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Abstract: The development of sustainable processes and products through innovative catalytic
materials and procedures that allow a better use of resources is undoubtedly one of the most significant
issues facing researchers nowadays. Environmental and economically advanced catalytic processes for
selective oxidation of alcohols are currently focused on designing new catalysts able to activate green
oxidants (dioxygen or peroxides) and applying unconventional conditions of sustainable significance,
like the use of microwave irradiation as an alternative energy source. This short review aims to
provide an overview of the recently (2015–2020) discovered homogeneous aerobic and peroxidative
oxidations of primary and secondary alcohols catalyzed by copper complexes, highlighting new
catalysts with potential application in sustainable organic synthesis, with significance in academia
and industry.
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1. Introduction

In organic synthesis, the oxidation of primary and secondary alcohols to the corresponding
carbonyl compounds, aldehydes (or carboxylic acids) and ketones, respectively, plays a central role
due to the wide use of these commodities as precursors and intermediates for fine chemistry (mainly
drugs, vitamins and fragrances) [1–3].

Classic oxidation methods use stoichiometric quantities of inorganic oxidants, such as manganese
dioxide, chromium(VI) or the Swern or Dess—Martin reagents [4], which are often toxic and generate
considerable amounts of by-products. Moreover, many of the early found catalytic systems suffer from
high reagent cost, instability, employment of hazardous metals or oxidants, harsh reaction conditions,
operational complexity, functional group incompatibility or production of non-processable wastes.

Fortunately, the state-of-the-art in alcohol oxidation research is nowadays by far better.
Many catalytic methods that can be used to oxidize alcohols by using peroxides or dioxygen as
alternative oxidants are now known, and the implementation of a transition metal-based catalyst in
combination with them represents emerging sustainable alternatives to the traditional procedures [1,5]
(Scheme 1). Typically, selective peroxidative oxidations of alcohols involve early transition elements
in high-oxidation states and peroxometal complexes as the active oxidants. Aerobic oxidations,
in contrast, involve oxidative dehydrogenation that is generally catalyzed by late-transition elements.

Scheme 1. Selective oxidation of primary (R1 = H, R2 , H) and secondary (R1, R2 , H) alcohols.

Molecules 2020, 25, 748; doi:10.3390/molecules25030748 www.mdpi.com/journal/molecules

http://www.mdpi.com/journal/molecules
http://www.mdpi.com
https://orcid.org/0000-0003-4673-8484
https://orcid.org/0000-0002-5403-9352
http://dx.doi.org/10.3390/molecules25030748
http://www.mdpi.com/journal/molecules
https://www.mdpi.com/1420-3049/25/3/748?type=check_update&version=2


Molecules 2020, 25, 748 2 of 15

The development of efficient oxidation systems by using economic and less hazardous catalysts,
oxidants and solvents, under mild conditions, has become a relevant aim for catalytic-processes
designing, and Cu-containing compounds are of a high potential interest among transition metal
catalysts. In fact, copper is cheap and widespread in nature (attractive from the industrial
viewpoint) and is present in the active sites of many metalloproteins, particularly in enzymes [6,7]
(e.g., particulate methane monooxygenase, galactose oxidase, hemocyanin, cytochrome c, catechol
oxidase, laccases or superoxide dismutase). Mononuclear copper complexes, in combination with
2,2,6,6–tetramethylpiperidine-1-oxyl radical (TEMPO), have emerged as one of the most effective
catalysts for selective alcohol oxidation, and these catalytic systems are frequently considered the
biomimetic functional model of the galactose oxidase enzyme [8]. The efficiency of the latter has led to
extensive research to mimic the active sites of this enzyme, leading to a variety of Cu/TEMPO catalytic
systems being reported over the years. Thus, copper has drawn particular attention in catalyst design,
and exciting research in the realm of coordination chemistry has been reported [8,9].

Nevertheless, numerous challenges remain in the progress of copper-catalyzed aerobic or
peroxidative alcohol oxidations with high catalytic activity and selectivity as alternatives for
conventional stoichiometric oxidation methods. Since a myriad of procedures are available for
the oxidation of alcohols, practicality plays an important role in any new method. This includes mild
reaction conditions, low pressures of O2 (especially in flammable organic solvents) or low amounts
of peroxide, low catalyst loading and low temperatures (preferably room temperature), and the
avoidance of costly/toxic additives (co-catalyst, promotor, etc.). Other key challenges are functional
group tolerance and the ability to chemoselectively oxidize the alcohol in the presence of other groups
susceptible to oxidation.

In this minireview, the most recent advances (2015–2020 period) in the peroxidative or aerobic
oxidation of primary and secondary alcohols, using copper catalysts in homogeneous medium,
are addressed.

2. Peroxidative Oxidation of Alcohols

2.1. Oxidation with Hydrogen Peroxide

Peroxidative oxidations of alcohols are typical model reactions due to their importance and
generality; inexpensive, hydrogen peroxide or tert-butyl hydroperoxide oxidants, and simple
procedures are usually involved. As peroxides can be commercially obtained in aqueous solutions,
attempts to improve the sustainability of alcohol oxidations address the use of water as solvent.
Therefore, recently, new water-soluble copper complexes have been synthesized, and their ability to
act as catalysts for the oxidation of alcohols in aqueous medium have been evaluated. Hydrogen
peroxide, the most environmentally friend peroxide, was always the selected oxidant. Indeed, in the
environment, hydrogen peroxide, which does not evaporate from water or adsorb to soil, is quickly
decomposed by biological and/or chemical processes, to form water and oxygen.

