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Abstract: We explored how Ochrobactrum sp. MPV1 can convert up to 2.5 mM selenite within 120 h,
surviving the challenge posed by high oxyanion concentrations. The data show that thiol-based biotic
chemical reaction(s) occur upon bacterial exposure to low selenite concentrations, whereas enzymatic
systems account for oxyanion removal when 2 mM oxyanion is exceeded. The selenite bioprocessing
produces selenium nanomaterials, whose size and morphology depend on the bacterial physiology.
Selenium nanoparticles were always produced by MPV1 cells, featuring an average diameter ranging
between 90 and 140 nm, which we conclude constitutes the thermodynamic stability range for these
nanostructures. Alternatively, selenium nanorods were observed for bacterial cells exposed to high
selenite concentration or under controlled metabolism. Biogenic nanomaterials were enclosed by
an organic material in part composed of amphiphilic biomolecules, which could form nanosized
structures independently. Bacterial physiology influences the surface charge characterizing the
organic material, suggesting its diverse biomolecular composition and its involvement in the tuning
of the nanomaterial morphology. Finally, the organic material is in thermodynamic equilibrium with
nanomaterials and responsible for their electrosteric stabilization, as changes in the temperature
slightly influence the stability of biogenic compared to chemogenic nanomaterials.

Keywords: biogenic nanomaterials; selenium nanomaterials; selenite; selenium nanoparticles;
selenium nanorods; Ochrobactrum; thermodynamic stability; electrosteric stabilization

1. Introduction

The role of microorganisms in the biogeochemical cycle of selenium (Se) has been established [1],
although the vast genetic diversity of bacteria makes it difficult to fully elucidate the biological
mechanisms behind the biochemistry of one of the most abundant and toxic Se species: the oxyanion
selenite (SeO3

2−) [2]. Since the beginning of the 20th century, a variety of microorganisms have been
described for their ability to grow in the presence of Se oxyanions and bioprocess them into the
less bioavailable elemental form (Se0) [3]. In the 1970s, this phenomenon started to be linked to the
microbial capability of biosynthesizing Se nanostructures (SeNSs) with defined size and shape [4].
The simultaneous development of the nanotechnology field in terms of new synthetic procedures,
nanomaterial (NM) characterization, and potential applications [5] resulted in an increased scientific
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focus on the possibility of using microorganisms as green and inexpensive catalysts to produce
SeNSs [6], reaching its peak in the last 20 years in terms of dedicated research, whose interest was more
devoted to investigating the mechanisms behind Se oxyanion bioprocessing than studying potential
optimization of NM biosynthesis processes. To date, (1) Painter-type reactions involving thiol (RSH)
groups [7–9], (2) enzymatic reduction by periplasmic or cytosolic oxidoreductases [10–16], (3) inorganic
reactions with microbial metabolites [17], and (4) redox reactions mediated by siderophores [18] are
the four strategies mainly acknowledged as able to achieve microbial processing of SeO3

2−. However,
no common mechanism has yet been identified for Se oxyanion biotransformation in bacteria, which
instead depends more on the bacterial species investigated as well as the diverse physiological state
of microorganisms.

The inherent complexity of bacteria also complicates the design of processes to produce
SeNSs as controllable and predictable as chemogenic NSs, highlighting the necessity to study the
mechanism of their biosynthesis. The choice of the organism to be used as the microbial cell factory,
metal(loid) precursor concentration, pH, temperature, bacterial incubation timeframe, cell physiology,
and localization of the precursor reduction events are parameters that must be considered when
studying the biogenic production of SeNSs [19–21], as variations in these conditions can determine the
physical-chemical characteristics. Among these features, morphology and size are crucial factors for NM
applications [5], as they directly affect several fundamental properties of material on the nanoscale (e.g.,
electrical and optical features, potential toxicity or cellular uptake for medical applications) [5,22,23].
A key aspect of biogenically synthesized SeNSs is the presence of an organic material derived from
the bacterial systems used, which seems to confer a naturally high degree of thermodynamic stability
toward these NMs [24,25]. The function(s) and the composition of this organic material, as well as its
variation upon changes in bacterial growth conditions, are not completely understood yet, constituting
a black hole in the microbial nanotechnology field.

In the present study, we explored how the environmental isolate Ochrobactrum sp. MPV1 can
tolerate high concentrations of SeO3

2−. This strain has been previously described for its ability to
biosynthesize Se nanoparticles (NPs) and nanorods (NRs) through SeO3

2− bioconversion [26,27];
thus, it was investigated for the removal of different SeO3

2- loads under different conditions to better
understand the biomolecular process(es) behind this biotransformation. Metabolically controlled
growth conditions were subsequently used to optimize the tuning of SeNS morphology previously
observed [27], and all the recovered biogenic NSs were characterized, focusing on size and shape
variations. Finally, the new insights presented in this study regarding composition, physical-chemical
features, and role of the organic material enclosing SeNSs recovered from MPV1 cells revealed
its paramount importance for the thermodynamic stabilization of biogenic NMs, making their
coating with stabilizing agents typically required to prevent the aggregation of those chemically
produced unnecessary.

