Supporting Information for

Synthesis and electrochemical and spectroscopic characterization of 4,7-diamino-1,10-phenanthrolines and their precursors

Jacek E. Nycz 1,*, Jakub Wantulok 1, Romana Sokolova 2, Lukasz Pajchel 3, Marek Stankevič 4, Marcin Szala 5, Jan Grzegorz Malecki 1 and Daniel Swoboda 1

Table of Contents

Table S1. Crystal data and structure refinement details of compounds 5d, 6a, 6b S2
Table S2. Hydrogen bonds for compounds 5d, 6a and 6b (Å and °) S2
Table S3. C-Cl…π stacking interactions in compound 5d and π…π interaction in 6a S3
Table S4. The experimental 1H chemical shifts of compounds 4, 5 and 6 in CDCl3 S3
Table S5. The experimental 13C{1H} chemical shifts of compounds 4, 5 and 6 in CDCl3 S3
Table S6. The experimental CP/MAS 13C chemical shifts of selected compounds 4 and 5 S4
Table S7. The experimental CP/MAS 15N chemical shifts of selected compounds 4 and 5 S5
Table S8. Calculated HOMO and LUMO distribution of selected compounds 4 S6
Table S9. Calculated HOMO and LUMO distribution of selected compounds 5 S7

Fig. S1. Natural atomic charges of compounds 5m (left) and 5n (right) S8

Fig. S2. The plot of the electrostatic potential for compounds 5m (left) and 5n (right) S8

1H, 13C and HMQC; 15N NMR Spectra and MS for compounds 4 S9-S37
1H, 13C and HMQC; 15N NMR Spectra and MS for compounds 5 S38-S70
1H, 13C and HMQC; 15N NMR Spectra and MS for compounds 6 S71-S74
Table S1. Crystal data and structure refinement details of compounds 5d, 6a and 6b.

<table>
<thead>
<tr>
<th></th>
<th>5d</th>
<th>6a</th>
<th>6b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C2H${22}$FN$_4$, 2(CHCl$_3$)</td>
<td>C${17}$H${21}$N$_2$O$_2$. 2(C6H${12}$O)$_2$</td>
<td>C2H${22}$N$_2$OS$_2$. 2(C6H${12}$O)</td>
</tr>
<tr>
<td>Formula weight</td>
<td>603.19</td>
<td>727.84</td>
<td>759.91</td>
</tr>
<tr>
<td>Temperature [K]</td>
<td>295(2)</td>
<td>295(2)</td>
<td>295(2)</td>
</tr>
<tr>
<td>Wavelength (Å)</td>
<td>0.71073</td>
<td>0.71073</td>
<td>0.71073</td>
</tr>
<tr>
<td>Crystal system</td>
<td>triclinic</td>
<td>triclinic</td>
<td>monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P–1</td>
<td>P–1</td>
<td>P2$_1$/c</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a [Å]</td>
<td>9.1767(13)</td>
<td>12.1394(7)</td>
<td>9.0665(4)</td>
</tr>
<tr>
<td>b [Å]</td>
<td>10.3249(14)</td>
<td>12.6397(5)</td>
<td>15.0843(5)</td>
</tr>
<tr>
<td>c [Å]</td>
<td>14.9935(12)</td>
<td>12.9635(6)</td>
<td>90</td>
</tr>
<tr>
<td>α [°]</td>
<td>83.725(9)</td>
<td>89.230(4)</td>
<td>91.867(4)</td>
</tr>
<tr>
<td>β [°]</td>
<td>82.567(9)</td>
<td>75.454(4)</td>
<td>90</td>
</tr>
<tr>
<td>γ [°]</td>
<td>87.109(12)</td>
<td>79.332(4)</td>
<td>90</td>
</tr>
<tr>
<td>Volume [Å3]</td>
<td>1399.3(3)</td>
<td>1890.91(16)</td>
<td>3692.3(2)</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Calculated density [Mg/m3]</td>
<td>1.432</td>
<td>1.278</td>
<td>1.367</td>
</tr>
<tr>
<td>Absorption coefficient [mm$^{-1}$]</td>
<td>0.642</td>
<td>0.083</td>
<td>0.195</td>
</tr>
<tr>
<td>F(000)</td>
<td>620</td>
<td>768</td>
<td>1592</td>
</tr>
<tr>
<td>Crystal dimensions [mm]</td>
<td>0.36 x 0.08 x 0.06</td>
<td>0.17 x 0.08 x 0.07</td>
<td>0.37 x 0.15 x 0.14</td>
</tr>
<tr>
<td>θ range for data collection [°]</td>
<td>3.33 − 25.05</td>
<td>3.57 − 27.95</td>
<td>3.46 − 29.56</td>
</tr>
<tr>
<td>Index ranges</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>−12 ≤ h ≤ 12</td>
<td>−16 ≤ h ≤ 15</td>
<td>−10 ≤ h ≤ 11</td>
</tr>
<tr>
<td>k</td>
<td>−12 ≤ k ≤ 14</td>
<td>−15 ≤ k ≤ 14</td>
<td>−36 ≤ k ≤ 27</td>
</tr>
<tr>
<td>l</td>
<td>−18 ≤ l ≤ 21</td>
<td>−17 ≤ l ≤ 14</td>
<td>−20 ≤ l ≤ 15</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>11285</td>
<td>16918</td>
<td>22276</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>6529 [R(int) = 0.0784]</td>
<td>8928 [R(int) = 0.0412]</td>
<td>9010 [R(int) = 0.0310]</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>6529/0/328</td>
<td>8928/2/516</td>
<td>9010/0/500</td>
</tr>
<tr>
<td>Goodness-of-fit on F2</td>
<td>0.912</td>
<td>1.019</td>
<td>1.034</td>
</tr>
<tr>
<td>Final R indices [I>2σ(I)]*</td>
<td>R_1 = 0.0650, R$_{w1}$ = 0.1458</td>
<td>R_1 = 0.0667, R$_{w1}$ = 0.1589</td>
<td>R_1 = 0.0604, R$_{w1}$ = 0.1438</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R_1 = 0.1830, R$_{w1}$ = 0.2091</td>
<td>R_1 = 0.1391, R$_{w1}$ = 0.1999</td>
<td>R_1 = 0.0991, R$_{w1}$ = 0.1665</td>
</tr>
<tr>
<td>Largest diff. Peak and hole</td>
<td>0.530 /-0.437</td>
<td>0.312/-0.266</td>
<td>0.401/-0.329</td>
</tr>
<tr>
<td>CCDC number</td>
<td>1479401</td>
<td>1917090</td>
<td>1919692</td>
</tr>
</tbody>
</table>

