern of
coordinated drugs and provides a theoretical basis for modeling and simulating beneficial drug
combinations. It contains 1363 drug combinations between 904 individual drugs and 805 targets.
Furthermore, it provides three types of relevant information: combined activity/indications, drug-drug
interactions, and possible mechanism for each drug combination; chemical, pharmaceutical and
pharmacological properties, and known molecular targets for each drug; sequence, function and affiliated
pathway for each drug target.

2.4. DTI Relevant Software Packages

Drug and target features are important for unknown DTI classification. Researchers have developed
various software packages to extract abundant drug and target features.

2.4.1. RDKit

RDKit [25] (http://www.rdkit.org/) is an open-source cheminformatics software and descriptor
generator for machine learning. The website can compute various features including canonical SMILES,
2D depiction, fingerprinting, chemical reactions, molecular serialization, similarity/diversity picking,
and 2D and 3D descriptions for drug molecules. The software is continuously updating from 2012.

2.4.2. ChemDes

ChemDes [26] (http://www.scbdd.com/chemdes/) is a freely available web-based platform.
The platform integrates multiple state-of-the-art packages including CDK, RDKit, PaDEL, Pybel, Chemopy,
BlueDesc, and jCompoundMapper to compute molecular descriptors and fingerprints. It provides
three convenient auxiliary tools for fingerprint similarity calculation, MOPAC optimization, and format
converting. Currently, it can compute 3679 molecular descriptors and 59 types of fingerprints.

2.4.3. OpenBabel

OpenBabel [27] (http://openbabel.org/wiki/Main_Page) is a open chemical toolbox. The software
allows anyone to search, store, analyze, or convert data from various areas including molecular modeling
and biochemistry. In addition, it can read, write, and convert over 110 chemical file formats. The software
is continuously updating since 2007.

2.4.4. Rchemcpp

Rchemcpp [28] (http://shiny.bioinf.jku.at/Analoging/) is an efficient web server to find structural
analogs in Drugbank, ChEMBL, and Connectivity Map. These structural analogs are molecular compounds

https://www.ebi.ac.uk/chembl/ 
http://www.cls.zju.edu.cn/dcdb/ 
http://www.rdkit.org/ 
http://www.scbdd.com/chemdes/ 
http://openbabel.org/wiki/Main_Page
http://shiny.bioinf.jku.at/Analoging/
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similar to a query compound. Molecule kernels are applied to compute structural similarity based on
shared substructures between molecules. Rchemcpp provides various important applications for drug
development, for example, prioritizing molecular compounds after screening and reducing adverse side
effects in the process of late research and development.

2.4.5. PyDPI

PyDPI [29] (https://sourceforge.net/projects/pydpicao/) is a comprehensive platform for separately
compute features of proteins and drugs from amino acid sequences and chemical structures. It provides 42
descriptor types composed of 9890 descriptors for proteins, 13 descriptor types composed of 615 descriptors
for drugs. In addition, the platform provides seven molecular fingerprint systems for drugs, including
atom pair fingerprints, topological fingerprints, topological torsion fingerprints, electro-topological state
fingerprints, Morgan/circular fingerprints, MACCS keys, and FP4 keys.

2.4.6. Rcpi

Rcpi [30] (http://bioconductor.org/packages/release/bioc/html/Rcpi.html) is a freely available
molecular informatics toolkit for finding compound-protein interactions. The toolkit is applied to represent
complex molecules from proteins and drugs and complex interactions including compound-protein and
protein-protein interactions. It can also compute abundant physicochemical and structural features of
proteins from amino acid sequences, molecular descriptors of small molecular compounds from their
structures, compound-protein interaction and protein-protein interaction descriptors.

2.4.7. KeBABS

KeBABS [31] (http://www.bioinf.jku.at/software/kebabs/) is an R package to analyze biological
sequences including amino acid, DNA, and RNA sequences. It complements some important kernels for
sequence analysis based on kernel methods. It can efficiently select hyperparameters by cross validation
(CV), nested CV and features grouped CV.

2.4.8. PROFEAT

PROFEAT [32] (http://bidd2.nus.edu.sg/cgi-bin/profeat2016/main.cgi) is a open web server and
can extract protein features from network properties of protein-protein interaction network and amino
acid sequences. It groups physicochemical and commonly-used structural features into six categories
composed of 10 features: protein, protein structure, protein-protein interaction pair, protein-ligand
interaction pair, small molecule, and biological network. The calculated features include 51 descriptors
and 1447 descriptor values, such as amino acid composition, dipeptide composition, Geary autocorrelation,
Moran autocorrelation, normalized Moreau-Broto autocorrelation, quasi-sequence-order descriptors and
composition, sequence-order-coupling number, transition and distribution of different structural and
physicochemical properties. Particularly, the server can also calculate other autocorrelation descriptors
with the properties defined by users. The server is always updating.

2.4.9. Pse-in-One

Pse-in-One [33] (http://bioinformatics.hitsz.edu.cn/Pse-in-One/download/) is a flexible web server
to effectively capture key features of a biological sample (such as protein, DNA, and RNA) from its
sequence. It can generate nearly all the possible features for protein, DNA, and RNA through 28 different
modes. In addition, it can also generate feature vectors based on user-defined properties.

https://sourceforge.net/projects/pydpicao/ 
http://bioconductor.org/packages/release/bioc/html/Rcpi.html 
http://www.bioinf.jku.at/software/kebabs/ 
http://bidd2.nus.edu.sg/cgi-bin/profeat2016/main.cgi 
http://bioinformatics.hitsz.edu.cn/Pse-in-One/download/ 
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2.4.10. ProtrWeb

ProtrWeb [34] (http://protrweb.scbdd.com/) is a R package providing various numerical
representation of proteins and peptides from amino acid sequences. The package provides eight descriptor
categories composed of 22 types of descriptors which include about 22,700 descriptor values. It can also
automatically construct customized descriptors with used-defined properties.

2.5. On-Line Tools/Web-Service for DTI Prediction

Stimulated by the increasing interest in DTI identification and the availability of various open data
repositories, many online tools have been exploited to find new DTIs. These tools have been provided
without considering the mathematical models and computational complexity, and thus significantly lower
the collaboration barriers among different researchers involved in multiple disciplines. More online tools
are described as follows [35].

