
Converging fate of the oxidation and reduction of 8-thioguanosine

Katarzyna Taras- Goslinska^{1†}, Fabrizio Vetica^{2,3†}, Sebastián Barata-Vallejo^{3,4}, Virginia Triantakostanti³, Bronisław Marciniak^{1,5}, and Chryssostomos Chatgilialoglu^{2,3,5}*

Supporting Information

1. NMR analysis	2
2. Reaction of $Br_2^{\bullet-}$ with 8-TG	4
3. Reaction of N_3^{\bullet} with 8-TG	5
4. Reaction of 8-TG with H_2O_2	5
5. Reactions in the presence of POPC liposomes	6

8-mercaptoguanosine (8-TG, 1)

¹**H NMR** (500 MHz, DMSO-d₆) $\delta = \delta$ 12.63 (s, 1H), 11.13 (s, 1H), 6.54 (s, 2H), 6.25 (d, J = 5.5 Hz, 1H), 5.24 (d, J = 5.9 Hz, 1H), 4.95 (q, J = 5.1 Hz, 1H), 4.92 – 4.80 (m, 1H), 4.77 (t, J = 5.4 Hz, 1H), 4.21 (s, 1H), 3.79 (q, J = 4.6 Hz, 1H), 3.65 (dt, J = 11.1, 4.3 Hz, 1H), 3.49 (dt, J = 11.8, 5.9 Hz, 1H). ppm. ¹**H NMR** (500 MHz, DMSO-d₆ + D₂O) $\delta = 6.25$ (d, J = 5.9 Hz, 1H), 4.89 (t, J = 5.8 Hz, 1H), 4.29 – 4.23 (m, 1H), 3.88 (q, J = 4.2 Hz, 1H), 3.67 (dd, J = 12.2, 3.7 Hz, 1H), 3.56 (dd, J = 12.2, 5.1 Hz, 1H) ppm.

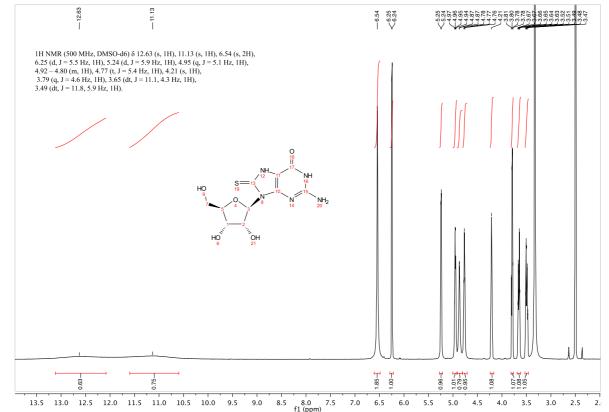
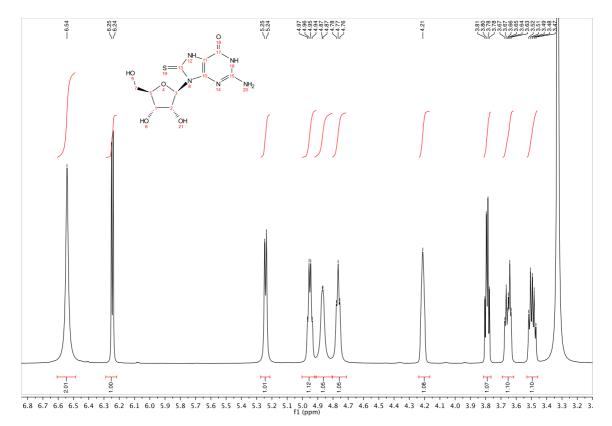