*Structure was refined on F_o^2: $wR2 = \sqrt{\sum (w(F_o^2-F_c^2))^2/\sum w(F_o^2)^2})^{1/2}$, where $w^{-1} = \sum (F_o^2) + (aP)^2 + bP$ and $P = \max(F_o^2, 0) + 2F_c^2/3.$

Table S2. Hydrogen bonds for compounds 5d and 6a (Å and °).

<table>
<thead>
<tr>
<th>D-H...A</th>
<th>d(D–H)</th>
<th>d(H...A)</th>
<th>d(D...A)</th>
<th><(DHA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5d</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(19)–H(19B)...F(1)</td>
<td>0.97</td>
<td>2.16</td>
<td>2.715(5)</td>
<td>116.0</td>
</tr>
<tr>
<td>C(23)–H(23)...N(1)</td>
<td>0.98</td>
<td>2.43</td>
<td>3.281(6)</td>
<td>145.2</td>
</tr>
<tr>
<td>C(23)–H(23)...N(2)</td>
<td>0.98</td>
<td>2.34</td>
<td>3.205(5)</td>
<td>147.2</td>
</tr>
<tr>
<td>6a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

S2
Table S3. C–X...π stacking interactions in compounds 5d, 6b and π...π interaction in 6a, 6b.

<table>
<thead>
<tr>
<th>Y–X(I)•••Cg(J)</th>
<th>X(I)•••Cg(J) [Å]</th>
<th>X-Perp [Å]</th>
<th>γ [°]</th>
<th>Y–X(I)•••Cg(J) [°]</th>
</tr>
</thead>
<tbody>
<tr>
<td>5d</td>
<td>Cg(I): N(2)–C(10)–C(9)–C(8)–C(7)–C(11); Cg(2): C(4)–C(5)–C(6)–C(7)–C(11)–C(12)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(24)–Cl(4)•••Cg(1)</td>
<td>3.882(2)</td>
<td>-3.619</td>
<td>21.20</td>
<td>108.06(17)</td>
</tr>
<tr>
<td>C(24)–Cl(5)•••Cg(2)</td>
<td>3.942(2)</td>
<td>-3.767</td>
<td>17.13</td>
<td>132.07(17)</td>
</tr>
</tbody>
</table>