2. Results

2.1. SeO3
2− Bioprocessing by MPV1 Cultures

The environmental isolate Ochrobactrum sp. MPV1 was previously described for its high tolerance
to SeO3

2- exposure [26]. The ability of MPV1 to thrive under SeO3
2− toxicity was assessed by monitoring

the bacterial growth and oxyanion removal under optimal conditions. The presence of increasing
oxyanion concentrations (0.5, 2, 2.5, 3, 5, and 10 mM) did not strongly affect MPV1 growth in LB
medium, even though a death phase was observed from 72 and 48 h onward upon exposure to 0.5–3 mM
and 5–10 mM SeO3

2−, respectively (Figure 1a). A general lower biomass production (ca. 1 log) was
detected upon Se oxyanion addition compared with SeO3

2− free cultures, although any significant
difference was not observed between the number of colony forming units (CFU) mL−1 at the latest
time point considered (120 h) under oxyanion exposure (Figure 1a).
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Figure 1. (a) Growth profiles, (b) SeO32− bioconversion, and (c) thiol (RSH) oxidation of MPV1 cultures 
grown in LB medium, or LB supplied with increasing concentrations (0.5, 2, 2.5, 3, 5, and 10 mM) of 
SeO32−. In (d) is shown the bacterial culture color change upon cell exposure to selenite precursor. 

A complete removal of SeO32− was observed in the case of MPV1 cultures exposed to 0.5, 2 and 
2.5 mM SeO32− after 24, 48, and 72 h of growth respectively, whereas higher oxyanion concentrations 
(i.e., 3, 5, or 10 mM) were only partially bioprocessed (ca. 2.5 mM) within 120 or 168 h, as indicated 
by the reappearance over the time of a certain amount of oxyanion in the growth medium (Figure 1b, 
Table 1). Thus, regardless of the initial oxyanion concentration supplied, 2.5 mM SeO32− appeared to 
be the threshold value for oxyanion biotic removal for MPV1 cells under these experimental 
conditions. 

Table 1. SeO32− bioprocessing efficacy of MPV1 cultures grown in LB medium over time. 

 SeO32- Removal (mM) as Function of Its Initial Concentration 
Time (h) 0.5 2 2.5 3 5 10 

24 0.5 0.27 ± 0.09 0.31 ± 0.02 0.30 ± 0.08 1.56 ± 0.13 2.83 ± 0.12 
48 - 2 2.39 ± 0.04 1.28 ± 0.11 2.02 ± 0.05 3.62 ± 0.09 
72 - - 2.5 2.79 ± 0.13 2.43 ± 0.04 5.67 ± 0.05 
96 - - - 3 2.81 ± 0.03 5.89 ± 0.07 

120 - - - 2.47 ± 0.10 2.46 ± 0.09 4.16 ± 0.04 
144 N.D. N.D. N.D. N.D. 2.51 ± 0.10 2.93 ± 0.09 
168 N.D. N.D. N.D. N.D. 2.54 ± 0.08 2.51 ± 0.11 
Note: - represents the complete removal of the initial SeO32− concentration supplied to the growth 
medium; N.D. stands for Not Determined. 

Figure 1. (a) Growth profiles, (b) SeO3
2− bioconversion, and (c) thiol (RSH) oxidation of MPV1 cultures

grown in LB medium, or LB supplied with increasing concentrations (0.5, 2, 2.5, 3, 5, and 10 mM) of
SeO3

2−. In (d) is shown the bacterial culture color change upon cell exposure to selenite precursor.

A complete removal of SeO3
2− was observed in the case of MPV1 cultures exposed to 0.5, 2 and

2.5 mM SeO3
2− after 24, 48, and 72 h of growth respectively, whereas higher oxyanion concentrations

(i.e., 3, 5, or 10 mM) were only partially bioprocessed (ca. 2.5 mM) within 120 or 168 h, as indicated by
the reappearance over the time of a certain amount of oxyanion in the growth medium (Figure 1b,
Table 1). Thus, regardless of the initial oxyanion concentration supplied, 2.5 mM SeO3

2− appeared to be
the threshold value for oxyanion biotic removal for MPV1 cells under these experimental conditions.

Table 1. SeO3
2− bioprocessing efficacy of MPV1 cultures grown in LB medium over time.

SeO3
2- Removal (mM) as Function of Its Initial Concentration

Time (h) 0.5 2 2.5 3 5 10

24 0.5 0.27 ± 0.09 0.31 ± 0.02 0.30 ± 0.08 1.56 ± 0.13 2.83 ± 0.12
48 - 2 2.39 ± 0.04 1.28 ± 0.11 2.02 ± 0.05 3.62 ± 0.09
72 - - 2.5 2.79 ± 0.13 2.43 ± 0.04 5.67 ± 0.05
96 - - - 3 2.81 ± 0.03 5.89 ± 0.07

120 - - - 2.47 ± 0.10 2.46 ± 0.09 4.16 ± 0.04
144 N.D. N.D. N.D. N.D. 2.51 ± 0.10 2.93 ± 0.09
168 N.D. N.D. N.D. N.D. 2.54 ± 0.08 2.51 ± 0.11

Note: - represents the complete removal of the initial SeO3
2− concentration supplied to the growth medium; N.D.

stands for Not Determined.
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The oxidation of RSH pools in MPV1 cultures under SeO3
2− pressure mimicked the trend for

bacterial cells not exposed to Se oxyanions, reaching the maximum extent after 24 h of growth
(Figure 1c). Overall, the pressure exerted by SeO3

2− on MPV1 cells led to a greater loss of reduced RSH
with respect to SeO3

2− free cultures. The highest amount of oxidized RSH was measured for MPV1
cells exposed to 0.5 mM SeO3

2−, whereas a similar level of loss of reduced RSH was detected upon
bacterial incubation with oxyanion concentrations ranging from 2 to 5 mM (Figure 1c). The lowest
extent of RSH oxidation was measured during growth in the presence of 10 mM SeO3

2− (Figure 1c),
although similar oxyanion removal rates were observed for MPV1 cells exposed to 2.5–10 mM SeO3

2−

(Figure 1b and Table 1). The amount of oxidized RSH after 24 h of bacterial growth and the initial
SeO3

2− concentration supplied were inversely and linearly related (Figure S1), suggesting that not
only RSH chemistry was involved in the oxyanion bioprocessing.