2.5.1. DrugE-Rank

DrugE-Rank [36] (http://datamining-iip.fudan.edu.cn/service/DrugE-Rank) nicely combines the
advantages of feature-based and similarity-based methods with ensemble learning. Its performance is
thoroughly validated by three types of main experiments on FDA approved drugs from DrugBank:
cross-validation on the drugs before March 2014, independent test on the drugs after March 2014,
and independent test on FDA experimental drugs.

2.5.2. DINIES

DINIES [37] (http://www.genome.jp/tools/dinies/) provides integrative analyses by combing
various types of heterogeneous data, for example, chemical structures and side effects of drugs, amino acid
sequences and domains of target proteins. It can accept any precalculated similarity values of drugs and
targets. Users can select different parameters in the supervised learning model and specify weights to
integrate different heterogeneous biological data.

2.5.3. Drug2Gene

Drug2Gene [38] (http://www.drug2gene.com) integrates DTI data from 19 public databases.
It provides 4,372,290 unified DTIs for targets, most of which contain reported bioactivity data. It aims
mainly at finding tool compounds interacting with a given target protein or identifying all known target
proteins for a drug.

2.5.4. iGPCR-Drug

iGPCR-Drug [39] (http://www.jci-bioinfo.cn/iGPCR-Drug/) is a sequence-based classifier to infer
the associations between drugs and GPCRs in cellular networking. The high throughput tool formulates
a drug compound by a 256 vector, a GPCR by pseudo amino acid composition and then predict possible
drug-GPCR associations based on fuzzy k-nearest neighbor method.

2.5.5. SynSysNet

SynSysNet [40] (http://bioinformatics.charite.de/synsysnet) is an online platform to create
a comprehensive four-dimensional network from 1000 synapse specific proteins and their small
molecules. It provides numerous DTI information for 750 FDA approved drugs and 50,000 compounds.
Approximately 200 pathways involved can be applied to explore DTIs.

http://protrweb.scbdd.com/ 
http://datamining-iip.fudan.edu.cn/service/DrugE-Rank
http://www.genome.jp/tools/dinies/
http://www.drug2gene.com
http://www.jci-bioinfo.cn/iGPCR-Drug/
http://bioinformatics.charite.de/synsysnet
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2.5.6. SDTNBI

SDTNBI [41] (http://lmmd.ecust.edu.cn/methods/sdtnbi/) prioritizes possible target proteins for
new chemical entities, failed drugs, and old drugs. It uses four benchmark datasets including kinases,
GPCRs, nuclear receptors, and ion channels.

2.5.7. DTome

DTome [42] (http://bioinfo.mc.vanderbilt.edu/DTome) extracts and integrates four types of
interaction data including drug interactions, drug-gene associations, DTIs, and target-/gene-protein
interactions. It utilizes web-based query method to find drug candidates and build a DTome network
based on four types of interaction data. Additionally, it can analyze and interpret a DTome network based
on network analysis and visualization procedures.

2.5.8. PharmMapper

PharmMapper [43] (http://lilab.ecust.edu.cn/pharmmapper/) provides various repertoire of
pharmacophore database related to targets in DrugBank, BindingDB, TargetBank, and possible drug
target databases. The pharmacophore database contains more than 7000 receptor-based pharmacophore
models. PharmMapper can automatically find the best position for a query molecule based on the models
and list the top N best-fitted hits with similar target annotations.

2.5.9. SwissTargetPrediction

SwissTargetPrediction [44] (http://www.swisstargetprediction.ch) can accurately find the target
proteins of bioactive small molecules by combining 2D and 3D similarities with known ligands. It can
predict protein-small molecule interactions in five different organisms including human, mouse, rat, horse
and cow.

2.5.10. TargetNet

TargetNet [45] (http://targetnet.scbdd.com) can find the activity for a query molecule across
623 human target proteins based on multi-target structure activity relationship analysis. It generates
a DTI profiling as a feature vector of drugs to infer drug model of action, drug-drug interactions,
toxicity classification, and target candidates.

2.5.11. DT-Web

DT-Web [46] (http://alpha.dmi.unict.it/dtweb/) computes recommendations for a query drug
combined with domain-specific knowledge representing drug and target similarities. It can find drugs
acting simultaneously on multiple target proteins in a multi-pathway environment. The platform is
periodically synchronized with the DrugBank database and updated accordingly.

3. Network-Based Methods

Computational methods for DTI prediction can be roughly classified into four categories: ligand-based
approaches, docking approaches, network-based approaches, and machine learning-based approaches.
Ligand-based approaches assume that similar drugs tend to bind similar targets and predict underlying
DTIs based on ligand similarities. However, prediction accuracies of ligand-based approaches may be
unreliable when known ligands for a protein are not enough. Docking approaches fully utilize the 3D
structures of proteins, however, this type of method cannot find new DTIs when the 3D structures of
proteins are unknown. Network-based approaches and machine learning-based approaches tend to

http://lmmd.ecust.edu.cn/methods/sdtnbi/
http://bioinfo.mc.vanderbilt.edu/DTome
http://lilab.ecust.edu.cn/pharmmapper/
http://www.swisstargetprediction.ch
http://targetnet.scbdd.com
http://alpha.dmi.unict.it/dtweb/
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address the limitations of the above two types of methods. Network-based methods efficiently predicted
potential DTIs by integrating graph-based techniques and various biological data.

3.1. DSSI

Campillos et al. [47] exploited a drug side-effect similarity-based inference method (DSSI). DSSI can
be classified into three steps:

Step 1: Developing a measure to compute the probability that two drugs share a common target based
on drugs’ chemical similarity (2D Tanimoto coefficient, y):

P2D(y) = (1 + e
B−y

A )−1 (1)

Step 2: Measuring the probability that two drugs simultaneously interact with a target based on their
phenotypic side-effect similarity(x):

PSE(x) = A · x + B (2)

Step 3: Designing a sigmoid function to compute the probabilities of two drugs sharing the same
target incorporating chemical similarities and phenotypic side-effect similarities.

PSE,2D(x, y) = H · (1 + eA+Z−
√
(C·y)2+(1−x)2

)−1

Z = D · (arctan y
1−x )

E · (B + F · (arctan y
x )

G

(3)

where the fitted parameters A = 0.0167, B = 55.507, C = −810.16, D = −129.6, E = 455.6, F = 617.3,
G = 0.415, H = 0.8

DSSI can find possible DTIs, however, it can only be used to infer potential associations for drugs that
have known side-effect information, thus seriously limiting its application.