In 2017, Kani and coworkers reported the use of the water-soluble mononuclear Cu(II) complex
[Cu(OOCC(C6H5)3)(bipy)(H2O)][ClO4](CH3OH) (1, bipy = 2-2′-bipyridyl, Figure 1) as catalyst
precursor for the oxidation of primary (benzyl alcohol or 1-heptanol) and secondary (1-phenylethanol,
3-pentanol or 2-octanol) alcohols with H2O2 in water (Table 1). Complex 1 exhibited high catalytic
activity toward the oxidation of benzyl alcohol to benzaldehyde as the only product (97% yield after
6 h, entry 1, Table 1) [10] in low load (1 mol% vs. substrate) and at a moderate temperature (70 ◦C),
whereas a more modest activity toward the production of acetophenone or 3-pentanone was observed
for the same catalyst (e.g., 73% after 6 h and 100% yield of acetophenone after 24 h; entries 4 and 5,
Table 1). Later, the same researchers investigated [11] the catalytic activity of the new water-soluble
Cu(II) complex bearing 4-bromobenzoate/2,2′-dipyridylamine [Cu(OOC(C6H5)Br)(C10H9N3)][ClO4]
(2, Figure 1) for the oxidation of the above alcohols, using the same reaction conditions. Moreover,
2 also exhibited high selectivity toward benzaldehyde, but only 71% of benzyl alcohol conversion after



Molecules 2020, 25, 748 3 of 15

6 h (entry 10, Table 1) was achieved. The observed behavior of 1 toward the oxidation of secondary
alcohols was also found for 2. For example, complete conversion of 1–phenylethanol to acetophenone
was reached only after 24 h (86% after 6 h; entries 14 and 13, respectively, Table 1).

Figure 1. Mononuclear Cu(II) complexes [Cu(OOCC(C6H5)3)(bipy)(H2O)][ClO4](CH3OH) (1), bipy
= 2-2′-bipyridyl) and [Cu(OOC(C6H5)Br)(C10H9N3)][ClO4] (2), and the di-nuclear Cu(II) complex
[Cu2(OOCC6H4Br)(OCH3)(bipy)2(ClO4)2] (3).

Table 1. Catalytic performance of copper complexes 1–3 in the oxidation of alcohols by hydrogen
peroxide in water.

Entry Catalyst Time (h) Substrate Product Yield (%) Ref.

1

1 a

6 benzyl alcohol benzaldehyde 97
2 6 cyclohexanol cyclohexanone 28
3 24 cyclohexanol cyclohexanone 52
4 6 1-phenylethanol acetophenone 73
5 24 1-phenylethanol acetophenone 100 [10]
6 6 1-heptanol 1-heptanone 12
7 24 2-octanol 2-octanone 11
8 6 3-pentanol 3-pentanone 29
9 24 3-pentanol 3-pentanone 100

10 6 benzyl alcohol benzaldehyde 71
11 6 cyclohexanol cyclohexanone 29
12 2 b 24 cyclohexanol cyclohexanone 100 [11]
13 6 1-phenylethanol acetophenone 86
14 24 1-phenylethanol acetophenone 100
15 24 2-octanol 2-octanone 11

16

3 c

benzyl alcohol benzaldehyde 100
17 cyclohexanol cyclohexanone 53
18 6 1-phenylethanol acetophenone 100
19 1-heptanol 1-heptanone 17
20 cyclo-pentanol cyclopentanone 71 [12]

a Alcohol (0.76 mmol), catalyst ((0.1 mol% vs. alcohol), H2O2 (19.5 mmol). b Alcohol (0.93 mmol), catalyst (0.1 mol%
vs. alcohol), H2O2 (0.2 mmol). c Alcohol (0.57 mmol), catalyst (0.1 mol% vs. alcohol), H2O2 (19.5 mmol).

In 2018, Ünver et al. reported the homogenous oxidation of primary and secondary alcohols
catalyzed by the related water-soluble di-nuclear Cu(II) complex [Cu2(OOC6H4Br)(OCH3)(bipy)2(ClO4)2]
(3, Figure 1), using H2O2 (30% aq. solution) in water, under open air and at 70 ◦C. The di-nuclear
complex proved to be an active catalyst for producing the corresponding aldehydes or ketones. Thus,
benzyl alcohol and 1–phenylethanol were quantitatively oxidized in 6 h (entries 16 and 18, respectively,
Table 1), with concomitant high turnover number (TON) values [12].