2.2. Characterization of Se Nanostructures Produced by MPV1 Cells

Subsequent to MPV1 growth in the presence of SeO3
2−, biogenic extracts containing SeNSs were

recovered and characterized from a physical-chemical perspective. Table 2 lists the biogenic extracts,
their acronyms (used hereinafter), and the procedure applied for their recovery.

Table 2. Conditions used to produce biogenic SeNS extracts, their acronyms and procedures used for
their recovery from MPV1 cells.

MPV1 Culture Conditions to Produce SeNSs Acronym Recovery Procedure

Growth for 24 h in the presence of 0.5 mM SeO3
2− SeNPsMPV1-0.5_24_e

[27]

Growth for 120 h in the presence of 0.5 mM SeO3
2− SeNPsMPV1-0.5_120_e

Growth for 48 h in the presence of 2 mM SeO3
2− SeNPsMPV1-2_48_e

Growth for 120 h in the presence of 2 mM SeO3
2− SeNPsMPV1-2_120_e

Growth for 120 h in the presence of 5 mM SeO3
2− SeNPsMPV1-5_120_e

Growth for 120 h in the presence of 10 mM SeO3
2− SeNSsMPV1-10_120_e

Growth for 120 h in the presence of glucose and 0.5 mM SeO3
2− SeNSsMPV1_G_e [28]

Growth for 120 h in the presence of pyruvate and 0.5 mM SeO3
2− SeNSsMPV1_P_e

MPV1 cells biosynthesized both SeNPs and SeNRs as a function of the initial SeO3
2− bioconversion.

TEM observations revealed the production of SeNPs when MPV1 was grown in LB medium
supplied with 0.5–5 mM SeO3

2− (Figure S2a–c), whereas NPs and few NRs were detected in
the biogenic extracts upon bacterial growth in the presence of 10 mM SeO3

2− (Figure S2d,d1).
Regardless of the oxyanion concentration tested, a slightly electron-dense material was observed
in all the biogenic extracts analyzed, in which structures having electron patterns resembling those
of lipid-like vesicles were identified (Figure S2(a1)). Bigger and non-uniform electron-dense SeNPs
were detected in SeNPsMPV1-0.5_120_e and SeNPsMPV1-2_120_e compared with SeNPsMPV1-5_120_e and
SeNPsMPV1-10_120_e (Figure S2), which indicated a possible agglomeration of small NPs upon MPV1
incubation with low SeO3

2− concentrations (i.e., 0.5 and 2 mM). To assess whether this phenomenon
is attributable to the fast bioprocessing of 0.5 or 2 mM Se oxyanion performed by MPV1 cells
(Figure 1b), and a consequent high number of intracellular Se atoms available for NS formation,
SEM imaging (Figures 2 and 3) was performed on SeNPsMPV1-0.5_120_e and SeNPsMPV1-2_120_e, enabling
a comparison with SeNPsMPV1-0.5_24_e and SeNPsMPV1-2_48_e, which were recovered concomitantly
with the disappearance of SeO3

2− from the cell-free spent medium (Figure 1b).
As a result, these extracts contained significantly smaller SeNPs (Figures 2 and 3) compared to

those imaged by TEM (Figure S2a,a1,b), which were closely associated with each other due to the
presence of an enclosing matrix composed of light elements, but retaining NP identity. Any significant
difference was not detected in the average diameter of SeNPs synthesized during the early (24 or 48 h)
or late (120 h) stage of MPV1 growth in the presence of 0.5 and 2 mM SeO3

2−, which ranged between
120 and 150 nm (Table 3).
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or 120 h: (c) InLens detector and (d) backscattered electron detector in the presence of 2 mM SeO3

2−.
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Table 3. Average diameter or length of SeNPs or SeNRs produced by MPV1 cells under different
growth conditions.

Biogenic SeNS Extracts Average NP Diameter (nm) Average NR Length (nm)

SeNPsMPV1-0.5_24_e 122 ± 40 N.D.
SeNPsMPV1-0.5_120_e 146 ± 25 N.D.
SeNPsMPV1-2_48_e 118 ± 36 N.D.
SeNPsMPV1-2_120_e 132 ± 21 N.D.
SeNPsMPV1-5_120_e 125 ± 32 N.D.
SeNPsMPV1-10_120_e 92 ± 26 N.D.

SeNSsMPV1-G_e 125 ± 37 513 ± 92
SeNSsMPV1-P_e 127 ± 52 418 ± 115

Similar range of sizes were also obtained for NPs present within SeNPsMPV1-5_120_e and
SeNPsMPV1-10_120_e (Figure 4 and Table 3), underlining that this could be a potential and natural
stability range for biogenic SeNP diameters produced by MPV1. Finally, the presence of few SeNRs in
the extracts recovered upon MPV1 growth in the presence to the highest SeO3

2- concentration tested
(10 mM) was further confirmed by SEM imaging (Figure 4c1).
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Figure 4. Scanning electron micrographs of (a,b) SeNPsMPV1-5_120_e and (c,d) SeNPsMPV1-10_120_e

recovered from MPV1 cells grown for 120 h in the presence of 5 mM ((a) InLens detector and (b)
backscattered electron detector) or 10 mM SeO3

2- mM ((c) InLens detector and (d) backscattered
electron detector).