3.2. MTOI

Yang et al. [48] exploited a robust computational model to mine new drug targets based on multiple
target optimal intervention solutions (MTOI). MTOI is classified into two stages: drug target identification
and optimal multi-target control solution inference. In stage 1, MTOI firstly defined the disease state
combing experimental data from patients and cells in abnormal conditions, and the desired state that
could be restored into normal physiological state; it then selected activities of potential drug targets
and calculated median deviation (m.d.) of the activities between the normal and disease states to score
underlying drug targets. In stage 2, MTOI added drug reactants to screened drug targets and obtained
multi-target intervention solution by selecting intensities. MTOI identified underlying drug targets and
best restored an inflammation-related network to a normal state. Figure 2 described the details.
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Stage 1 Drug target identification Stage 2 Optimal multi-target control solution inference 

Defining the disease and desired states 

Selecting reactions that can be controlled by drugs 

Randomly selecting target candidates’ activities 

and performing Monte Carlo simulated annealing 

(MCSA) to obtain the desired state 

Recording all acceptable target candidates’ 

activities in desired state and calculating their 

standard deviation (s.d.). 

Calculating the median deviation (m.d.) of target 

candidates’ activities between the desired and 

disease states. 

Do s.d. and m.d. converge to stable 

values for all drug candidates? 
No 
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drug targets 

Starting from the disease state and randomly 

selecting a set of drug influence’s intensities 

against all drug targets, performing MCSA to 

drive the system toward the desired state 

Recording all acceptable a set of drugs’ intensities 

against all targets when the desired state is reached 

by MCSA 

Are many solutions found and are the 

results clustered in the space of intensities 

to find distinct solutions? 

No 

Yes 

Obtaining optimal multi-target control solutions 

Yes 

Performing Stage 2: Optimal multi-

target control solution inference 

 

Figure 2. The flowchart of multiple target optimal intervention solutions (MTOI).

3.3. NRWRH

Chen et al. [49] assumed that similar drugs intend to interact with similar targets and presented
a method, Network-based Random Walk with Restart on the Heterogeneous network (NRWRH) by
integrating drug similarity network, protein similarity network, and DTI network into a heterogeneous
network. NRWRH computed the interaction probabilities for unknown drug-target pairs by randomly
walking on the heterogeneous network:

M =

[
MTT MTD
MDT MDD

]
(4)

NRWRH finally defined the following iteration model to compute the interaction probability by randomly
walking in DTI network:

pt+1 = (1− γ)MT pt + γp0 (5)

Figure 3 describes the details.
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Target similarity network DTI network 

Figure 3. The flowchart of Network-based Random Walk with Restart on the Heterogeneous network
(NRWRH).

where λ and γ is the probability of jumping from target/drug network to drug/target network and the
restart of walking at the seed nodes, respectively.

3.4. DBSI, TBSI, and NBI

Cheng et al. [50] viewed a DTI network as a bipartite graph and developed three DTI
prediction methods: Drug-based similarity inference (DBSI), Target-based similarity inference (TBSI),
and Network-based inference (NBI). DBSI assumed that a query drug di similar to known drugs interacting
with a target tj may associate with tj and defined a linkage score between di and tj:

VD
ij =

n
∑

l=1,l 6=i
SD(di, dl)yij

n
∑

l=1,l 6=i
SD(di, dl)

(6)

TBSI assumed that a query target ti similar to known targets, which interacts with a drug di,
may associate with di and defined a linkage score between di and tj:

VT
ij =

m
∑

l=1,l 6=j
ST(tj, tl)yij

m
∑

l=1,l 6=j
ST(tj, tl)

(7)
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Given a target tj, NBI defined its score associated with di:

f (i) =
m

∑
l=1

yil
k(tl)

n

∑
o=1

yol f0(o)
k(do)

(8)

where f0(o) = yoj, o ∈ 1, 2, ..., n is initial score of drug do, k(do) =
m
∑

s=1
yos is the number of targets

interacting with do, and k(tl) =
n
∑

s=1
ysl is the number of drugs associating with tl .

3.5. DTINet

Luo et al. [11] integrated various information from multiple heterogeneous networks and presented
a novel Network integration pipeline for DTI prediction, DTINet. DTINet used a compact feature learning
method to handle the noisy, high-dimensional and incomplete natures of large-scale biological data and
obtained low-dimensional but informative vector representations of drugs and targets. Figure 4 described
the details.

 

Computing feature representation for drugs and targets 

Constructing the heterogeneous network based on the information: 

Performing a network diffusion algorithm on each network and computing 

distribution for each drug (or protein) node 

Computing the best projection from drug space onto protein space via a matrix 

completion method 

Obtaining the low-dimensional feature vectors of drugs and proteins 

Deriving the new interacting targets for a drug based on these targets’ geometric 

closeness to the projected feature vector of the drug 

DCA learns a low-dimensional vector representation for all nodes such that their 

connectivity patterns in the heterogeneous network are best interpreted 

Minimizing the difference between the diffusion distributions of individual 

networks and the corresponding model distributions and computing low-

dimensional vector representations for each drug or protein 

drug-drug interactions 

drug-disease associations 

drug-side-effect associations 

drug-drug similarities 

drug–protein 

interactions 

protein–disease associations 

protein–protein interactions 

protein–protein similarities 

Figure 4. The flowchart of a novel Network integration pipeline for DTI prediction (DTINet).
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4. Machine Learning-Based Methods

The researchers exploited numerous models and algorithms to find missing DTIs based on machine
learning methods except for network-based methods. These methods can be roughly classified into five
groups: Bipartite Local Model (BLM), regularized least squares, matrix factorizations, deep learning,
and other methods.

4.1. BLM

4.1.1. KRM

Yamanishi et al. [9] exploited a Kernel Regression Method (KRM). KRM scored the interaction
likelihoods for unknown drug-target pairs through three stages: constructing pharmacological space,
learning model based on kernel regression to represent the correlation between chemical/genome space
and pharmacological feature space, and calculating feature-based similarity scores. Figure 5 describes
the details.