Complex 3 was generally found to be more effective as a catalyst for benzylic and cyclic alcohols
than for 1-heptanol as a primary aliphatic alcohol (compare entries 16–19 of Table 1). Moreover,
the selectivity of this catalytic system was tested between a primary and a secondary alcohol,
or between a cyclic alcohol and an aliphatic alcohol. For the oxidation of the mixture of benzyl alcohol
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and 1–phenylethanol, 16% of benzaldehyde was obtained, together with 62% of acetophenone. Hence,
this catalytic system shows a preference to act on secondary alcohols. The oxidation of a mixture of a
linear secondary alcohol (2-butanol) and a cyclic (cyclo-pentanol) one resulted in lower conversions
for both, compared to yields of 100% and 71% for 2-butanone and cyclopentanone obtained from
experiments on a unique substrate. Thus, the experiments indicated that the competition between
alcohols results in lower product yields compared to the pure substrates under the same conditions.

If an organic solvent must be used in an oxidation reaction, acetonitrile will be the chosen one by
almost any researcher. In fact, acetonitrile is a medium-polarity solvent, miscible with water and a
variety of organic solvents, able to dissolve a wide range of ionic, as well as nonpolar, compounds.
More importantly, acetonitrile is usually inert under the oxidation conditions, even for the most
drastic ones.

Thus, the catalytic potential of the recent mononuclear Cu(II) complex [CuCl2(H2O)L] (4,
L = 2,6-bis(5-tert-butyl-1H-pyrazol-3-yl)pyridine) for the oxidation of benzyl alcohol was examined
by Hu et al. [13]. The oxidation reactions were performed with H2O2 (30% aq. solution) in acetonitrile,
at 70 ◦C. Interestingly, and in contrast with the majority of copper catalysts that afford mainly
benzaldehyde under mild oxidation conditions, in the presence of 4, after 1 h under the above mild
peroxidative conditions, 98% of benzyl alcohol was converted to benzoic acid (96% yield, TON = 341,
Scheme 2).

Scheme 2. Direct oxidation of benzyl alcohol to benzoic acid catalyzed by the mononuclear Cu(II)
complex [CuCl2(H2O)L] (4).

2.2. Oxidation with Tert-Butyl Hydroperoxide, Using Conventional Heating

Despite H2O2 being the peroxide of election in terms of green chemical practices, its decomposition
often hampers its use at moderate/high temperatures. Thus, tert-butyl hydroperoxide (TBHP),
commercially available in a 70% aqueous solution, appears usually as a suitable (although producing
butanol) and economic alternative.

In 2017, Shul′pin and coworkers [14] applied the hexanuclear Cu(II)-based phenylsilsesquioxane
complex [(PhSiO1.5)10(CuO)6(HO0.5)2(C12H8N2)2] (5) as catalyst for the oxidation of 1-phenylethanol
with tert-butyl hydroperoxide (TBHP, 70% aq. solution) in acetonitrile, at 50 ◦C and in presence
of HNO3, leading to 94% yield of acetophenone (TON = 600) after 14 h. Moreover, the cage-like
compound [(PhSiO1,5)6]2[CuO]4[NaO0.5]4(dppmO2)2 (6), obtained very recently [15] by self-assembly
synthesis, has also shown to be a very good catalyst for the oxidation of alcohols in acetonitrile
solution: 1-phenylethanol was oxidized by TBHP to acetophenone in an almost quantitative
yield. In addition, complexes bearing cyclic germsesquioxanes [PhGeO1,5]5 and phenanthrolines,
namely [(PhGeO1.5)10(CuO)6(HO0.5)2(C12H8N2)2](H2O)2 (7), exhibited high activity as pre-catalysts in
homogeneous oxidations of cyclohexanol, 2-heptanol or 1-phenylethanol to the corresponding ketones,
leading to yields up to 94% [16].

The mononuclear copper(II) complexes [Cu(κONN’-HL)(NO3)(DMF)][NO3]·H2O (8, DMF =

dimethylformamide) and [Cu(κONN’-HL)Cl2]· 12 DMSO (9) (Figure 2) obtained from the Schiff base
aminoalcohol HL (product of condensation of salicylic aldehyde and aminoethylpiperazine), were
reported by Nesterov et al. [17] and tested as potential catalysts (0.05–0.1 mol% vs. substrate) for the
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oxidation of 1-phenylethanol to acetophenone with TBHP (2 eq. vs. substrate, 70% aq. solution). The
reaction performed under additive-free conditions led to rather low (12% or 23% for 8 or 9, respectively)
yields of acetophenone and TON values (246–468). The addition of either TEMPO free radical or
N-hydroxyphthalimide (NHPI, precursor of phthalimido-N-oxyl radical) increased the yield and TON
values for 8, whereas no significant influence of these additives was detected for 9. Whereas the
presence of HNO3 hampered the oxidation reaction, the addition of K2CO3 significantly increased
its rate. Moreover, the reaction strongly depended on the temperature: The activity of both 8 and
9 increased with the temperature, being the highest yield (62% of acetophenone, for 8) and TON
(620, for 8) values reached at 100 ◦C. Thus, in spite of the efforts of the authors, 8 and 9 remained as
moderately active catalysts for the oxidation of 1-phenyl ethanol.

Figure 2. Mononuclear Cu(II) complexes [Cu(κONN’-HL)(NO3)(DMF)](NO3)·H2O (8) and
[Cu(κONN’-HL)Cl2]· 12 DMSO (9).

