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Abstract: This review presents the last decade of studies on the synthesis of various types of
small-molecule inhibitors of the p53– Mouse double minute 2 homolog (MDM2) protein–protein
interaction. The main focus is placed on synthetic approaches to such molecules, their cytotoxicity,
and MDM2 binding characteristics.
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1. Introduction

In recent years, a number of reviews on p53–MDM2 interaction inhibitors have been published [1–5].
These reviews indicate continuing research interest on the topic. We note, however, that none of the
reviews referenced above cover all aspects of p53–MDM2 interaction inhibition: biological, chemical,
and medical. Sanz et al. [1] described the biomedical aspects of the p53–MDM2 interaction inhibitors,
Nayak et al. [2] focused on the study of the structural aspects of p53–MDM2 interaction inhibitors,
and the review by Estrada-Ortiz and co-authors [3] is devoted to an analysis of the crystal structure
of complexes of inhibitors with the indicated proteins. Since the writing of the reviews by Khoury
and Domling [4] and Popowicz, Domling and Holak [5], a significant number of new works have
appeared. A feature of the present review is a more detailed description of synthetic approaches to
known inhibitor compounds and the possibility of synthetic scheme changes, allowing the key reaction
steps to be realized in an enantioselective version. Some attention is also given to the biotesting results
and biomedical data of the obtained compounds.

The p53 protein, which is a tumor suppressor, is one of the potential targets of antitumor therapy.
The role of this protein in living organisms is very large, and includes participation in the processes of
DNA repair, cell cycle arrest, apoptosis, and aging; in this regard, it has received the name “guardian
of the genome.” In more than 50% of tumor cell cultures, the p53 protein is mutated [6], which makes it
possible to use a fairly wide range of biological and chemical methods for its activation or restoration
of its function.

Activation of the p53 protein leads to one of two functions: initiating apoptosis or
arresting cell growth [7]. p53-induced apoptosis occurs via the mitochondrial pathway through
transcription-dependent or transcription-independent mechanisms and by the death receptor pathway
through the transcriptional activation of FAS (a membrane dound proteine) and KILLER/DR5 (dead
receptor) [8]. p53 is also able to transcriptionally suppress cell survival genes such as Bcl-2 (B-cell
lymphoma 2), survivin, IGFR (insulin-like growth factor 1), Mcl-1 (induced myeloid leukemia cell
differentiation protein), and PIK3CA (phosphatidylinositol-4,5-bisphosphate 3-kinase), through various
mechanisms [9]. On the other hand, p53-induced cell cycle arrest is mainly due to an increase in the
concentration of proapoptotic proteins p21 (cyclin-dependent kinase inhibitor 1), Gadd45 (Growth
arrest and DNA-damage-inducible protein), 14-3-3σ, and PTGFβ, by direct binding to DNA or its
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transactivation [10]. Other p53-dependent anti-cancer mechanisms include the activation of accelerated
cell aging [11], inhibition of angiogenesis [12], and regulation of autophagy [13].

p53 [14,15] triggers the expression of proteins with the following functions: (a) the proteins
involved in control of the cell cycle; (b) the proteins involved in DNA repair processes; (c) the proteins
that prevent angiogenesis; (d) the proteins with antioxidant action; (e) the proteins that regulate
metabolism; and (f) inducers of apoptosis. The most important is the last group of proteins, which
are capable of triggering various pathways of cell death. This group also includes the proapoptotic
proteins Bax (also known as bcl-2-like protein 4), NOXA (phorbol-12-myristate-13-acetate-induced
protein 1), and PUMA (p53 upregulated modulator of apoptosis) [14]. The main pathway of cell death
controlled by the p53 protein is the mitochondrial apoptosis mechanism [16]. Proapoptotic proteins
(Bax, NOXA, and PUMA), as well as the p53 protein itself, interact with the mitochondrial membrane,
causing a decrease in its wall thickness. This leads to the release of cytochrome C from mitochondria
into the cytoplasm. Cytochrome C interacts with proteins of the cell cytoplasm, triggering a cascade
process for the activation of various caspases [17]. Caspases ruin the cytoskeleton, which leads to
inevitable cell death. Therefore, there is a complex system of interactions between proteins and DNA
that controls life processes and cell death.