 

Stage 1  Constructing pharmacological space 

Stage 2  Learning model based on kernel regression to represent the correlation between 

the chemical/genomic space and pharmacological feature space: 

1

( , ) ( , )
n

i i i

i

u f x x s x x w 


    

1

( , ) ( , )

nc

s wc new i cnew i inew i

c c c cc cu f


   

1

( , ) ( , )

nt

s t t wt new j tnew j jnew i

t tt tu f


   

Genomic space 
 
 
 
 
 
 
 
 
 
      Known target 
 
      Unknown target 
 

Chemical space 
 
 
 
 
 
 
 
 
 
      Known drug 
 
     Unknown drug 
 

Stage 3  Calculating the feature-based similarity scores: 

( , )
new jnew j c tcorr c t u u   

        ( , )
i newi new c tcorr c t u u   

        ( , )
new newnew new c tcorr c t u u   

Pharmacological space 
 
 
 
 
 
 
 
 
 
             Known interaction 
 
             Predicted interaction 
 
 

Figure 5. The flowchart of Kernel Regression Method (KRM).
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where weight wi can be computed by optimizing the following loss function:

L = ||UUT − SWWTST ||2F (9)

4.1.2. BLM

Bleakley et al. [51] proposed a supervised learning-based Bipartite Local Model (BLM) to find novel
linkage between drug di and target tj in the following way:

Step 1: Excluding target tj. For a drug di, listing all other known targets in the bipartite network and
giving their labels +1; listing the targets unknown to be targeted by di and giving their labels −1.

Step 2: Finding a classification rule to discriminate the +1-labeled data from the −1-labeled data
based on genomic sequence information for the targets.

Step 3: Taking this rule and identifying the label of tj and thus inferring whether there exists linkage
between di and tj.

Step 4: Fixing the same target tj and excluding drug di, listing all other known drugs interacting tj in
the bipartite network and giving their labels +1; listing the drugs unknown to interact with tj and giving
their labels −1.

Step 5: Finding a classification rule to discriminate the +1-labeled data from the −1-labeled data
based on chemical structure information for the drugs.

Step 6: Taking this rule and identifying the label of tj and thus inferring whether there exists linkage
between di and tj.

Bleakley et al. [51] used SVM as local classifier.

4.1.3. BLM-NII

Mei et al. [52] incorporated Neighbor-based Interaction-profile Inferring model (NII) into the BLM to
find potential DTIs, especially for new drugs and targets (BLM-NII). BLM-NII can be grouped into five
steps: computing NII, computing drugs and targets similarity matrix, learning a local model, computing
the interaction probability, and obtaining final results. Figure 6 describes the details.
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Figure 6. The flowchart of BLM with neighbor-based interaction-profile inferring (BLM-NII).

4.2. Regularized Least Squares

4.2.1. LapRLS, NetLapRLS

Xia et al. [53] designed Laplacian regularized least squares (LapRLS) and LapRLS incorporating DTI
network (NetLapRLS) to identify underlying DTIs based on a data-dependent manifold regularization
model. The details are described in Figure 7.
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Figure 7. The flowchart of Laplacian regularized least square (LapRLS) incorporating DTI network
(NetLapRLS).

where Kd ∈ Rn×n and Kp ∈ Rm×m represented two undirected graphs of drug domains and protein
domains including both labeled and unlabeled samples, respectively.

4.2.2. RLSGIP

Van et al. [54] assumed that a drug, which exhibits a similar interaction pattern or non-interaction
pattern with targets in a known DTI network, is likely to exhibit similar interacting behavior when finding
new targets for the drug. Similarly, targets have similar features. Based on the assumption, Van et al. [54]
exploited a Regularized Least Squares (RLS) method combined with Gaussian Interaction Profile kernel
(RLSGIP). RLSGIP predicted new DTIs based on three steps: separately computing GIP kernels of drugs
and targets, obtaining Kchemical,d and Kgenomica,t by adding a small multiple of an identity matrix and
integrating the two kernels into GIP kernel, and predicting DTIs based on RLS classifier. Figure 8 describes
the details.
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Figure 8. The flowchart of regularized least squares (RLS)GIP.

4.2.3. WNN, WNN-GIP

Van et al. [55] developed a weighted nearest neighbor (WNN) method to infer association candidates
for new drugs/targets. WNN defined an interaction profile score yd

WNN for a new drug d as follows:

yd
WNN =

n

∑
i=1

wiyi (10)

where the weight wi can be computed by a given decay value T ≤ 1 as wi = Ti−1.
WNN [55] then extended GIP [54] with WNN and exploited WNN-GIP to identify possible association

information for new drugs (or targets): for a new drug d, WNN-GIP add yd
WNN as a new row to original

DTI matrix Y and apply GIP to obtain interaction profile of d.

4.2.4. Kron-RLS

Pahikkala et al. [56] presented a Kronecker Regularized Least-Square-based method (Kron-RLS) to
score unknown drug-target pairs. Given a training set X (xi ∈ X is a drug-target pair) and their real labels
yi (yi = 1, if the drug interacts with the target in xi; yi = 0, otherwise), Kron-RLS formulated the problem
of DTI prediction as minimizing the following objective function:

J( f ) =
m

∑
i=1

(yi − f (xi))2 + λ|| f ||2k (11)

where || f ||2k is the norm of f . By representation theorem, the minimization of the above function can be
described as:

f (x) =
m

∑
i=1

aik(x, xi) (12)
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where ai can be computed by the following equation:

(K + λI)a = y (13)

where K = Kd ⊗ Kt included all drug-target pairs, Kd and Kt represented kernel matrix of drugs and
targets in the training set.

4.2.5. KMDR

Kuang et al. [57] assumed that two similarity entities tend to link similar nodes to each other and
developed a kernel matrix dimension reduction method (KMDR). KMDR defined a general formulation:

vec(
∧
Y) = V

∼
Λ VTvec(Y) (14)

where vec(Y) is a drug-target pair vector,
∧
Y is predicted drug-target association score matrix. K = V

∼
Λ VT

is a kernel matrix. KMDR exploited three independent sub-algorithms: KMDR-KP, KMDR-KS,
and KMDR-avg.

KMDR-KP defined K as K = Sd ⊗ St where Sd = VdΛdVd, St = VtΛtVt, V = Vd ⊗Vt, Λ = Λd ⊗Λt,
and scored the interaction probabilities for unknown drug-target pairs by the following equation:

∧
Y = VdZTVT

t (15)

where vec(Z) =
∼
Λ vec(VT

t YTVd), and
∼
Λ is a diagonal matrix of Λ.