2.3. Microwave Assisted Oxidation with Tert-Butyl Hydroperoxide

Another strategy followed by the researchers toward the improvement of the sustainability of
the catalytic processes is the use of alternative energy sources where heating is required. Microwave
(MW) irradiation turns out to be one of the most chosen alternative heating modes. In fact, MW
irradiation promotes faster and more efficient internal heating through direct interaction between
microwave energy and the reaction mixture components (solvents, reagents or catalysts). Therefore,
while traditional conduction heating causes the mixture in contact with the reaction vessel wall to
be heated first, microwave-radiation heating raises the temperature of the entire reaction system
simultaneously. Compared to conventional heating, the use of microwave radiation has been shown to
lead to a drastic reduction in reaction times, an increase in yield and selectivity observed in a number
of chemical reactions, while also allowing a reduction or even elimination, in some cases, of the use of
hazardous solvents.

In 2015, Martins et al. reported [18] the use of the mononuclear complexes [CuL(H2O)2] (10, H2L =

2-[(2-hydroxy-3-methoxyphenyl)methylideneamino]benzenesulfonic acid) and [CuL(bipy)]·DMF·H2O
(11), as well as of the diphenoxo-bridged dicopper compounds [CuL(py)]2 (12, py = pyridine) and
[CuL(EtOH)]2·2H2O (13) (Figure 3), as selective catalysts for the neat-microwave-assisted oxidation
of primary and secondary alcohols, under additive-free conditions. Moreover, 1-Phenylethanol was
quantitatively converted into acetophenone (entry 5, Table 2), in the presence of 12 with turnover
frequency (TOF) values up to 126.7 min−1, after 20 min of MW irradiation. Moreover, the almost
quantitative conversion of benzyl alcohol to benzaldehyde (99% yield, TOF 16.5 min−1, entry 6, Table 2)
was also considered noticeable by the authors, since previous methods employing Cu(II) catalysts and
TBHP under MW irradiation led to lower benzaldehyde yields (up to 75%) and also needed higher
reaction temperatures (up to 150 ◦C) [16]. The selectivity of 13 to oxidize the alcohol relative to the
ene function was evaluated by using cinnamyl alcohol as substrate and water as solvent, under the
optimized conditions. Remarkably, cinnamaldehyde (85% yield, TOF 14.2 min−1) was the only product
detected, clearly revealing the preference of 13 to oxidize the alcohol function.



Molecules 2020, 25, 748 6 of 15

Table 2. Catalytic performances for copper complexes 10–26 in the neat MW-assisted oxidation of
primary and secondary alcohols, using TBHP as the oxidant.

Entry Catalyst Time (min.) Substrate Product T (◦C) Yield (%) Ref.

1
10 a 20 1-phenylethanol acetophenone

100

64

[18]

2 150 benzyl alcohol benzaldehyde 58

3
11 a 20 1-phenylethanol acetophenone 52

4 150 benzyl alcohol benzaldehyde 79

5
12 a 20 1-phenylethanol acetophenone 100

6 150 benzyl alcohol benzaldehyde 99

7
13 a 20 1-phenylethanol acetophenone 94

8 150 benzyl alcohol benzaldehyde 92

9

14 b

30

cyclohexanol cyclohexanone

60

85

[19]

10 1-phenylethanol acetophenone 55

11 benzyl alcohol benzaldehyde 41

12

15 b

cyclohexanol cyclohexanone 90

13 1-phenylethanol acetophenone 58

14 benzyl alcohol benzaldehyde 49

15

16 c

5

1-phenylethanol acetophenone

120 100

[20]
16 6 130 95

17 2 130 72

18 10 120 60

19 17 d 30 120 99 [21]

20 18 e
60 120

81 [22]
21 19 e 92

22 f

20 60

1-phenylethanol acetophenone

120

91

[23]23 g benzyl alcohol benzaldehyde 41

24 f cyclohexanol cyclohexanone 68

25 21 h

30 1-phenylethanol acetophenone 120

79

[24]

26
22 h 66

27 99

28 23 h 81

29 24 h 64

30 25 h 68

31 26 h 99
a Alcohol (2.5 mmol), catalyst (0.04 mol% vs. alcohol), TBHP (2 eq., 70% in H2O), 10 W MW irradiation. b Alcohol
(2.5 mmol), catalyst (0.2 mol% vs. alcohol), TBHP (2 eq., 70% in H2O), 10 W MW irradiation. c Alcohol (2.5 mmol),
catalyst (0.2 mol% vs. alcohol), TBHP (2 eq., 70% in H2O), 20–50 W MW irradiation. d Alcohol (2.5 mmol), catalyst
(0.4 mol% vs. alcohol), TBHP (2 eq., 70% in H2O), 20 W MW irradiation, n(TEMPO)/n(catalyst) = 3.eAlcohol
(2.5 mmol), catalyst (0.4 mol% vs. alcohol), TBHP (2 eq., 70% in H2O), 5–15 W MW irradiation.f Alcohol (5 mmol),
catalyst (0.2 mol% vs. alcohol), TBHP (2 eq., 70% in H2O), 5 W MW irradiation, n(TEMPO)/n(catalyst) = 25. g Alcohol
(5 mmol), catalyst (0.2 mol% vs. alcohol), TBHP (2 eq., 70% in H2O), 5 W MW irradiation, n(Ph2NH)/n(catalyst) = 25.
h Alcohol (5 mmol), catalyst (0.2 mol% vs. alcohol), TBHP (2 eq., 70% in H2O), 5–15 W MW irradiation.
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Figure 3. Mononuclear Cu(II) complexes [CuL(H2O)2] (10) and [CuL(bipy)]·DMF·H2O (11), and the
diphenoxo-bridged dicopper compounds [CuL(py)]2 (12) and [CuL(EtOH)]2·2H2O (13).