In the occurrence of the cellular stress response, the level of p53 increases via the post-translational
mechanism, which ultimately leads to cell cycle arrest or apoptosis. In the absence of cellular stress,
the amount of p53 in the cell is controlled by a negative regulator of the p53 protein—the MDM2
protein. The MDM2 protein binds to p53 amino acid residues, causing ubiquitin-dependent p53
degradation [18]. The p53 and MDM2 proteins are linked to each other by a feedback mechanism, i.e.,
with an increase in the concentration of the p53 protein, a decrease in the concentration of the MDM2
protein is observed, and vice versa. Therefore, there is negative feedback between these proteins [14].

2. p53–MDM2 Inhibitors

Among the attempts to disrupt the regulation of the functioning of the p53-dependent mechanism
are the following approaches: the synthesis of small-molecule inhibitors of the p53–MDM2 interaction,
p53-dependent gene therapy, and the use of compounds that can bind to mutant p53 and restore
its function.

2.1. Natural Compounds

About 60% of drugs on the market today (excluding biologics) have a natural origin [19,20].
To date, three natural-based compounds have been described as exhibiting inhibitory activity towards
the p53–MDM2 interaction.

Chalcone-based inhibitors were the first reported compounds of this type and they have been the
most extensively studied [21–24]. Chalcone 1 (Figure 1) had an ELISA IC50 value of 206 µM and caused
a shift in the pattern of the 1H-15N HSQC NMR spectrum of 15N-enriched MDM2, consistent with
chalcone binding in the tryptophan pocket. A gel shift assay revealed that the p53 released from the
p53/MDM2 complex by treatment with 1 was unable to bind DNA, suggesting an additional influence
of the chalcone on the p53 protein.
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A series of boronic chalcone analogues were prepared by Khan and co-workers to address the lack
of specificity in the carboxylic acid-containing chalcones [23]. They reported a modest improvement;
compound 2 was 2.5- to 10-fold more toxic to human breast cancer cell lines than to a normal breast
epithelial cell line at 10–40 µM. Isoliquiritigenin (4,2′,4′-trihydroxychalcone), which is a natural
chalcone that is isolated from licorice root and shallot, has been shown to induce cell cycle arrest and
apoptosis in liver cancer cells via the p53 pathway at 10–20 µg/mL, but its binding to MDM2 was not
characterized [24].

Chlorofusin was the second natural product inhibitor of p53/MDM2 to be reported [25]. Williams
and co-workers identified chlorofusin as an inhibitor of p53/MDM2 binding (3, Figure 2) after testing
over 53,000 extracts from the fermentation of a diverse collection of microorganisms for this activity [25].
This novel metabolite from the fungus Microdochium caespitosum had an IC50 of 4.6 µM in a p53/MDM2
ELISA. Further studies using SPR (surface plasmon resonance) confirmed that chlorofusin binds to the
N-terminal region of MDM2 (Kd = 4.7 lM) [26].
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Recently, another natural product inhibitor of the p53/MDM2 interaction, (-)-hexylitaconic acid
(4, Figure 2), was reported [27]. Isolated from the fermentation culture of a Arthrinium sp. Fungus,
which was isolated from a marine sponge, (-)-hexylitaconic acid had an IC50 of 50 µg/mL (~230 µM)
for p53/MDM2. The inhibition of the p53–MDM2 interaction was tested by ELISA, according to
the standard procedure, using purified recombinant p53 and HDM2 (human homologue of MDM2)
proteins, and the following primary anti-MDM2 antibody. Other derivatives of 4, including the
monomethyl ester, a dihydro derivative, and a dihydro derivative of the monomethyl ester, as well
as two commercially available dicarboxylic acids (itaconic acid and succinic acid) did not inhibit the
interaction at all at the concentration of 50 µg/mL.