KMDR-KS are similar to KMDR-KP but Λ = Λd ⊕Λt.
KMDR-avg defined two kernels: Kd = Sd and Kt = St, scored for unknown drug-target pairs based

these two kernels, respectively:
∧
Y d = Vd

∼
Λ dVT

d Y (16)

∧
Y t = Vt

∼
Λ tVT

t YT (17)

The final scores can be calculated as:

∧
Y = (Vd

∼
Λ dVT

d Y + YTVt
T∼Λ tVt)/2 (18)

4.3. Matrix Factorization

As shown in Figure 9, matrix factorization methods can be used to complete the missing values in
DTI matrix. The type of method first factorized Y into two matrices A ∈ <n×k and B ∈ <m×k satisfying
ABT ≈ Y, where A and B represented latent feature vectors of drugs and targets. k is the number of
features, k� n, m, respectively.
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Figure 9. The flowchart of DTI identification methods based on matrix factorization.

4.3.1. KBMF2K

Gönen [58] took DTI prediction as a binary classification problem and developed a Kernelized
Bayesian Matrix Factorization with twin Kernels (KBMF2K). KBMF2K integrated three different
experimental settings into a single unified framework: (i) finding interacting targets from B for a new
drug dnew, (ii) finding interacting drugs from A for a new target tnew, (iii) estimating potential associations
between a new drug dnew and a new target tnew.

KBMF2K designed a deterministic variational approximation method based on fully conjugate
probabilistic model and projected drugs and targets into a unified subspace. Figure 10 illustrates the
proposed probabilistic model. 

 

d

d 
t

t 

dP  dG  F   tG  
tP  

pY   

dK  
tK  

Figure 10. The flowchart of Kernelized Bayesian Matrix Factorization with twin Kernels (KBMF2K).

where ∧ and Pd represented priors and projection matrices for a chosen subspace dimensionality,
respectively. The drug kernel matrix Kd is applied to project the drug-target pairs to a low-dimensional
space, Gd consisted of the low-dimensional feature representations of drugs. Similarly, Gt can be computed.
Finally, the predicted interaction matrix Yp can be calculated based on Gd and Gt.
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4.3.2. PMF

Cobanoglu et al. [59] developed a probabilistic matrix factorization method (PMF) based on
collaborative filtering algorithm. Using a probabilistic model with Gaussian noise, PMF defined the
conditional probability for each observed interaction as follows:

p(Y|A, B, σ2) =
n

∏
i=1

m

∏
j=1

[ f (yij|aibT
j , σ2)]Iij (19)

where f (yij|aibT
j , σ2) denotes the Gaussianly distributed probability density function for yij, with mean µ

and variance σ, Iij is an indicator function equal to 1 if yij is known and 0 otherwise.
Using zero-mean, PMF represents spherical Gaussian priors on A and B as:

p(A|σ2
A) =

N

∏
i=1

f (ai|0,σ2
A I) (20)

p(B|σ2
B) =

N

∏
i=1

f (bi|0,σ2
B I) (21)

PMF then computed the log-likelihood of A and B:

ln(p(A, B|Y, σ2, σ2
A, σ2

B)) = −
1

2σ2

n
∑

i=1

m
∑

j=1
Iij(Yij − aibT

j )
2 − 1

2σ2
A

n
∑

i=1
aiaT

i −
1

2σ2
B

n
∑

j=1
bjbT

j + C (22)

Finally, the underlying DTI score matrix can be computed:

Yp = ABT (23)

4.3.3. MSCMF

Zheng et al. [60] proposed a Multiple Similarities Collaborative Matrix Factorization (MSCMF) method
by integrating matrix factorization, collaborative filtering and relevant biological information including
chemical structures and ATC codes of drugs and genomic sequence, GO and protein-protein interaction
network of targets. MSCMF found possible DTIs based on the following seven steps:

Step 1: Building an objective function to minimize the squared error between Y and A and B:

arg min
A,B
||Y− ABT ||2F (24)

Step 2: Introducing a weighted low-rank approximation model to distinguish labeled drug-target
pairs from unlabeled pairs:

arg min
A,B
||W · (Y− ABT)||2F (25)

where W is a weight matrix, wij = 1 if yij is labeled, namely, interacting or non-interacting; otherwise,
wij = 0.

Step 3: Applying Tikhonov regularization to avoid overfitting of A and B to training data:

arg min
A,B
||W · (Y− ABT)||2F + λ`(||A||2F + ||B||2F) (26)

where λ` is a regularization coefficient.



Molecules 2019, 24, 1714 21 of 36

Step 4: Representing drugs similarity Sd as approximation of corresponding two drug feature vectors:

Sd ≈ AAT (27)

Similarly, target similarity St can be represented as:

Sd ≈ BBT (28)

Step 5: Linearly combing multiple similarity:

Sd =
n
∑

i=1
wi

dSi
d

St =
m
∑

j=1
wj

tS
j
t

s.t.|wd| = |wt| = 1

(29)

where wd = (w1
d, w2

d, ., wn
d) and wt = (w1

t , w2
t , ., wm

t ). wi
d and wj

t are weights from multiple similarity
matrices of drugs and targets, respectively.

Step 6: Developing the entire objective function and scoring unknown drug-target pairs:

arg min
A,B
||W · (Y− ABT)||2F + λ`(||A||2F + ||B||2F) + λd||

n
∑

i=1
wi

dSi
d − AAT ||2F

+ λt||
m
∑

i=1
wj

tS
j
t − BBT ||2F + λw(||wd||2F + ||wt||2F)

s.t. |wd| = |wt| = 1

(30)

where λd, λt, and λw are regularization coefficients.
The model can be solved with alternating least squares algorithm.
Step 7: Computing the interaction probabilities for unknown drug-target pairs:

Yp = ABT (31)

4.3.4. NRLMF

Liu et al. [61] designed a Neighborhood Regularized-based Logistic Matrix Factorization method
(NRLMF) to model the probability of a drug interacting with a target. NRLMF first model the interaction
probability pij between a drug di and a target tj based on logistic matrix factorization:

pij =
exp(aibT

j )

1 + exp(aibT
j )

(32)

NRLMF then minimized the following objective function to calculate the interaction probabilities for
unknown drug-target pairs by placing spherical Gaussian priors on ai and bj:

min
A,B

m
∑

i=1

n
∑

j=1
(1 + cyij − yij) log[1 + exp(aibT

j )]− cyijaibT
j + λd

2 ||A||2F +
λt
2 ||B||2F (33)

where σ2
d and σ2

d are used to control Gaussian distribution variances, λd = 1
σ2

d
and λt =

1
σ2

t
, ||A||F and

||B||F denote the Frobenius norm of A and B, respectively.
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The final objective function can be described as:

min
A,B

m
∑

i=1

n
∑

j=1
(1 + cyij − yij) ln[1 + exp(aibT

j )]−cyijaibT
j + 1

2 tr[AT(λd I + αLd)A] + 1
2 tr[BT(λt I + αLt)B (34)

4.3.5. DNILMF

Hao et al. [62] extended NRLMF and proposed a Dual-Network integrated Logistic Matrix
Factorization method (DNILMF). DNILMF first calculated the interaction probabilities for unknown
drug-target pairs:

P =
exp(αABT + βSd ABT + γABTSt)

1 + exp(αABT + βSd ABT + γABTSt)
(35)

DNILMF then computed the final interaction scores by maximizing the following objective function:

max
A,B

∑
i,j
(cY ◦ Z− (1 + cY− Y) ◦ ln[1 + exp(Z)])− λA

2 ||A||2F −
λB
2 ||B||2F (36)

where Z = αABT + βSd ABT + γABTSt, ◦ denotes the Hadamard product.