An extension of this study to the preparation of further copper complexes with the above types
of ligands was reported by the same authors in 2017 [19] (Figure 4). The dicopper(II) complex
[Cu2(L-κONO’)2(µ-4,4′-bipy)(DMF)2] (14, H2L = 2-[(2-hydroxy-3-methoxyphenyl)methylideneamino]
benzenesulfonic acid) and the coordination polymer [Cu2(µ-L-1κONO′:2κO)2(µ-4,4′-bipy)]n·nH2O·nDMF
(15) were tested as catalysts for the oxidation of primary and secondary alcohols. A good catalytic activity
for the neat and additive-free MW-assisted oxidation of the aliphatic cyclohexanol (up to 90% yield of
cyclohexanone) after 30 min of low power MW irradiation (entries 9 and 12, Table 2) was achieved
by these dinuclear Cu(II) compounds. Under the same reaction conditions, the conversion of the aryl
1-phenylethanol or benzyl alcohol occurred in to a much less extent (up to 58% and 49% for acetophenone
and benzaldehyde, respectively, for 15, entries 13 and 14, Table 2).

Frija et al. developed [20] a new catalytic system for the MW-assisted neat oxidation of alcohols
into the corresponding carbonyl derivatives. Thus, a mononuclear Cu(II) complex comprising the
2-methyltetrazole-saccharinate bidentate N,N-chelating ligand (16, Figure 5) was synthesized and
found to exhibit a broad functional group compatibility, allowing efficient and selective conversion of a
variety of secondary benzylic, allylic and aliphatic alcohols, including those with the functional groups
susceptible to oxidation, such as internal alkenes or primary/secondary amines. Generally, the reactions
were complete after 10–15 min of MW irradiation, at 80–130 ◦C, with high TON and TOF values (up
to 91.7 and 183.3 min−1, respectively) in additive-free and co-oxidant-free conditions. No significant
conversion differences were observed for benzylic, allylic or aliphatic substrates. Moreover, the authors
also found TEMPO acting as an inhibitor for 16 under the above peroxidative conditions.

In 2016, a different type of alcohol oxidation catalyst was reported by Galli and coworkers [21]:
the thermal stable copper azolate/carboxylate compound [Cu(Hdmpzc)2] (17, H2dmpzc =

3,5–dimethyl-1H-pyrazol-4-carboxylic acid, Figure 5). Complex 17 was found to act as a remarkably
active catalyst for the microwave-assisted oxidation of neat 1-phenylethanol to acetophenone as the
only product. In fact, yields up to 99% at 120 ◦C were achieved in only 0.5 h of MW irradiation (entry
19, Table 2). The hypothesis of recovering this homogeneous catalyst at the end of the first reaction run
was hampered by its decomposition under the oxidation conditions.

Cu(II) complexes in two different tautomeric forms (keto and enol) derived from the
aroylhydrazone Schiff base 2-hydroxy(2-hydroxybenzylidene)benzohydrazide (H2L) were reported
by Sutradhar et al. [22] (Figure 6). While the compound with the enol form of the ligand exists as
the 1D polymer [Cu(1κNOO’,2κO’,3κO”-L)]n (18), the one bearing the keto tautomer ligand occurs
as the monomer [Cu(κNOO’-HL)Cl(CH3OH)] (19). Both complexes act as selective catalysts for the
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microwave-assisted oxidation of 1-phenylethanol with TBHP. Moreover, 19 exhibits the highest activity
leading selectively to a maximum acetophenone yield of 92% (entry 22, Table 2).

Figure 4. Dicopper(II) complex [Cu2(L-κONO´)2(µ-4,4′-bipy)(DMF)2] (14) and the dicopper(II)-based
coordination polymer [Cu2(µ-L-1κONO´:2κO)2(µ-4,4′-bipy)]n·nH2O·nDMF (15).

Figure 5. Mononuclear Cu(II) complexes (16) and [Cu(Hdmpzc)2] (17).

Very recently, the same authors reported [22] the catalytic activity of the related new mononuclear
Cu(II) complex [Cu((kNN′O-HL)(H2O)2](NO3) (20, H2L = N-acetylpyrazine-2-carbohydrazide,
Figure 6) for the oxidation of primary and secondary aryl alcohols (benzyl alcohol and 1-phenylethanol),
and the secondary aliphatic cyclohexanol, using TBHP under added solvent-free microwave irradiation
conditions. Compound 20 led to a maximum acetophenone yield of 91% (entry 22, Table 2) in the
presence of TEMPO as promoter for the oxidation of 1-phenylethanol, whereas 68% of cyclohexanone
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was attained in the same conditions. This behavior favoring the oxidation of aryl alcohols relative to
the aliphatic ones, contrasts with that of the previously disclosed for complexes 14 and 15 (see above).