2.3. Tuning of Se Nanostructure Morphology by Varying MPV1 Physiological State

Since MPV1 showed its proficiency in biosynthesizing a mixed population of SeNPs and SeNRs
under metabolically controlled growth conditions [27], the effect of a pre-culturing step on cell
adaptation was explored in an attempt to further tune SeNS production. The first observations revealed
that the change in the pre-culturing conditions led to higher bioprocessing of Se oxyanions (ca. 0.3 mM)
by MPV1 cells within 120 h of incubation (Figure S3) with respect to what was previously reported [27].
Secondly, the increased SeO3

2− removal was accompanied by the biosynthesis of mixed populations
of SeNPs and SeNRs regardless of the carbon source supplied (Figure 5), as opposed to previous
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observations where only glucose-grown cells produced SeNRs [27]. Particularly, SeNSsMPV1_G_e

contained mostly SeNRs (Figure 5a,b), but a lower number of NRs was detected compared to NPs
within SeNSsMPV1_P_e (Figure 5c,c1,d). SeNPs present in both the biogenic extracts were ca. 130 nm in
size, comparable to those recovered from MPV1 cells grown in the rich LB medium, whereas longer
SeNRs were produced by cells oxidizing glucose instead of pyruvate as the only sources of carbon and
energy (Table 3). SEM observations also indicated the presence of a material enclosing the biogenic
SeNSs and preventing their aggregation (Figure 5), which resembled the SEM images obtained for the
extracts recovered from MPV1 grown in LB medium (Figures 2–4).
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2.4. Physical-Chemical Characterization of the Biogenic Se Nanostructure Extracts

Since the biogenic NSs investigated were enclosed in some sort of matrix likely arising from
MPV1 cells, EDX spectroscopy was performed on the extracts to evaluate their elemental composition.
Except for the silicon (Si; Kα = 1.739 KeV) signal due to the mounting of the biogenic extracts onto
Si wafers, all the EDX spectra collected showed the presence of two Se peaks (Kα = 11.207 KeV and
Lα = 1.379 KeV), one signal for carbon (C; Kα = 0.277 KeV), oxygen (O; Kα = 0.525 KeV), and sulfur
(S; Kα = 2.307 KeV), whereas the presence of nitrogen (N; Kα = 0.392 KeV) was detected only in the
extracts recovered from MPV1 cells grown in LB medium (Table 4). Thus, the elemental composition
of biogenic SeNS extracts displayed the occurrence of elements typical of biomolecules constituting
bacterial cells (i.e., nucleic acids, proteins, lipids, and carbohydrates), suggesting the organic nature
of the material enclosing the biogenic NSs, whose complexity and element distribution is shown in
Figure S4.

DLS analyses were subsequently performed to study the associated organic material recovered
from the biogenic SeNS extracts, revealing its ability to auto-assemble in the nanorange with size
distributions between 130 and 170 nm (Table 5), being comparable to the average diameter of biogenic
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SeNPs calculated from SEM imaging (Table 3). This organic material was also characterized as having
a reasonable level of monodispersity according to the evaluated PdI index (<0.3). This implies that
the recovered organic material can auto-assemble into structures that are comparable in size (Table 5),
potentially mediated by the amphiphilic molecules produced by the bacteria.

Table 4. Elemental composition of biogenic SeNS extracts obtained through EDX spectroscopy.

Biogenic Extract Se C O N S

SeNPsMPV1-0.5_120_e X X X X X
SeNPsMPV1-2_120_e X X X X X
SeNPsMPV1-5_120_e X X X X X
SeNPsMPV1-10_120_e X X X X X

SeNSsMPV1-G_e X X X - X
SeNSsMPV1-P_e X X X - X

X indicates the presence of the element in the extracts; - represents the absence of the element in the extracts.

Table 5. Hydrodynamic diameter (dH) and PdI values of the organic material removed from
biogenic SeNSs.

Organic Material Samples dH (nm) PdI

OM_SeNPsMPV1-0.5_120_e 140 ± 23 0.135
OM_SeNPsMPV1-2_120_e 131 ± 13 0.173
OM_SeNPsMPV1-5_120_e 155 ± 20 0.167
OM_SeNPsMPV1-10_120_e 167 ± 35 0.181

OM_SeNSsMPV1-G_e 143 ± 17 0.110
OM_SeNSsMPV1-P_e 152 ± 23 0.105

Note: OM_ represents the organic material removed from the NSs contained within the indicated extract.

ζ analyses showed that the organic material had a negative surface charge similar to that measured
for the whole biogenic NS extracts, which ranged from −22 to −16 mV (Table 6).

Table 6. Surface charge (ζ) of biogenic SeNS extracts and their supernatants removed from NSs.

Biogenic Extracts ζ (mV) Organic Material Samples ζ (mV)

SeNPsMPV1-0.5_120_e −18 ± 1 OM_SeNPsMPV1-0.5_120_e −18 ± 3
SeNPsMPV1-2_120_e −21 ± 2 OM_SeNPsMPV1-2_120_e −13 ± 4
SeNPsMPV1-5_120_e −22 ± 1 OM_SeNPsMPV1-5_120_e −19 ± 2
SeNPsMPV1-10_120_e −16 ± 3 OM_SeNPsMPV1-10_120_e −12 ± 4

SeNSsMPV1-G_e −2 ± 2 OM_SeNSsMPV1-G_e −6 ± 5
SeNSsMPV1-P_e 3 ± 1 OM_SeNSsMPV1-P_e 4 ± 2

Note: OM_ represents the organic material removed from the NSs contained within the indicated extract.