4.4. Deep Learning

4.4.1. DeepDTIs

Wen et al. [63] used Deep Belief Network (DBN) to infer potential DTIs without classifying each target
into different classes. DeepDTIs identified novel DTIs through three steps:

Step 1: Choosing the most simple and common features to describe drugs and targets: representing
chemical compounds with extended connectivity fingerprints and targets with protein sequence
composition descriptors.

Step 2: Abstracting feature representations based on DBN. DBN used by DeepDTIs consisted of five
layers: the first layer (the input layer) is the calculated features, the second, third and fourth layer are the
hidden layers, and the last layer is output layer.

Suppose that x is training sample, DeepDTIs modeled the joint probability distribution between x
and l hidden layers based on DBN:

P(x, h1, h2, ., hl) = (
l−2

∏
k=0

P(hk|hk+1))P(hl−1, hl) (37)

where x = h0, P(hk−1|hk) is a visible-hidden conditional probability distribution at level k, P(hl−1, hl) is
the visible-hidden joint probability distribution in the top level.

Step 3: Building a classification model with known label DTIs.

4.4.2. EENN

Gao et al. [64] developed an End-to-End Neural Network (EENN) model to identify DTI candidates
directly from raw chemical structures and amino acids sequences. EENN contained four parts: describing
drugs and proteins based on related biological information, projecting drugs and proteins into dense vector
spaces by integrating graph-based convolutional neural network and long short-term memory recurrent
neural networks, forming the context matrix for drugs and protein with attentive pooling network and
computing weighted sums of the context matrix, and predicting the interaction probabilities for unknown
drug-target pairs based on inference with siamese network. The details are shown in Figure 11.
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4.4.3. Stacked Autoencoder

Wang et al. [65] designed a novel computational model to find possible DTIs combining stacked
autoencoder in deep learning models. The proposed method can automatically screen hidden information
from raw data and select highly representative features based on iterations of multiple layers.

The method can be grouped into four parts: describing each DTI (sample) based on 881 chemical
structures of drugs and the position-specific scoring matrix related to protein, reconstructing features with
stack autoencoder, classifying unknown drug-target pairs with random forest classifier, and predicting
labels for test samples. The details are shown in Figure 12.

In step 2, Wang et al. first encoded the training sample X ∈ Rd0 into the hidden representation
H ∈ Rd1 by the mapping fc:

H = fc(X) = Jc(WT
1 X + b1) (38)

where Jc is the activation function, W1 and b1 are weighted parameters W1 ∈ Rd0×d1 and bias vector b1 ∈ rd1 ,
respectively. The representation of the hidden layer H is then mapped into the output layer Z ∈ Rd0 by
the mapping fd:

Z = fd(H) = Jd(WT
2 H + b2) (39)

where Jd is the activation function, W2 and b2 is weighted parameters W2 ∈ Rd0×d1 and bias vector b2 ∈ rd0 ,
respectively. The parameters can be learned by minimizing the following loss function:

Θ(X, Z) = Θr(X, Z) + 0.5τ(||W1||22 + ||W2||22) (40)

where Θr(X, Z) and τ are the reconstruction error and the weight decay cost, respectively. The hidden
layer learned the features and reduced the dimension of original data by mapping. The highest hidden
layer of autoencoder can be used as the features of raw data extracted by the stacked autoencoder.
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Figure 11. The flowchart of End-to-End Neural Network (EENN).
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4.5. Other Methods

4.5.1. RBM

Wang et al. [66] learned associated probabilities of unknown drug-target pairs using a two-layer
restricted Boltzmann machine (RBM) where visible units encoded types of DTIs and hidden units
represented latent features of DTIs. Figure 13 describes the details.
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Figure 13. The flowchart of restricted Boltzmann machine (RBM).

4.5.2. NetCBP

Chen et al. [67] exploited a semi-supervised learning-based prediction model (NetCBP) combined
with network consistency. NetCBP assumed that there existed coherent interactions between drugs ranked
based on their correlations to a query drug and targets ranked based on their correlations to the hidden
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targets of the query drug, and then designed a learning model to maximize the rank coherences relevant
to known DTIs. The details are described in Figure 14.
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Figure 14. The flowchart of NetCBP.

5. Discussion

Drug repurposing involves various computational methods [1,3]. Of these techniques, DTI inference
is one of the most important foundations [68,69]. In this paper, we summarized data sources and related
representation involved in DTI prediction. We mainly introduced two classes of typical computational
models, network-based methods and machine learning-based methods. These two types of models are
applied to target proteins without any known 3D structure information and obtained effective prediction
performance [52,70]. More importantly, almost all the methods can further infer novel DTIs for drugs
interacting with at least one target protein [4]. Furthermore, some algorithms can effectively identify DTI
candidates for new drug molecules which have no associated information with targets by combining with
drug similarity, target similarity, and DTIs [4,52,71]. However, there are a few limitations to solve.

Network-based methods are limited to application because DTI data are severely imbalanced
in the relevant dataset and there are many more unknown drug-target pairs than DTIs in DTI
network [4,72,73]. For example, the interactions in ion channel dataset provided by Yamanishi et al. [9]
should be 210× 204 = 42,840, however, the actual interaction is 1467. More importantly, a DTI network
usually contains several isolated subnetworks, where network-based models are unable to find new
association information for orphan drugs (or targets) which have not any known interaction data in the
DTI network [4,70]. Finally, most of the network-based methods are biased toward the drugs (or targets)
which tend to interact with more targets (or drugs) [4,73]. Therefore, network-based methods should be
further exploited to solve these problems in the future.