Figure 6. Cu(II) complexes [Cu(1κNOO’,2κO’,3κO′′-L)]n (18), [Cu(κNOO′-HL)Cl(CH3OH)] (19) and
[Cu((kNN′O-HL)(H2O)2](NO3) (20).

Recently, Ma et al. reported [24] new dinuclear compounds [Cu2(OSO2CF3)2(DMF)2L] [SO3CF3]2

(21, L = 1,4,19,22,25,40-hexaaza-10,13,31,34-tetraoxa6,14,27,35(1,4)-tetrabenzenacyclopentacontane),
[Cu2(p-OSO2C6H4Me)2L(DMF)2](SO3C6H4Me)2 (22), [Cu2(ONO2)2L(DMF)2](NO3)2 (23),
[Cu2(OClO3)2(DMF)2L](ClO4)2 (24), [Cu2(OOCPh)2L(H2O)2](O2CPh)2 (25) and [Cu2(OOCMe)4L] (26)
(Figure 7), able to catalyze the microwave-assisted oxidation of neat 1-phenylethanol by TBHP, leading
to acetophenone yields up to 99% and TOF values of 18.3 min−1, after 0.5 h, without any additive.
Complexes 22 and 26 present the highest catalytic activity (entries 27 and 31, Table 2) among these
with the polyaza N6O4 macrocyclic ligand.

Figure 7. Dicopper(II) macrocyclic compounds [n = 2+, X = DMF, Y = OSO2CF3 (21); X = DMF, Y =

OSO2C6H4Me (22); X = DMF, Y = ONO2 (23); X = DMF, Y = OClO3 (24); X = H2O, Y = OCOPh (25); n
= 0, X = Y = OCOMe (26)].

Interestingly, such complexes (21–26) also act as catalysts for the aerobic oxidation of primary
alcohols in the presence of TEMPO in alkaline solution (see Section 3, below).

To the best of our knowledge, during the 2015–2020 period, no significant advances regarding the
mechanism of Cu-catalyzed oxidation of alcohols with peroxide reagents were reported. The current
well-established radical mechanism (Scheme 3) proposes the generation of ROO• and RO• radicals
upon Cu-assisted oxidation and reduction of the peroxide (ROOH), which will behave as hydrogen
abstractors from the alcohol to proceed the oxidation reaction.

Scheme 3. Possible pathways for the Cu-assisted catalytic peroxidative oxidation of an alcohol (R’-OH).
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3. Aerobic Oxidation of Alcohols

The use of molecular oxygen as oxidant, in combination with a metal catalyst, has practical
advantages due to the favorable economics associated with O2 and the formation of environmentally
benign by-products: water and hydrogen peroxide. Copper would seem to be an appropriate choice
for the selective catalytic oxidation of alcohols with dioxygen since it comprises the catalytic center
in a variety of enzymes, e.g., galactose oxidase (which catalyzes this conversion in vivo) [25]. Thus,
a process that may address green chemistry matters (see Section 1) would be the implementation of a
Cu-catalyst in combination with molecular oxygen as the oxidant. The low costs, ready availability
of copper and the interesting spectroscopic properties of its coordination compounds resulted in the
development of numerous Cu–based catalysts for the aerobic oxidation of alcohols.

All the recently reported aerobic Cu-based catalytic systems for alcohols oxidation, manly primary
alcohols, encompass the 2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO). The nitroxyl radical,
by itself, cannot catalyze the oxidation of alcohols by dioxygen, relying on the assistance of a co-catalyst
to activate the oxidant [5]. The most used ones are first-row transition-metal coordination compounds
where copper complexes bearing different N-donor ligands account for the prime ones. In fact,
as follows, the combination of a Cu-complex with TEMPO and dioxygen leads to very active catalytic
systems for the selective oxidation of primary alcohols, in particular of benzyl alcohol to benzaldehyde.

The di-nuclear Cu-compounds 21–26, recently disclosed by Ma et al. [24], besides catalyzing the
MW-assisted peroxidative oxidation of 1-phenylethanol (see Section 2.3), in combination with TEMPO
and in alkaline aq. solution, exhibit efficient catalytic activity for the aerobic oxidation of different
alcohols to the corresponding aldehydes (yields up to 99% and TON values up 232 for benzaldehyde,
entries 1–6, Table 3) after 20 h at 70 ◦C. The formation of the corresponding carboxylic acid was not
observed conceivably on account of the propensity of TEMPO for scavenging free radicals, acting as
an effective radical trap, avoiding the auto-oxidation of aldehydes. Moreover, the reaction strongly
depended on the temperature and for temperatures higher than 70 ◦C, aldehyde yield values decrease
conceivably due to the lower solubility of dioxygen in the reaction solution.