6b	Cg(I): S(2)–C(31)–C(26)–N(5)–C(37)–C(32)			
C(21)–H(21)•••Cg(1)	2.690	2.674	5.67	135.0
C(13)–N(3)•••Cg(1)	3.180	-3.137	9.45	81.05

6a

<table>
<thead>
<tr>
<th>Cg(I)•••Cg(J)</th>
<th>Cg(I)•••Cg(J) [Å]</th>
<th>α [°]</th>
<th>β [°]</th>
<th>γ [°]</th>
<th>Cg(I)-Perp [Å]</th>
<th>Cg(J)-Perp [Å]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cg(1): N(1)–C(12)–C(4)–C(3)–C(2)–C(1); Cg(2): N(2)–C(11)–C(7)–C(8)–C(9)–C(10)</td>
<td>Cg(1)•••Cg(2)</td>
<td>3.887</td>
<td>0.00</td>
<td>8.06</td>
<td>85.40</td>
<td>-4.773</td>
</tr>
</tbody>
</table>

6b

<table>
<thead>
<tr>
<th>Cg(I)•••Cg(J)</th>
<th>Cg(I)•••Cg(J) [Å]</th>
<th>α [°]</th>
<th>β [°]</th>
<th>γ [°]</th>
<th>Cg(I)-Perp [Å]</th>
<th>Cg(J)-Perp [Å]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cg(2): C(20)–C(21)–C(22)–C(23)–C(24)–C(25)</td>
<td>Cg(2)•••Cg(2)</td>
<td>3.7791(14)</td>
<td>0.00</td>
<td>13.89</td>
<td>89.72</td>
<td>-5.068</td>
</tr>
</tbody>
</table>

α = dihedral angle between Cg(I) and Cg(J); Cg(I)-Perp = Perpendicular distance of Cg(I) on ring J; Cg(J)-Perp = perpendicular distance of Cg(J) on ring I; β = angle Cg(I)–Cg(J) vector and normal to ring I; γ = angle Cg(I) → Cg(J) vector and normal to plane J

Symmetry code: #1 = x,1+y,z; #2 = 1-x,1-y,1-z; #3 = x,-1+y,z; #4 = -x,1-y,1-z

Table S4. The experimental ¹H chemical shifts of compounds 4, 5 and 6 in CDCl₃ (* in D₂O/KOD).

<table>
<thead>
<tr>
<th>Aromatic</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>4a</td>
<td>7.71, 8.24, 9.06</td>
</tr>
<tr>
<td>4b</td>
<td>7.75, 7.77, 7.94, 9.02, 9.08</td>
</tr>
<tr>
<td>4c</td>
<td>7.85, 8.41, 9.12, 9.18</td>
</tr>
<tr>
<td>4d</td>
<td>7.69, 7.72, 8.04, 8.99, 9.00</td>
</tr>
<tr>
<td>4e</td>
<td>7.84, 8.88, 9.13, 9.19</td>
</tr>
<tr>
<td>4f*</td>
<td>6.47, 6.61, 7.69, 8.05, 8.28</td>
</tr>
<tr>
<td>4g</td>
<td>7.63, 8.24</td>
</tr>
<tr>
<td>4h</td>
<td>7.67, 7.68, 7.86</td>
</tr>
</tbody>
</table>
For clarity the coupling constants are omitted. SI purchased from Sigma–Aldrich

Table S5. The experimental 13C{[^1H]} chemical shifts of compounds 4, 5 and 6 in CDCl$_3$ (° in D$_2$O/KOD).