Machine learning-based methods obtained good improvement in the process of DTI prediction.
Tables 2 and 3 illustrate the performances of some machine learning-based methods from Refs. [52,61].
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Table 2 lists AUC and AUPR values provided by Mei et al. [52] for KRM, BLM, RLSGIP, and BLM-NII.
These methods are BLM-based methods. The results show that BLM-NII obtained better performance than
other BLM-based methods and prove that neighbor-based interaction-profile helps to predict new DTIs.

Table 2. Performance comparison of BLM-based methods [52].

AUC

Dataset KRM BLM RLSGIP BLM-NII

Enzyme 86.4 97.6 97.8 98.8
Ion Channel 81.9 97.3 98.4 99.0

GPCR 76.5 95.5 95.4 98.4
Nuclear Receptor 74.9 88.1 92.2 98.1

AUPR

Dataset KRM BLM RLSGIP BLM-NII

Enzyme 6.30 83.3 91.5 92.9
Ion Channel 17.2 78.1 94.3 95.0

GPCR 10.9 66.7 79.0 86.5
Nuclear Receptor 17.1 61.2 68.4 86.6

Table 3 lists the AUC and AUPR values provided by Liu et al. [61] for NetLapRLS, BLM-NII, WNN-GIP,
KBMF2K, and NRLMF where NetLapRLS and WNN-GIP are regularized least squares-based methods,
BLM-NII is BLM-based method, and the remaining are matrix factorization-based methods. The minor
difference of BLM-NII in Tables 2 and 3 may be caused by different experimental settings.

Table 3. Performance comparison of different types of prediction models [61].

AUC

Dataset NetLapRLS BLM-NII WNN-GIP KBMF2K NRLMF

Enzyme 97.2 97.8 96.4 90.5 98.7
Ion Channel 96.9 98.1 95.9 96.1 98.9

GPCR 91.5 95.0 94.4 92.6 96.9
Nuclear Receptor 85.0 90.5 90.1 87.7 95.0

AUPR

Dataset NetLapRLS BLM-NII WNN-GIP KBMF2K NRLMF

Enzyme 78.9 75.2 70.6 65.4 89.2
Ion Channel 83.7 82.1 71.7 77.1 90.6

GPCR 61.6 52.4 52.0 57.8 74.9
Nuclear Receptor 46.5 65.9 58.9 53.4 72.8

Matrix factorization models obtain better performance for DTI identification [59–62,74]. However,
this type of method has more parameters to set and is sensitive to parameters [73]. Although RLS-WNN
cannot outperform matrix factorization methods, it is relatively much faster and more robust to parameter
selection [73,75]. BLMs can efficiently process many fewer unknown DTIs, and thus they exhibit much
lower complexity than global algorithms. Furthermore, BLMs are usually fast and memory-efficient
techniques when the dataset used is larger [52,73]. Nevertheless, BLMs cannot deal with the situation
that both drugs and targets are not included in the training dataset unless integrated with other methods,
for example, BLM-NII [74]. Deep learning-based methods obtained better improvement because of their
powerful representation learning ability and are one powerful models for DTI prediction [63,65,76,77].
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In summary, although various machine learning-based methods have been already proven to be
effective for DTI identification, various challenges still remain.

(i) Most of the supervised learning methods are limited to the negative sample selection problem
because there are not experimental validated non-DTI data. Therefore, this type of method can only
randomly select negative DTI data from unknown associated drug-target pairs, however, these selected
negative samples may contain positive DTIs, which severely affects classification performance and
generalization ability of models [4,10,56,71,73,74].

(ii) Machine learning-based prediction models are usually built and evaluated with an excessively
simplified experimental setting. Such settings may wander from the real case and produce over
fitting results [4,74]. Especially, most of the machine learning-based models simply regard DTI as
an on-off association and do not consider other key factors like quantitative affinities and molecule
concentrations [56,74]. Pahikkala et al. [56] have illustrated that at least four factors may result in
highly positive predictive results when building and measuring supervised machine learning-based
methods: experimental setting, evaluation data set, problem formulation and evaluation setup.
Therefore, DTI identification should be modeled as a rank or regression problem rather than a binary
classification problem [74].

(iii) When predicting possible DTIs based on binary classification, the classification accuracy is biased
because the results are from the simple average of two different classification models, which are constructed
based on drugs and targets, respectively [4].

(iv) Most of the machine learning-based methods have “poor interpretability” properties, therefore,
it is difficult to understand potential drug mechanism of action from a pharmacology viewpoint [74].

Although semi-supervised learning methods overcame the negative sample selection limitation by
making use of the unlabeled data, it still cannot solve the problem of classifier combination [4].

6. Conclusions and Further Research

In this section, we attempt to provide some suggestions of further research on how to improve DTI
prediction performance.

6.1. Heterogeneous Data Integration

Most models incorporate chemical and genomic information, in addition, previous works have
utilized pharmacological or phenotypic information, such as side-effects data, gene expression information,
and some associated data. These data represent different natures of drugs and targets and can boost
prediction accuracy if used concurrently. However, most existing models are limited to homogeneous
information and cannot be directly applied to heterogeneous networks.

Heterogeneous data sources give diverse information and help find possible DTIs from a multi-view
perspective. To the best of our knowledge, for instance, some genes coding proteins (targets) are tightly
associated with some diseases and the therapeutic effects of the drugs on these diseases reflect their
biological activities to these targets. Therefore, integrating with various heterogeneous data sources,
such as gene-disease association network, drug-disease association network, metabolic network associated
to specific diseases, can potentially improve the accuracy and thus provide new insights.

Although several network-based strategies incorporate heterogeneous data source and derive the
associated scores through network diffusion method, most existing models have some limitations and fail
to give satisfactory integration paradigms: first, the noise and high-dimensionality natures of biological
data easily cause predicted bias. Moreover, some network-specific information may be lost in the
process of integrating multiple different networks into a single network, since edges from multiple
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heterogeneous networks are mixed indiscriminately in such process. Therefore, designing appropriate
models to incorporate multiple relevant heterogeneous data sources still remains an open problem.

6.2. Reliable Negative Sample Selection

There exist parts of known DTIs (positive samples) and massive unknown drug-target pairs in existing
DTI datasets. In addition, there are not experimental validated non-DTIs (negative samples) so that most
of the supervised classification algorithms have no choice but to randomly select unlabeled drug-target
pairs as negative samples. However, this part of randomly selected negative samples, in fact, may well
contain positive DTIs, thereby severely confusing the classification accuracy of supervised-learning
techniques. Therefore, although extracting positive drug-target pairs from unconfirmed data is an urgent
task, designing an effective method to screen negative DTIs is more challenging [10]. To the best of our
knowledge, positive-unlabeled learning [71,78,79] can learn high-quality positive samples and reliable
negative samples from the unlabeled data and may be one effective way to select strong negative DTIs.