The catalytic activity of Cu(II) complexes bearing 2,2:6,2-terpyridine derivatives [Cu(4′-Xtpy)Cl2]
[tpy = terpyridine; X = H (27), Cl (28) or CN (29), Figure 8] was evaluated by Zhang et al. [26] for the
oxidation of benzylic alcohol to benzaldehyde by air, in water and in the presence of TEMPO and
K2CO3. Moreover, 27 led to 53% yield of benzaldehyde after 20 h at 70 ◦C. In contrast, 28 catalyzed the
reaction under the same conditions with a higher yield (74%), whereas the conversion achieved with
29 was much lower (37%) than that for the related catalysts 27 and 28. Interestingly, 27–29 acted as
efficient catalysts (benzaldehyde yields 90%–99%, entries 7–9, Table 3) when, to the above reactions,
4-dimethylaminopyridine (DMAP) was added as an extra base. Moreover, the authors assessed
the influence of TEMPO radical on the formation of new reactive intermediates during the catalytic
oxidation reactions by introducing it into the reaction medium of the complex’s formation. These
coordination reactions in the presence of TEMPO led to the new mixed-valence CuICuII supramolecular
assembles [CuICuII(tpy)Cl3] (30) and [Cu(4-Cltpy)Cl(CuCl2)]n (31). Complexes 30 and 31 exhibited
higher catalytic activity than those of the mononuclear complexes under milder conditions: Quantitative
conversions (TOF ca. 0.3 min−1) were obtained within 5 h in both cases (entries 10 and 11, Table 3),
even though the reactions were performed at room temperature.

Pombeiro and coworkers reported [27] the first example of a copper complex based on 3,7-diacetyl-
1,3,7-triaza-5-phosphabicyclo [3.3.1]nonane-5-oxide (DAPTA = O) ligand, [Cu(µ-CH3COO)2(kO-DAPTA
= O)]2 (32, Figure 8). The catalytic activity of 32 was evaluated for the aerobic TEMPO-mediated
oxidation of benzyl alcohol (entries 12–14, Table 3), and of 3,5-di-tert-butylcatechol (model substrate for
catechol oxidase) [28]. The kinetic data fit the Michaelis–Menten equation, and the rate constant obtained
is among the highest obtained for 3,5-di-tert-butylcatechol (using di-nuclear copper(II) complexes). DFT
calculations suggested a mixed valence CuII/CuI complex intermediate, (Figure 9) in which the spin
electron density is mostly concentrated at one of the Cu atoms and at the DAPTA = O ligand.
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Figure 8. Copper complexes [CuCl2(4′-Xtpy)] [X = H (27), Cl (28) or CN (29)], [CuICuII(tpy)Cl3] (30),
[Cu(4′-Cltpy)Cl(CuCl2)]n (31), [CuII(µ-CH3COO)2(kO-DAPTA = O)]2 (32), [CuI(NMI)(NCMe)2] (33),
[Cu(LNNMePh)2] (34) and [CuX(C11H8FNO)2] [ X = Br (35) or X = OTf (36)].

Figure 9. Proposed intermediate formed in the oxidation of 3,5-di-tert-butylcatechol catalyzed by
complex 32 (the DAPTA = O ligands are omitted for clarity).

The knowledge that external bases have an effect on the catalytic activity, as well as on the
selectivity and stability of the catalytic systems, has led to the development of new ones able to operate
in the absence of an added base [29]. Theoretical and experimental studies revealed that appropriate
ligands enhance the electron density of the Cu center (e.g., by ligand-to-metal charge transfer (LMCT)),
leading to a complex with a suitable alkalinity and suggesting that a basic anion in the Cu-complex
could be more efficient for promoting the oxidation reaction than an external base added.

Liu et al. reported [30] the homogeneous Cu(I)/NMI/TEMPO catalytic system (NMI = methyl
imidazole) for the aerobic oxidation of 1-octanol (99% of octanal after 24 h) and other alcohols (e.g.,
benzyl alcohol, entry 15, Table 3) into the corresponding aldehydes, at room temperature, in acetonitrile.
The catalytic species was found to be the Cu(I) complex [CuI(NMI)(NCMe)2] (33, Figure 8), where the
labile solvent binding to the copper center is crucial to ensure both oxygen and alcohol coordination.
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Moreover, NMI, as ligand, improved the Cu(I) center electron density and endorsed O2 coordination.
In particular, the system exhibited strong oxidizing ability to quantitative conversion of benzylic
alcohols (entry 15, Table 3), regardless of the substituents on the phenyl ring, and of allylic alcohols
into aldehydes.

Table 3. Catalytic performances of copper complexes 21–35 for the selective aerobic oxidation of benzyl
alcohol to benzaldehyde.

Entry Catalyst Time (h) T (◦C) Yield (%) Ref.