<table>
<thead>
<tr>
<th></th>
<th>Aromatic</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>4a</td>
<td>123.1, 123.9, 126.6, 142.8, 146.9, 150.2</td>
<td>–</td>
</tr>
<tr>
<td>4b</td>
<td>106.7, 119.9, 124.4, 126.3, 126.8, 140.3, 142.0, 144.7, 148.9, 149.7, 151.0, 156.3</td>
<td>–</td>
</tr>
<tr>
<td>4c</td>
<td>124.8, 124.9, 125.6, 126.4, 128.1, 130.7, 143.2, 143.3, 144.4, 147.3, 149.9, 150.4</td>
<td>–</td>
</tr>
<tr>
<td>4d</td>
<td>124.1, 124.9, 126.3, 126.5, 127.2, 134.9, 141.8, 143.1, 146.6, 148.7, 149.5, 149.6</td>
<td>26.5</td>
</tr>
<tr>
<td>4e</td>
<td>108.1, 118.1, 124.2, 125.2, 125.3, 126.5, 135.4, 142.3, 143.6, 147.5, 148.1, 151.5, 153.4</td>
<td>–</td>
</tr>
<tr>
<td>4f*</td>
<td>111.5, 111.6, 114.8, 120.7, 125.1, 132.5, 138.1, 139.2, 140.7, 149.3, 173.8, 178.0, 179.7</td>
<td>–</td>
</tr>
<tr>
<td>4g</td>
<td>122.3, 124.4, 125.1, 143.0, 146.2, 160.1</td>
<td>26.0</td>
</tr>
<tr>
<td>4h</td>
<td>105.6, 118.0, 125.1, 126.1, 140.3, 142.8, 147.0, 154.9, 157.5, 159.1, 161.3</td>
<td>25.3, 25.5</td>
</tr>
<tr>
<td>4i</td>
<td>122.7, 124.5, 124.6, 125.0, 128.0, 129.0, 142.1, 142.3, 144.8, 147.6, 160.2, 160.3</td>
<td>25.3, 25.7</td>
</tr>
<tr>
<td>4j</td>
<td>116.2, 123.2, 125.0, 125.1, 127.8, 129.2, 142.1, 143.0, 145.0, 147.2, 160.0, 160.5</td>
<td>25.2, 25.8</td>
</tr>
<tr>
<td>4k</td>
<td>123.9, 124.5, 124.6, 125.4, 126.9, 133.8, 142.3, 143.1, 144.9, 147.2, 159.0, 159.1</td>
<td>25.2, 25.6, 26.3</td>
</tr>
<tr>
<td>4l</td>
<td>106.9, 118.4, 122.6, 123.7, 125.6, 127.0, 134.3, 142.2, 143.7, 146.1, 146.8, 161.6, 163.8</td>
<td>25.6, 26.2</td>
</tr>
<tr>
<td>4m</td>
<td>122.1, 123.5, 123.8, 124.9, 126.0, 129.3, 141.7, 143.6, 146.3, 146.6, 160.5, 161.5, 169.0</td>
<td>14.1, 25.5, 25.9, 62.6</td>
</tr>
<tr>
<td>5a</td>
<td>105.6, 119.5, 119.6, 148.5, 149.4, 152.9</td>
<td>26.1, 52.4</td>
</tr>
<tr>
<td>5b</td>
<td>105.9, 107.9, 117.7, 118.5, 122.4, 124.1, 145.2, 147.7, 148.2, 148.9, 152.7, 153.9</td>
<td>25.1, 26.1, 52.1, 52.4</td>
</tr>
</tbody>
</table>
For clarity the coupling constants are omitted. **SI** purchased from Sigma–Aldrich

Table S6. The experimental CP/MAS 13C chemical shifts of selected compounds **4** and **5**.

<table>
<thead>
<tr>
<th></th>
<th>Aromatic</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>4g</td>
<td>121.7, 141.3, 143.8, 159.3</td>
<td>25.1</td>
</tr>
<tr>
<td>4k</td>
<td>122.5, 123.5, 131.0, 139.0, 143.3, 145.3, 158.3</td>
<td>25.0, 27.5</td>
</tr>
<tr>
<td>5c</td>
<td>104.7, 117.5, 147.3, 149.6, 154.6</td>
<td>26.0, 51.8</td>
</tr>
<tr>
<td>5f</td>
<td>109.4, 120.2, 122.0, 123.6, 124.8, 127.4, 139.4, 141.2, 147.5, 149.2, 150.3</td>
<td>–</td>
</tr>
<tr>
<td>5h</td>
<td>111.3, 116.6, 120.7, 123.3, 126.7, 128.2, 133.7, 136.6, 142.0, 147.4, 148.5, 150.3</td>
<td>23.4</td>
</tr>
<tr>
<td>5k</td>
<td>116.8, 123.4, 124.6, 127.2, 135.3, 141.5, 144.8, 147.1, 149.0, 152.6, 153.5, 155.6</td>
<td>25.9</td>
</tr>
<tr>
<td>5l</td>
<td>101.4, 122.9, 130.5, 132.4, 140.8, 142.9, 145.4, 146.5, 152.7</td>
<td>–</td>
</tr>
</tbody>
</table>

Table S7. The experimental CP/MAS 15N chemical shifts of selected compounds **4** and **5**.