Figure S1 ¹H NMR spectrum of 8-TG



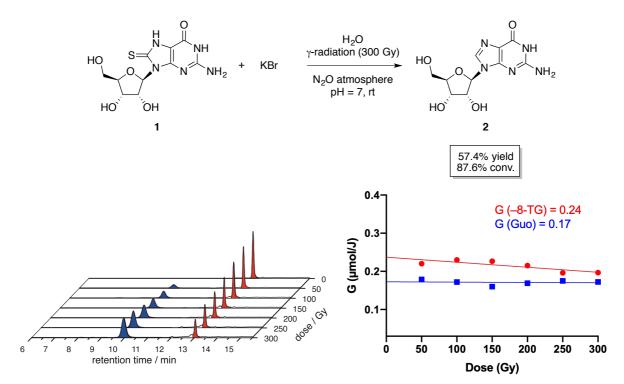
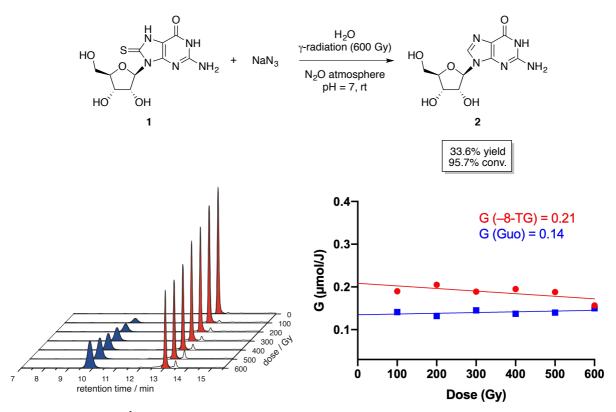


Figure S2 Zoomed ¹H NMR spectrum of 8-TG



2. Reaction of Br₂^{•-} with 8-TG

Figure S4 Reaction of Br2^{•-} with 8-TG. γ -radiolysis of 1 (0.09 mM) in N₂O-purged water at natural pH, containing KBr (0.1 M) at a dose rate of 1.85 Gy min⁻¹. A) HPLC runs of the reactions. The HPLC peaks of 1 are hiblighted in red, while the peaks of guanosine (2) are highlighted in blue. B) The chemical irradiation yields G(-1) (•) and G(2) (•) as function of the irradiation dose. The line extrapolation to a zero dose leads to the *G* values reported on the graph.

3. Reaction of N_3 with 8-TG

Figure S5 Reaction of N₃[•] with 8-TG. γ -radiolysis of 1 (0.27 mM) in N₂O-purged water at natural pH, containing NaN₃ (0.1 M) at a dose rate of 1.85 Gy min⁻¹. A) HPLC runs of the reactions. The HPLC peaks of 1 are hihlighted in red, while the peaks of guanosine (2) are highlighted in blue. B) The chemical irradiation yields G(-1) (•) and G(2) (•) as function of the irradiation dose. The line extrapolation to a zero dose leads to the *G* values reported on the graph.

4. Reaction of 8-TG with H_2O_2

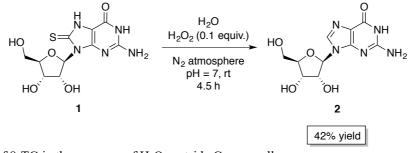
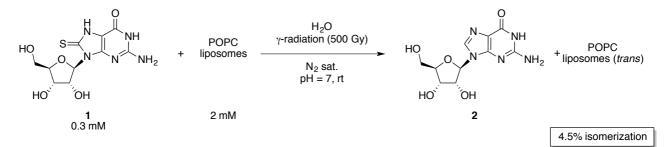
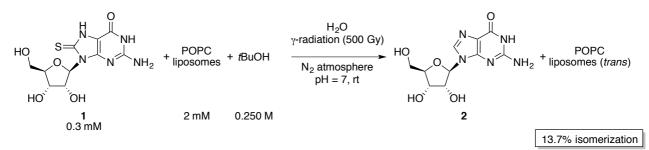
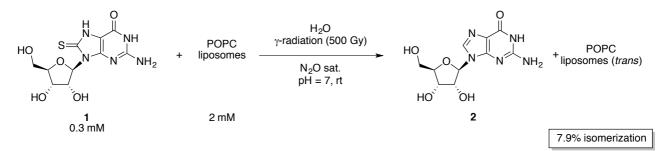
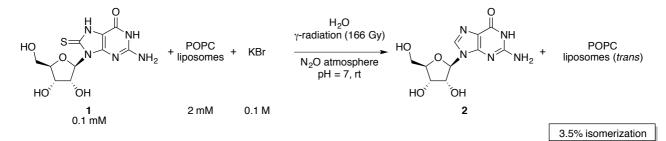