1 21

20 a 70

97

[24]

2 22 99

3 23 94

4 24 79

5 25 84

6 26 99

7 27

20 b 70

95

[26]

8 28 >99

9 29 90

10 30
5 b 25

>99

11 31 >99

12

32 c

6

80

41

[27]13 21 78

14 48 89

15 33 d 24 25 99 [29]

16
34 e 18 25 10 [31]

17 6 60 14

18 35 f 1 25 >99 [32]
a Alcohol (1.5 mmol), catalyst (0.5 mol% vs. alcohol), TEMPO (5 mol% vs. alcohol), K2CO3 (0.1 M). b Alcohol
(1.0 mmol), catalyst (0.01 mmol), DMAP (0.050 mmol), TEMPO (0.050 mmol), K2CO3 (0.2 M), water. c Alcohol
(0.5 mmol), catalyst (5 mol% vs. alcohol), TEMPO (5 mol%), K2CO3 (0.1 M). d Alcohol (5 mmol), catalyst (0.25 mmol),
TEMPO (5 mol%), acetonitrile. e Alcohol (1.0 mmol), catalyst (5 mol% vs. alcohol), TEMPO (5 mol%), NMI (10 mol%),
acetonitrile. f Alcohol (1.0 mmol), catalyst (5 mol% vs. alcohol), TEMPO (5 mol%), NMI (10 mol%), acetonitrile,
open air.

The catalytic activity of the copper(II) complex [Cu(LNNMePh)2] (34) [LNNMePh = κ2-N,O-2-(1-(2-
methyl-2-phenylhydrazono)ethyl)phenolate, Figure 8] in combination with TEMPO was evaluated, by
Conejo et al. [31], for the oxidation of benzyl alcohol by air, in toluene. Very low yields of benzaldehyde
were attained (up to 14% after 6 h at 60 ◦C, or 10% after 18 h at r.t., entries 16 and 17, respectively,
Table 3).

Repo and coworkers disclosed [32] a new Cu(I) complex bearing N-(4–fluorophenyl)-1-
(furan-2-yl)methanimine (C11H8FNO) [CuBr(C11H8FNO)2] (35, Figure 8) acting as catalyst for the
selective oxidation of several primary alcohols to aldehydes under ambient (r.t.), conditions (with air,
TEMPO and NMI in acetonitrile). 35 exhibited high activity, leading to, e.g., nearly quantitative yields
of aldehydes (e.g., 1 h of oxidation of benzyl alcohol at r.t. yielded 99% of benzaldehyde, entry 18,
Table 3). Moreover, replacing the coordinated bromide by triflate, to generate [Cu(OTf)(C11H8FNO)2]
(36) (OTf = CF3SO3, Figure 8), led to an increase in the product yields of the primary alcohols oxidation.
This was considered by the authors to be a remarkable catalytic result, as the oxidation reactions
occurred in open air (rather than under pure oxygen) and at room temperature. Secondary alcohols,
such as 2-octanol, were hardly oxidized, due to the steric bulkiness of TEMPO.



Molecules 2020, 25, 748 13 of 15

In situ formed Cu(I)/TEMPO-based catalytic systems have also been reported for the successful
oxidation of several alcohol substrates, including those previously found as problematic.

Swarts et al. [33] reported a in situ Cu(I)/TEMPO/NMI catalyst system formed with a bis(pyridyl)-N-
alkylamine. Quantitative conversion of 1-octanol was achieved, even though the reaction rate for this
ligand was slightly slower than for the previously used bipy. A variety of primary aliphatic, allylic,
benzylic and heterocyclic alcohols was also converted, with excellent yields of the corresponding
aldehydes, whereas secondary alcohols could not be oxidized on account of the steric effect exerted
during the (bulky) TEMPO-mediated hydrogen abstraction from the alcohol.

Recently, a highly efficient Cu(I)/TEMPO catalytic system for the (fast) aerobic oxidation of an
aliphatic alcohol (intermediate in a pharmaceutical synthesis) to the corresponding aldehyde was
developed by Roberts et al. [34], which appears suitable for safe large-scale application in a batch
reactor. A number of key by-products (some not previously reported for Cu(I)/nitroxyl-catalyzed
aerobic alcohol oxidation) that affect catalyst performance and aldehyde yield were identified with the
help of kinetic information and allowed the scale up of the oxidation reaction, with bubbling air, in a
batch reactor.

The mechanistic pathway of aerobic oxidations of alcohols catalyzed by Cu/TEMPO systems has
been investigated by several research groups [35–40], and these investigations have led to partially
contradicting mechanistic proposals involving either TEMPO+, TEMPO· or TEMPO-H as the reactive
intermediate; moreover, this was recently thoroughly revised by Swarts et al. [28].

4. Conclusions

Important advances are being made in the design strategies for selective catalytic oxidations of
primary and secondary alcohols. Clean oxidants, such as dioxygen or peroxides in aqueous, mono- or
bi-phasic systems, as well as neat oxidations, are significantly increasing. In addition, taking advantage
of non-conventional reaction conditions, such as microwave-assisted oxidations, or selecting catalysts
of inexpensive and environmentally benign first-row-transition metals, with copper as one of the most
preferred, are noticeable trends. Thus, Cu/peroxide- or Cu/O2-based catalytic systems could constitute
attractive alternatives to traditional oxidation methods, although challenges to find the optimal catalyst
for oxidizing both primary and secondary alcohols remain. Nevertheless, considering the pace of
advances in recent years, it is expectable that such issues will be soon addressed.
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