<table>
<thead>
<tr>
<th></th>
<th>Aromatic</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>4g</td>
<td>−76.15</td>
<td>–</td>
</tr>
<tr>
<td>4k</td>
<td>−75.52</td>
<td>–</td>
</tr>
<tr>
<td>5c</td>
<td>−62.66</td>
<td>−291.94</td>
</tr>
<tr>
<td>5f</td>
<td>−73.05</td>
<td>−250.68</td>
</tr>
<tr>
<td>5h</td>
<td>−78.17, −54.38</td>
<td>−254.60, −249.48</td>
</tr>
<tr>
<td>5k</td>
<td>−62.21, −51.07</td>
<td>−273.57</td>
</tr>
</tbody>
</table>
Table S8. Calculated HOMO and LUMO distribution of selected compounds 4.

<table>
<thead>
<tr>
<th></th>
<th>HOMO</th>
<th>LUMO</th>
</tr>
</thead>
<tbody>
<tr>
<td>4b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4g</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4i</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table S9. Calculated HOMO and LUMO distribution of selected compounds 5.

<table>
<thead>
<tr>
<th></th>
<th>HOMO</th>
<th>LUMO</th>
</tr>
</thead>
<tbody>
<tr>
<td>4k</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5g</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5h</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fig. S1. Natural atomic charges of compounds 5m (left) and 5n (right).
Fig. S2. The plot of the electrostatic potential for compounds 5m (left) and 5n (right). The calculations were done with the use of the density functional theory (DFT) and were carried out using the Gaussian09 program [1] on B3LYP/6-31g++ level [2, 3]. Molecular geometry of the singlet ground state of the compounds was optimized in the gas phase.

Fig. S1a. 1H NMR (CDCl$_3$; 400.2 MHz) spectrum of 4a.
Fig. S1b. 13C-1H NMR (CDCl$_3$; 100.5 MHz) spectrum of 4a.
Fig. S2a. 1H NMR (CDCl$_3$; 600.2 MHz) spectrum of 4b.

Fig. S2b. 13C{1H} NMR (CDCl$_3$; 150.0 MHz) spectrum of 4b.

Fig. S2c. 19F NMR (CDCl$_3$; 470.5 MHz) spectrum of 4b.
Fig. S2d. 19F1H NMR (CDCl$_3$; 470.5 MHz) spectrum of 4b.

Fig. S2e. MS spectrum of 4b.
Fig. S3a. 1H NMR (CDCl$_3$; 400.2 MHz) spectrum of 4c.
Fig. S3b. $^{13}\text{C}^{1}\text{H}$ NMR (CDCl$_3$; 100.5 MHz) spectrum of 4c.
Fig. S3c. MS spectrum of 4c.
Fig. S4a. 1H NMR (CDCl$_3$; 600.1 MHz) spectrum of 4d.

Fig. S4b. 13C(1H) NMR (CDCl$_3$; 150.0 MHz) spectrum of 4d.
Fig. S4c. MS spectrum of 4d.
Fig. S5a. 1H NMR (CDCl$_3$; 400.2 MHz) spectrum of 4e

Fig. S5b. 13C{1H} NMR (CDCl$_3$; 100.5 MHz) spectrum of 4e.
Fig. S5c. MS spectrum of 4e
Fig. S6a. 1H NMR (D$_2$O/KOD; 500.1 MHz) spectrum of 4f.

Fig. S6b. 1H NMR (D$_2$O/D$_2$SO$_4$; 400.1 MHz) spectrum of 4f.
Fig. S6c. 13C1H NMR (D$_2$O/KOD; 125.5 MHz) spectrum of 4f.

Fig. S6d. 1H, 13C NMR HMQC in D$_2$O spectrum of 4f.
Fig. S6e. 1H, 13C NMR HSQC in D$_2$O spectrum of 4f.

Fig. S6e. MS spectrum of 4f.
Fig. S7a. 1H NMR (CDCl$_3$; 400.2 MHz) spectrum of 4g.

Fig. S7b. 13C{1H} NMR (CDCl$_3$; 100.5 MHz) spectrum of 4g.
Fig. S7c. 13C CP/MAS NMR spectrum of 4g.