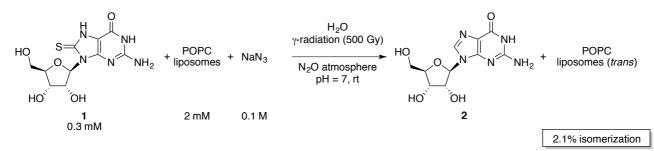
Figure S6 Reaction of 8-TG in the presence of H₂O₂ outside Gammacell.

8-TG (0.3 mM) and H_2O_2 (30% water solution, 0.1 equiv.) were dissolved in 2 mL water. The solution was saturated with N_2 for 7 min and left without stirring for 4.5h (corresponding to an irradiation of 500 Gy if the reaction was carried out in Gammacell). After the irradiation time, the solution was analysed *via* HPLC.

5. Reactions in the presence of POPC liposomes


Figure S7 Reaction of HO[•], H[•], and e_{aq}^- with 8-TG in the presence of POPC liposomes. γ -radiolysis of 1 (0.3 mM) in N₂-purged water at natural pH, containing POPC liposomes (2 mM), at a dose rate of 1.85 Gy min⁻¹. The level of isomerization was determined *via* GC analysis.


Figure S8 Reaction of e_{aq}^{-} with 8-TG in the presence of POPC liposomes. γ -radiolysis of 1 (0.3 mM) in N₂-purged water at natural pH, containing POPC liposomes (2 mM) and *t*BuOH (0.25 M), at a dose rate of 1.85 Gy min⁻¹. The level of isomerization was determined *via* GC analysis

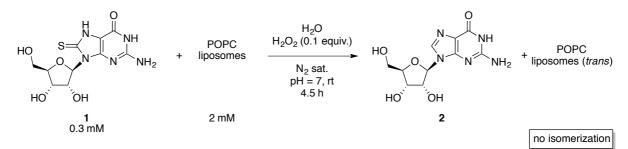

Figure S9 Reaction of HO[•] with 8-TG in the presence of POPC liposomes. γ -radiolysis of 1 (0.3 mM) in N₂O-purged water at natural pH, containing POPC liposomes (2 mM), at a dose rate of 1.85 Gy min⁻¹. The level of isomerization was determined *via* GC analysis.

Figure S10 Reaction of Br_2^{-} with 8-TG in the presence of POPC liposomes. γ -radiolysis of 1 (0.1 mM) in N₂O-purged water at natural pH, containing POPC liposomes (2 mM) and KBr (0.1 M), at a dose rate of 1.85 Gy min⁻¹. The level of isomerization was determined *via* GC analysis.

Figure S11 Reaction of N₃ with 8-TG in the presence of POPC liposomes. γ -radiolysis of 1 (0.3 mM) in N₂O-purged water at natural pH, containing POPC liposomes (2 mM) and NaN₃ (0.1 M), at a dose rate of 1.85 Gy min⁻¹. The level of isomerization was determined *via* GC analysis.

Figure S12 Reaction of H_2O_2 with 8-TG in the presence of POPC liposomes. Reaction of 1 (0.3 mM) and H_2O_2 (0.1 equiv.) in N₂-purged water at natural pH, containing POPC liposomes (2 mM), at a dose rate of 1.85 Gy min⁻¹. The level of isomerization was determined *via* GC analysis.