Combining these observations, it is tempting to propose that this organic material dictates the size,
shape, and charge of the SeNSs. The only biogenic extracts and recovered organic material that
displayed ζ values close to neutrality were those isolated from MPV1 cells grown under metabolically
controlled conditions (Table 6), suggesting further a possible difference in composition between the
analyzed extracts.

2.5. Role of Organic Material in Thermodynamic Stabilization of Biogenic Se Nanostructures

A first attempt to evaluate the nature of the interaction between SeNSs and the organic
material enclosing them was conducted by performing several washing steps aimed at obtaining
this material free from NSs. The removal of the organic material led to the irreversible aggregation
of the NSs themselves. Since this phenomenon was observed for all the SeNS extracts analyzed,
the organic material surrounding these NSs seemed not to be covalently attached to the surface of the
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nanomaterial core, but most likely reversibly adsorbed on their surfaces, as well as present in solution
in thermodynamic equilibrium, which was perturbed after each washing step, as previously suggested
by Presentato et al. [28]. These results indicate the key role played by organic material in the colloidal
stability of biogenic SeNSs, preventing their aggregation.

Considering the similarity in composition and behavior of all the biogenic samples highlighted
by EDX, DLS, and ζ analyses, we studied the thermodynamic stability of SeNS extracts on
SeNPsMPV1-0.5_120_e incubated for 15 days at room temperature, using l-cys SeNPs for chemogenic
comparison. As a result, SeNPsMPV1-0.5_120_e maintained high thermodynamic stability in suspension
over the timeframe considered, showing only slight variations in size distribution, surface charge,
and PdI value within 15 days (Figure 6), the latter being always below the threshold value (<0.3).
Conversely, l-cys SeNPs were strongly affected by this treatment, reaching a complete instability
from day 7 onward, as indicated by the exponential increase in the dH (Figure 6a) and the PdI value
(Figure 6b), as well as the decrease in the absolute ζ value, which was almost neutral at the latest stage
of incubation (2 ± 1 mV; Figure 6c). The formation of black precipitates in solution further confirmed
the higher thermodynamic instability and polydispersity of l-cys-SeNPs compared to biogenic NSs.
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3. Discussion

The investigation conducted to unveil potential mechanism(s) exploited by MPV1 to cope with
increasing concentrations of SeO3

2− (0.5–10 mM) highlighted the growth and oxyanion removal rates
(Figure 1a,b, Table 1) comparable to those described for most SeO3

2− tolerant bacteria [3,29–35]. Since
Se oxyanions exceeding 2.5 mM reappeared in the growth medium upon exposure to 3, 5, and 10 mM
SeO3

2− (Figure 1b, Table 1), 2.5 mM SeO3
2− appears to be the threshold concentration biotically

processed by MPV1 cells under these experimental conditions, as also observed in the case of Moraxella
bovis [36]. This evidence indicates that the bioprocess of SeO3

2− by MPV1 might involve: (1) the uptake
of increasing concentrations Se oxyanions, (2) their bioaccumulation and bioconversion up to 2.5 mM,
and (3) a gradual release of exceeding SeO3

2− amounts. This last step could be due to either cell lysis
events, however unlikely, as similar death events were observed in bacterial cultures incubated with
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all SeO3
2− concentrations (Figure 1a), or a saturation of the cellular systems responsible for SeO3

2−

removal, which led to the release of oxyanions to reach a sort of equilibrium between the intra- and
extra-cellular environments [34].

The high level of RSH oxidation measured in MPV1 cells exposed to 0.5 mM SeO3
2− (Figure 1c)

indicates a major involvement of these reactive groups for SeO3
2− removal. Other cellular systems

(i.e., enzymes) seemed to be involved in the bioprocessing of SeO3
2− concentrations exceeding

0.5 mM, as suggested by (1) the ability of MPV1 cells to biotically remove ca. 2.5 from 10 mM
SeO3

2− after 168 h of incubation (Figure 1b, Table 1), and yet (2) the RSH levels recover toward
later incubation times defining a low level of sustained oxidized RSHs (Figure 1c), and (3) their
minor contribution to the oxyanion conversion as function of SeO3

2− concentration, as depicted by
the linear relationship observed in Figure S1. The presence of an inhibitor for glutathione (GSH)
synthesis, S-n-butyl homocysteine sulfoximine (BSO), only slightly affected the biotic removal of 2 mM
SeO3

2−, revealing only a six-hour delay in the process [26]. Thus, the key role played by GSHs in
MPV1 cells is to bioconvert Se oxyanions, yet ancillary enzymatic mechanism(s) can be induced as
function of SeO3

2− concentration and time of exposure. Ubiquitous enzymes, like NAD(P)H-dependent
thioredoxin reductases and flavin oxidoreductases, sulfate or sulfite reductases, or fumarate reductases,
were identified as responsible for the biotic reduction of high concentrations (from 2 to 10 mM) of
SeO3

2− [30,32–35,37]. In this regard, NADPH-dependent reduction activity toward high concentrations
(5 mM) of SeO3

2− was found in the cytoplasmic and, to a minor extent, in the periplasmic fractions of
MPV1 cells [26]. SeO3

2− bioprocessing can also be mediated by intracellular SeO3
2− reductases [34,38],

lignin peroxidase [39], chromate (CrsF), ferric (FerB) and arsenate reductases (ArsH) [37], or the
metalloid-selective channel porin ExtI [40]. Thus, enzymatic systems might be accountable for the
bioconversion of high oxyanion concentrations in MPV1, whereas low amounts of SeO3

2− are likely
bioprocessed through Painter-type reactions.