Fig. S7d. 15N CP/MAS NMR spectrum of 4g.
Fig. S8a. 1H NMR (CDCl$_3$; 400.2 MHz) spectrum of 4h.

Fig. S8b. 13C{1H} NMR (CDCl$_3$; 100.5 MHz) spectrum of 4h.

S25
Fig. S8c. 19F NMR (CDCl$\text{$_3$}$; 470.5 MHz) spectrum of 4h.

Fig. S8d. 19F{1H} NMR (CDCl$\text{$_3$}$; 470.5 MHz) spectrum of 4h.
Fig. S8e. MS spectrum of 4h.
Fig. S9a. 1H NMR (CDCl$_3$; 400.2 MHz) spectrum of 4i.

Fig. S9b. 13C{$_^1$H} NMR (CDCl$_3$; 100.5 MHz) spectrum of 4i.
Fig. S9c. MS spectrum of 4i.
Fig. S10a. 1H NMR (CDCl$_3$; 400.2 MHz) spectrum of 4j.

Fig. S10b. 13C{$_^1$H} NMR (CDCl$_3$; 100.5 MHz) spectrum of 4j.
Fig. S10c. MS spectrum of 4j.
Fig. S11a. 1H NMR (CDCl$_3$; 400.2 MHz) spectrum of 4k.

Fig. S11b. 13C{1H} NMR (CDCl$_3$; 100.5 MHz) spectrum of 4k.
Fig. S11c. 13C CP/MAS NMR spectrum of 4k.

Fig. S11d. 15N CP/MAS NMR spectrum of 4k.
Fig. S11e. MS spectrum of 4k.
Fig. S12a. 1H NMR (CDCl$_3$; 400.2 MHz) spectrum of 4l.

Fig. S12b. 13C{1H} NMR (CDCl$_3$; 125.8 MHz) spectrum of 4l.
Fig. S12c. MS spectrum of 4l.
Fig. S13a. 1H NMR (CDCl$_3$; 400.2 MHz) spectrum of 4m.

Fig. S13b. 13C {1H} NMR (CDCl$_3$; 100.5 MHz) spectrum of 4m.
Fig. S13c. MS spectrum of 4m.
Fig. S14a. 1H NMR (CDCl$_3$; 400.2 MHz) spectrum of 5a.

Fig. S14b. 13C{1H} NMR (CDCl$_3$; 100.5 MHz) spectrum of 5a.
Fig. S14c. MS spectrum of 5a.
Fig. S15a. 1H NMR (CDCl$_3$; 400.2 MHz) spectrum of 5b.

Fig. S15b. 13C{1H} NMR (CDCl$_3$; 100.5 MHz) spectrum of 5b.
Fig. S15c. 1H, 13C NMR HMQC in CDCl$_3$ spectrum of 5b.

Fig. S15d. MS spectrum of 5b.
Fig. S16a. 1H NMR (CDCl$_3$; 500.2 MHz) spectrum of 5c.

Fig. S16b. 13C(1H) NMR (CDCl$_3$; 100.5 MHz) spectrum of 5c.
Fig. S16c. 13C CP/MAS NMR spectrum of 5c.

Fig. S16d. 15N CP/MAS NMR spectrum of 5c.
Fig. S16e. MS spectrum of 5e.
Fig. S17a. 1H NMR (CDCl$_3$; 500.2 MHz) spectrum of 5d.

Fig. S17b. 13C{1H} NMR (CDCl$_3$; 100.5 MHz) spectrum of 5d.
Fig. S17c. 19F NMR (CDCl$_3$; 470.5 MHz) spectrum of 5d.

Fig. S17d. 19F{1H} NMR (CDCl$_3$; 470.5 MHz) spectrum of 5d.

Fig. S17e. MS spectrum of 5d.
Fig. S18a. ^1H NMR (CDCl$_3$; 400.2 MHz) spectrum of 5e.

Fig. S18b. $^{13}\text{C} \{^1\text{H}\}$ NMR (CDCl$_3$; 100.5 MHz) spectrum of 5e.
Fig. S18c. 1H, 13C NMR HMOC in CDCl$_3$ spectrum of 5e.

Fig. S18d. MS spectrum of 5e
Fig. S19a. 1H NMR (CDCl$_3$; 500.2 MHz) spectrum of 5f.