6.3. Noncoding RNAs as Targets

It is worth mentioning to consider noncoding RNAs as drug targets. Noncoding RNAs [80,81]
(nc RNAs) are another new class of targets. ncRNAs can control gene expression and affect disease
progression, which makes them targets in the process of drug research and discovery. ncRNAs consist
of multiple functionally important RNAs including transfer RNA (tRNA), microRNA, intronic RNA,
ribosomal RNAs (rRNA), long noncoding RNA, and repetitive RNA. Each class of RNA has different
endogenous functions, which provides many opportunities for drug discovery and design.

ncRNAs have been considered as targets and obtained increasing attention. For example, microRNAs
have been well-reviewed to be therapeutically targeted candidates [82,83]. Both microRNA mimics and
inhibitors are being designed against targets and tested in clinical trials. For instance, the drugs BMN
044/ PRO044, BMN 045/ PRO045, BMN 053/ PRO053, SRP-4053, and SRP-4053 can be used to therapy
duchenne muscular dystrophy (DMD) by targeting dystrophin pre-mRNA [81]. Recently, the research on
targeting of repetitive RNAs, intronic RNAs, and miRNAs are advanced, however, long ncRNAs, which
are regarded as a challenging class of possible drug targets, will be further focused upon.

The researchers exploited several ncRNA databases, such as NONCODE (http://www.noncode.
org/), Noncoding RNA database (http://biobases.ibch.poznan.pl/ncRNA/), RNAcentral (http://www.
rnacentral.org/), miRBase (http://www.mirbase.org/), lncrna (http://www.lncrnadb.org/), and Ensembl
(http://asia.ensembl.org/info/genome/genebuild/ncrna.html). These databases provide a mass of
ncRNA information and help us predict underlying associations between drugs and ncRNAs. Especially,
NONCODE gives various ncRNA data excluding tRNAs and rRNAs for 17 species. The noncoding RNA
database contains more than 30,000 individual sequence and function information of ncRNAs from 99
species of Archaea, Bacteria, and Eukaryota.

6.4. Environmental Factors and Genetic Factors

Various studies have reported that associations between genetic factors (GFs) and environmental
factors (EFs) can greatly influence phenotypes and diseases [84,85]. The computational modeling of GF-EF
interaction prediction considerably enriches our knowledge on the mechanisms of GF-EF interactions.
For instance, drugs, one class of important EFs, have been revealed to interact with targets (GFs) [84,85].
Qiu et al. [85] suggested that miRNA biomarker signatures of drugs could be applied to evaluate the
effects of cancer treatments. Therefore, the analysis and identification of interactions between drugs and
genetic factors could help infer novel indications for FDA approved drugs.

http://www.noncode.org/
http://www.noncode.org/
http://biobases.ibch.poznan.pl/ncRNA/
http://www.rnacentral.org/
http://www.rnacentral.org/
http://www.mirbase.org/
http://www.lncrnadb.org/
http://asia.ensembl.org/info/genome/genebuild/ncrna.html
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6.5. Deep Learning

In the era of big data, large quantities of biological data are dramatically increasing. The availability
of these datasets have promoted the development of various modeling approaches [63,76]. Deep learning
approach is one type of representation-learning method that can be applied to deal with complex works
with heterogeneous and high-dimensional datasets. The accumulation of massive drug and target
data provides quantities of biomedical features and accelerates the application of deep learning on
DTI prediction [77,86]. Although several deep learning methods [63–65] are used to identity possible
DTIs, there remains many challenges in interpreting deep learning results, such as selecting appropriate
deep architectures and model parameters, solving with small samples and high-dimensional nature of the
datasets. Therefore, building an appropriate deep model may be one of efficient ways to improve DTI
prediction performance.

6.6. Sparse Representation

DTI data in DTI network are sparse and imbalanced. There is a small quantity of DTIs and abundant
unknown drug-target pairs. For example, in the datasets provided by Yamanishi et al. [9], the number of
DTIs are 2926, 1476, 635, and 90 between 445, 210, 223, and 54 drugs and 664, 204, 95, and 26 target proteins,
respectively, from enzymes, ion channels, GPCRs, and nuclear receptors. The ratio of known DTIs to all
drug-target pairs is 0.0099, 0.0345, 0.03, and 0.0641, respectively. The dataset provided by Wen et al. [63]
contains only 6262 DTIs among possible 2,146,240 (1412× 1520) drug-target pairs from 1412 drugs and 1520
targets, and the ratio of known DTIs to all drug-target pairs is 0.0029. More importantly, DTI prediction
must be solved in small samples with high dimension natures of drugs and target information. Sparse
representation can automatically discriminate various classes and provides a simple and effective ways of
rejecting any invalid test samples not from any class in the training set, and thus reduces data dimension
and computational cost [87]. Therefore, sparse representation-based methods may be further applied to
DTI prediction.

6.7. Types of DTI

Different types of DTIs help us understand the molecular mechanism of drug action. Although the
existing methods have achieved promising performance, the majority of them can only infer the
binary interaction between a drug and a target, but cannot detect distinct types of interactions.
However, the interactions between drugs and targets generally have different meanings, for example,
direct interactions produced by protein-ligand binding and indirect interactions caused by either changed
expression levels of a target protein or active metabolites induced by a drug [16,66]. In addition, DTIs can
be annotated by different drug modes of action, such as activation and inhibition [17]. Therefore, how to
use various biological data to identify different types of DTIs may be a challenging problem.

6.8. Personalized Medicine

The ultimate goal of DTI identification is to provide treatment clues for patients, especially for cancer
patients. However, it is inappropriate to simply use one or a few drugs for all the patients [88]. Therefore,
computational methods should be used to mine personalized drugs by integrating cancer-related network,
drug-drug interaction network, protein-protein interaction network, metabolic network, and so on. Fusing
this important information and novel network-based models, researchers may find some valuable drug
discovery strategies. In addition, computational models could be applied to predict personalized drug
targets, drug effects and resistances for cancer treatment, and infer personalized cancer risk for healthy
individuals [89,90]. Therefore, performing personalized medicine based on DTI identification may be
a topic of further research.
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