Regardless of the initial concentration of SeO3
2− precursor, MPV1 biosynthesized SeNPs as the

main product of Se oxyanion bioconversion (Figure 2, Figure 3, Figure 4 and Figure S2). The process
behind the formation of NSs relies on a number of parameters (i.e., precursor concentration, reducing
agent, reaction time, the concentration of elemental atoms) that influence the rate of growth, morphology,
and size of NMs [41,42]. Due to the complexity of a biological system, the type of cell factory and the
localization of precursor reduction events must be accounted for by NS biosynthesis, as they directly
influence the concentration of metal atoms available for NM formation. Previous reports showed
that the reduction of SeO3

2− occurred in the cytoplasm of MPV1 [26,27], leading to the confinement
of many Se atoms in the small cellular volume, increasing the chances to exceed the critical level
of these atoms to form Se nuclei [43], which eventually grow as NPs. Thus, the MPV1 intracellular
environment can improve the synthesis of SeNSs even at low concentration of Se atoms with respect to
chemogenic procedures.

Overall, NMs synthesized by microorganisms generally feature high polydispersity in size [25],
which mostly depends on the uneven distribution of the metal(loid) precursor within the cells during
bacterial growth, resulting in the accumulation of different intracellular concentrations of elemental
atoms, which can determine diverse NS production rates [43]. However, despite the different growth
conditions tested, the average diameter of biogenic SeNPs was always between 90 and 140 nm
(Table 3), indicating a good monodispersity in size, in line with most studies reported to date [44].
Although NPs are classically defined as particles having a diameter between 1 and 100 nm, the unique
physical-chemical properties of these biogenic Se-structures [27] and the proximity of their size with the
range in question allow them to be considered as NPs, accordingly to some of the definitions coined to
date for these NMs [45,46]. The monodispersity of biogenic SeNPs may indicate their natural stability
within this range size due to the existence of an organic material composed of biomolecules produced
by bacterial cells that participate to control NP diameter [47,48]. The close association of SeNPs with
the organic material was further supported by SEM imaging, which highlighted the presence of a
matrix composed of light elements (Table 4) and enclosing SeNPs (Figures 2–4). TEM micrographs
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revealed the occurrence clusters of NPs in SeNPsMPV1-0.5_120_e and SeNPsMPV1-2_120_e (Figure S2a,b),
likely caused by the high bioprocessing rate of low SeO3

2− concentrations. Since any significant
difference was not observed in the growth profile of MPV1 cells upon exposure to diverse oxyanion
concentrations (Figure 1a), the bacterial incubation with 0.5 and 2 mM SeO3

2− corresponded to the
highest precursor (SeO3

2−)-to-reducing agent (RSHs and enzymatic systems) ratio, which mediated
the fastest oxyanion bioprocessing observed (Figure 1b and Table 1). This would result in the buildup
of a high concentration of Se atoms over a short period of time, causing the rapid formation of SeNPs
and their eventual agglomeration [49,50] in the intracellular environment, even though their complete
aggregation was prevented by the presence of the organic material. The low extent of oxyanion
bioprocessing under MPV1 exposure to either 5 or 10 mM (Figure 1b, Table 1) led to a decreased
amount of Se atoms available for NP synthesis over the time period [20], preventing the detection of
big clusters within TEM micrographs (Figure S2c,d).

Previous studies concerning the characterization of biogenic SeNSs showed the existence of
an organic material playing a key role in their synthesis and stabilization [6,44]. Over the past few
years, FTIR spectroscopy has been the most-used technique to assess the presence of biomolecules
associated with SeNSs, enabling the detection of proteins, carbohydrates, and lipids within most
of the extracts analyzed [20,32,37,47,51–57], including those recovered from MPV1 cells grown
under optimal conditions [26]. Here, the detection of light elements attributable to biomolecules
co-produced by the bacterial strain alongside Se (Table 4) highlighted a certain degree of variability
among the biogenic NSs, likely due to the exploitation of multiple strategies by MPV1 to remove Se
oxyanions [20,32]. The detection of N in some cases might be ascribed to the occurrence of proteins
or metabolites within the biogenic extracts [26], whereas the constant presence of S signal may be
due to the involvement of RSHs in SeO3

2− bioprocessing for MPV1 cultures [20,21,58]. The narrow
size distributions of the organic material (Table 5) suggested that it mostly contained amphiphilic
biomolecules able to form nanosized aggregates (e.g., micelles and vesicles) when suspended in aqueous
solution [28,59]. The low PdI values indicated the ability of these biomolecules to form monodisperse
structures [60]. Since Se does not have a net charge in its elemental state (Se0), the negative ζ values
(Table 6) may indicate that negatively charged biomolecules were part of the biogenic extracts, whose
charges can be attributed to the presence of either carboxyl (–COO−) or phosphate (–PO4