Fig. S19b. 13C(1H) NMR (CDCl$_3$; 125.8 MHz) spectrum of 5f.
Fig. S19c. 13C CP/MAS NMR spectrum of 5f.

Fig. S19d. 15N CP/MAS NMR spectrum of 5f.
Fig. S20a. 1H NMR (CDCl$_3$; 400.2 MHz) spectrum of 5g.

Fig. S20b. 13C$\{^1$H$\}$ NMR (CDCl$_3$; 100.5 MHz) spectrum of 5g.
Fig. S20c. 19F NMR (CDCl$_3$; 470.5 MHz) spectrum of 5g.

Fig. S20d. 19F{1H} NMR (CDCl$_3$; 470.5 MHz) spectrum of 5g.
Fig. S20e. $^1\text{H}, ^{13}\text{C}$ NMR HMQC in CDCl$_3$ spectrum of 5g.

Fig. S20f. MS spectrum of 5g.
Fig. S21a. 1H NMR (CDCl$_3$; 500.2 MHz) spectrum of 5h.

Fig. S21b. 13C{1H} NMR (CDCl$_3$; 100.5 MHz) spectrum of 5h.
Fig. S21c. 2D-COSY NMR in CDCl₃ spectrum of 5h.

Fig. S21d. ¹H, ¹³C NMR HMQC in CDCl₃ spectrum of 5h.
Fig. S21e. 13C CP/MAS NMR spectrum of 5h.

Fig. S21f. 15N CP/MAS NMR spectrum of 5h.
Fig. S21g. MS spectrum of 5h.
Fig. S22a. 1H NMR (CDCl$_3$; 500.2 MHz) and spectrum of 5i.

Fig. S22b. 13C-1H NMR (CDCl$_3$; 100.5 MHz) spectrum of 5i.
Fig. S22c. MS spectrum of 5i.
Fig. S23a. 1H NMR (CDCl$_3$; 500.2 MHz) spectrum of 5j.

Fig. S23b. 13C(1H) NMR (CDCl$_3$; 125.8 MHz) spectrum of 5j.

S61
Fig. S23c. 19F NMR (CDCl$_3$; 470.5 MHz) spectrum of 5j.

Fig. S23d. 19F{1H} NMR (CDCl$_3$; 470.5 MHz) spectrum of 5j.

Fig. S23e. MS spectrum of 5j.
Fig. S24a. 1H NMR (CDCl$_3$; 500.2 MHz) spectrum of $5k$.

Fig. S24b. 13C{[1H]} NMR (CDCl$_3$; 100.5 MHz) spectrum of $5k$.

S63
Fig. S24c. 13C CP/MAS NMR spectrum of 5k.

Fig. S24d. 15N CP/MAS NMR spectrum of 5k.
Fig. S24e. MS spectrum of 5k.
Fig. S25a. 1H NMR (CDCl$_3$; 500.2 MHz) spectrum of 5n.

Fig. S25b. 13C{1H} NMR (CDCl$_3$; 125.8 MHz) spectrum of 5n.
Fig. S25c. MS spectrum of 5n.
Fig. S26a. 1H NMR (CDCl$_3$; 400.2 MHz) spectrum of 5m.

Fig. S26b. 13C{1H} NMR (CDCl$_3$; 100.6 MHz) spectrum of 5m.
Fig. S26c. 2D-COSY NMR in CDCl$_3$ spectrum of 5m

Fig. S26c. 1H, 13C NMR HMQC in CDCl$_3$ spectrum of 5m.
Fig. S26d. MS spectrum of 5m.
Fig. S27a. 13C CP/MAS NMR spectrum of 5l.

Fig. S27b. 15N CP/MAS NMR spectrum of 5l.
Fig. S28a. 1H NMR (CDCl$_3$; 400.2 MHz) spectrum of 6a.

Fig. S28b. 13C{1}H NMR (CDCl$_3$; 100.6 MHz) spectrum of 6a.
Fig. S28c. MS spectrum of 6a.
Fig. S29a. 1H NMR (CDCl$_3$; 400.2 MHz) spectrum of 6b.

Fig. S29b. 13C{1H} NMR (CDCl$_3$; 100.6 MHz) spectrum of 6b.
Fig. S29c. 1H, 13C NMR HMQC in CDCl$_3$ spectrum of 6b.

Fig. S29d. MS spectrum of 6b.