2−) functional
groups [28,61]. Although similar in elemental composition, the biogenic extracts recovered from
MPV1 cells grown under metabolically controlled conditions showed ζ values closed to neutrality
(Table 6), potentially indicating differences in terms of biomolecular composition, depending on the
metabolism exploited by MPV1 to cope with Se oxyanion toxicity. The different bacterial physiological
states determined morphological changes of SeNSs (Figure 5), resulting in the production of both
NPs and NRs, also observed in the case of Shewanella sp. HN-41 [19], Lysinibacillus sp. ZYM-1 [20],
and Rhodococcus aetherivorans BCP1 [28]. This phenomenon can be ascribed to the bivalent nature of Se,
as once amorphous NPs are formed, they can spontaneously dissolve and release Se atoms [62], which
might precipitate as nanocrystallinites and grow in one direction to attain a more thermodynamic stable
state, allowing NRs to form [63]. This process is favored by the co-presence of amphiphilic molecules
(e.g., surfactants having a bulky structure) that can act as templates to guide the deposition of Se atoms
and their growth in one direction [64]. In this regard, the synthesis of biosurfactants was earlier reported
for Ochrobactrum genus bacterial strains when grown under stress conditions [65], whereas the shift
from SeNPs to SeNRs was previously observed in MPV1-glucose grown cells [27]. Here, this change
in NS morphology was emphasized due to the different MPV1 pre-culturing conditions, and cells
also thriving under pyruvate and SeO3

2− pressure-produced SeNRs (Figure 5c,d), suggesting a direct
influence of the bacterial physiology on the biosynthesis of different nanomaterial morphologies. Based
on both the evidence collected here and previous studies [26,27], a putative mechanism illustrating
SeO3

2− bioprocessing and SeNS production by MPV1 is proposed in Figure 7.
The biomolecules present in the extracts are also responsible for the thermodynamic stability of

biogenic SeNSs, as indicated by the formation of insoluble Se precipitates upon physical removal of
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the organic material. This conclusion was further supported by the slight effect of the temperature
on both surface charge and dH of SeNPsMPV1-0.5_120_e, as opposed to l-cys SeNPs (Figure 6), whose
electrostatic stabilization was completely lost within 15 days. This phenomenon may be due to the
overall development of electrostatic (charged moieties) and steric (bulky amphiphilic molecules)
interactions between the organic material and the SeNSs within the biogenic extracts, generating the
electrosteric stabilization effect [25,28,52,61], which is used to strongly stabilize chemogenic NMs [64].
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Figure 7. Fast SeO3
2− uptake is followed by its rapid bioconversion within MPV1 cells, causing a

build-up of Se0 atoms in the intracellular environment. Consequently, Se atoms eventually aggregate
with each other, and once the solubility threshold concentration is reached, they form intracellular
nucleation seeds. This event is followed by the generation of a high amount of intracellular SeNPs,
which can be mediated by amphiphilic biomolecules present within the cells that can also provide
thermodynamic stability to the forming NSs. SeNRs production is instead favored by the exposure of
MPV1 to high concentrations of SeO3

2− as well as its growth-eliciting specific metabolisms, most likely
due to the co-production of a high amount of amphiphilic biomolecules as stress response that can act
as surfactants, providing a template for the growth of Se nucleation seeds along one axis.

4. Materials and Methods

4.1. Bacterial Culture Conditions

Ochrobactrum sp. MPV1, isolated from a dump site for roasted pyrites at a former sulfuric acid
production plant [26], was pre-cultured for 16 h at 27 ◦C with shaking (200 rpm) in 13-mL test tubes
containing 5 mL of Luria Bertani (LB) medium composed of sodium chloride (NaCl; 10 g L−1), tryptone
(10 g L−1), and yeast extract (5 g L−1). The cells were then inoculated (1% v/v) and cultured under
microaerophilic conditions for 120 h at 27 ◦C with shaking (200 rpm) in fresh LB medium with 0.5,
2, 2.5, 3, 5, or 10 mM of sodium selenite (Na2SeO3). For MPV1 cells cultured under metabolically
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controlled conditions, the cells were pre-cultured in defined medium (DM) [66] supplied with either
glucose or pyruvate (0.5% w/v) as the sole carbon and energy source, then inoculated (1% v/v) in fresh
pre-culturing medium with the addition of 0.5 mM Na2SeO3.

The bacterial growth profile was evaluated every 24 h using the spot plate count method, with the
data reported as the logarithm of the CFU per milliliter (log10(CFU mL−1)) for each biological replica
(n = 3) with SD.

All the reagents used were purchased from Sigma-Aldrich® (Milan, Italy) and were all
analytical grade.

4.2. Biotic SeO3
2- Removal Efficiency

SeO3
2- bioprocessing by MPV1 cells was determined following the protocol described by

Kessi et al. [67], evaluating the oxyanion residual concentration present in the cell-free spent medium
every 24 h of growth by measuring the absorbance of the selenium-2,3-diaminonaphthalene complex
at 377 nm, using a 1-cm path length quartz cuvette (Hellma®, Milan, Italy) and a Varian Cary® 50
Bio UV-Vis Spectrophotometer (Agilent Technologies, Milan, Italy). Calibration curve (R2 = 0.99) was
determined using 0, 50, 100, 150, and 200 nmol of SeO3

2−. The residual SeO3
2− concentrations (mM)

are reported as average value (n = 3) with SD.

4.3. Measurement of Thiol Oxidation as Consequence of SeO3
2− Bioprocessing

Thiol (RSH) oxidation was monitored by sampling MPV1 cultures every 24 h of growth supplied
with increasing SeO3

2− concentrations, following the procedure established by Turner et al. [68].
The absorbance of the suspension containing oxidized RSHs was read at 412 nm using a 1-cm path
length Acrylic cuvette (Sarstedt, Verona, Italy) and a Varian Cary® (Agilent Technologies, Milan, Italy)
50 Bio UV–Vis Spectrophotometer. RSH concentration was determined by using the known extinction
coefficient of 5,5-dithio-bis-2-nitrobenzoic acid (DTNB; 1.36 × 104 M−1 cm−1), and normalizing the
data over the total amount of cell proteins, which were collected from MPV1 cultures after 48 h of
growth and quantified using a modified Lowry assay [69]. The concentration of RSH estimated at the
beginning of cell incubation (t0 = 0 h) was subtracted to RSH contents evaluated over the timeframe
considered to report the data as loss of reduced RSH from the original pool (n = 3) with SD.

4.4. Preparation and Recovery of Biogenic Se Nanomaterial Extracts and Their Supernatants

The biogenic SeNSs (i.e., NPs or NRs) were recovered using the optimized protocols described
by Piacenza et al. and Presentato et al. [27,28]. Briefly, MPV1 biomass was centrifuged (3000 ×g for
20 min) and resuspended in 10 mL of 1.5 mM Tris-HCl (Sigma-Aldrich®) buffer (pH 7). The cells
were then disrupted by means of ultrasonication (UP50H Hielscher) at 50 W for 5 min (30 s of burst
interspersed by 30 s of pause on ice). The cell debris was removed by centrifugation (3000 ×g for
20 min), whereas the supernatant containing SeNPs was filtered using 0.20 µm Filtropur (Sarstedt).
To collect the biogenic SeNPs, the filtered solution was centrifuged (20,000 ×g for 30 min), forming the
nanoparticle pellet resuspended in sterile distilled water. The solution containing SeNRs was treated
with 1-Octanol in a ratio of 1:4 to remove excess cell debris, avoiding the filtering step that might alter
nanorod integrity. Since there was a close but not covalent association between the SeNSs and the
surrounding organic material, the latter was recovered according to Presentato et al. [28]. Specifically,
the extracts were centrifuged (20,000 ×g for 30 min) to pellet down SeNSs, and the supernatant,
now containing the organic material striped off from the biogenic NMs, was the subject of further
physical-chemical characterization.

4.5. Physical-Chemical Characterization of Biogenic Se Nanomaterial Extracts

TEM was performed by depositing 5 µL of biogenic extracts onto carbon coated copper grids
(CF300-CU, Electron Microscopy Sciences, Rome, Italy), which were then air-dried prior their imaging
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by means of a Philips CM100 TEM (Milan, Italy) operating at 80 kV. Similarly, 5 µL of each extract were
deposited onto Crystalline Silicon wafers (type N/Phos, size 100 mm, University WAFER, Milan, Italy)
mounted on Specimen Aluminum stubs (TED PELLA, INC., Milan, Italy), air-dried and visualized
using a Zeiss Sigma VP field emission scanning electron microscope (FESEM, Milan, Italy), which was
coupled with a Bruker XFlash R 4 detector (Milan, Italy) to acquire energy dispersive X-ray (EDX)
spectra. FESEM micrographs were subsequently analyzed using ImageJ software (1.50i, National
Institutes of Health, Rockville Pike Bethesda, MD, USA) to calculate the average size (i.e., diameter and
length) of SeNPs or NRs by measuring 100 randomly chosen SeNSs for each biogenic extract considered.

Dynamic light scattering (DLS) and Zeta potential (ζ) measurements were performed at pH = 7
and 25 ◦C on 1 mL solutions of biogenic SeNS extracts and the recovered organic material enclosing
SeNSs by means of a Zen 3600 Zetasizer Nano ZS™ from Malvern Instruments (Milan, Italy) using
spectrophotometric cuvettes (10 × 10 × 45 mm Acrylic Cuvettes, Sarstedt, Verona, Italy) and folded
capillary Zeta cells (Malvern Instruments, Milan, Italy), respectively.

4.6. Monitoring Thermodynamic Stability of Biogenic Se Nanomaterial Extracts and Chemogenic
Se Nanoparticles

The chemogenic procedure described by Li et al. was used to synthesize l-cysteine SeNPs (l-cys
SeNPs) by mixing l-cysteine (50 mM) and Na2SeO3 (100 mM) at a ratio 4:1 at room temperature [49]
to obtain NPs ranging in size between 150 and 200 nm, similar to that of SeNPsMPV1-0.5_24_e.
The thermodynamic stability of l-cys SeNPs and SeNPsMPV1-0.5_24_e was evaluated in terms of
hydrodynamic diameter (dH), polydispersity index (PdI), and ζ changes by incubating these
nanomaterials at room temperature (25 ◦C) and pH 7 over a period of 15 days.

5. Conclusions

Ochrobactrum sp. MPV1 showed high resilience to SeO3
2− toxicity, indicating the existence of

multiple intracellular systems (i.e., RSHs and enzymatic systems) that may be responsible for removing
up to 2.5 mM SeO3

2−, which is the threshold concentration of oxyanion processing by this bacterial
strain. As a consequence of Se oxyanion bioconversion, MPV1 produced SeNSs, whose morphology
was dependent on either the SeO3

2− concentration supplied or the bacterial physiological state, leading
to the biosynthesis of NPs or NRs. Particularly, we highlighted the existence of a stability range for
SeNP diameter, and improved the knowledge regarding the production and the physical-chemical
properties of SeNSs by MPV1, focusing on the role of the organic material enclosing the NSs, which is
of utmost importance for the development of electrosteric interactions mediating the thermodynamic
stability of biogenic SeNSs as opposed to those of chemical synthesis.
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micrographs of (a) SeNPsMPV1-0.5_120_e, (b) SeNPsMPV1-2_120_e, (c) SeNPsMPV1-5_120_e, and (d) SeNSsMPV1-10_120_e
recovered from MPV1 cells grown for 120 h in the presence of (a) 0.5, (b) 2, (c) 5, or (d) 10 mM SeO3
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