2.2. Nutlin Analogs

The most important push for the development of small-molecule inhibitors of the p53–MDM2
interaction was the development of 4,5-dihydroimidazoline (Nutlin). In 2004 [28], based on molecular
modeling data, it was shown that the Nutlin-3 molecule is able to integrate into a small hydrophobic
pocket of the MDM2 protein, simulating three amino acid residues in the p53 protein (Phe19, Trp23,
and Leu26), which are the most important binding fragments. The crystal structure of one of Nutlin’s
isomers (Nutlin-3a) in the first binding site to MDM2 is currently used as a model for creating new
inhibitors of the p53–MDM2 protein–protein interaction [29] (Figure 3).
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(c) The surface of the p53– MDM2 binding site (hollows are marked in green, and convex sections in
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Nutlin-3 (Scheme 1, compound 11), as a racemic mixture, demonstrates a cytotoxicity value
on p53-expressing cell lines, with an IC50 value of about of 100–300 nm [4]. The enantiomers were
separated on a chiral column, and when studying enantiomerically pure preparations, it was shown
that (-)-Nutlin-3 (also called Nutlin-3a) is a 150 times more effective inhibitor compared to (+)-Nutlin-3.
The synthesis of Nutlin by the pharmaceutical company Roche includes eight stages, with separation
on a chiral chromatographic column (Scheme 1): initial bromination of 3-methoxyphenol (5), subsequent
alkylation (6) to obtain isopropyl ether (7), and palladium-catalyzed cross-coupling with the formation of
imine (8), which then reacts with meso- (4-chlorophenyl)ethane-1,2-diamine (9) to form imidazoline (10).
Compound 10 reacts with phosgene to give carbamoyl chloride, which is then sequentially treated with
piperazine and a solution of hydrogen chloride in ether, resulting in racemic Nutlin 3 (11). The separation
of the latter on a chiral chromatographic column yields the Nutlin-3a active enantiomer [30].
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An alternative enantioselective method for Nutlin-3a synthesis, which includes only six stages
(Scheme 2), was proposed by a group of researchers from Vanderbild University [31]. Initially,
by diastereo- and enatioselective cross-coupling of a para-chloronitrobenzyl derivative 12 and the
Boc-protected imine 13 in the presence of a chiral catalyst 14, the nitro-substituted cis-stilbene 15
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was obtained, which was reduced to amine using generated in situ cobalt boride; the amine was
then acylated to obtain a Boc-protected amino amide 16. After removal of the Boc-protection with
trifluoroacetic acid, the resulting amine was acylated using carbonyldiimidazole, whereby an isocyanate
was subsequently obtained, which was then treated with piperazinone and cyclized in the presence
of triphenylphosphine oxide in Tf2O to form the desired Nutlin-3a. This method allowed the total
number of stages to be reduced, and the stage of separation on a chiral column to be avoided.
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Compound 24 (Protein Data Bank ID: 3W69), with an IC50 value of 59 nm (homogeneous time
resolved fluorescence), also exhibited a good pharmacokinetic profile and significant antitumor efficacy
via oral administration in a mouse xenograft model using MV4-11 cells bearing wild type (WT) p53.

On the basis of the Nutlin-3a compound, the pyrrolidine-containing compound 32 was
synthesized [33]. Starting from the condensation of benzyl cyanide derivatives 26 with aromatic
aldehydes 27 in the presence of sodium methylate, and further imine addition, the racemic pyrrolidine
derivative 31 was obtained. After Boc-deprotection by triflic acid and amine addition, the racemic
amide 32 was formed and then separated by a chiral supercritical fluid chromatography (). The most
potent compound 35 is shown in Scheme 4 [34,35].Molecules 2020, 25, x FOR PEER REVIEW 7 of 19 
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In 2014, Furet and co-workers published a new class of tetra-substituted imidazoles as a
new class of inhibitors of the p53–MDM2 interaction (Scheme 5) [36]. Commercially available
2-fluoro-3-chloro-aniline was subjected to iodination with N-Iodosuccinimide (NIS), providing a
regioisomeric mixture of 4- and 6-iodo products, which were separable by flash chromatography.
The desired 6-iodo regioisomer was reacted with cyclohexane carbonitrile in the presence of trimethyl
aluminum to form the corresponding benzamidine 36, which underwent smooth cyclization with
ethylbromo-pyruvate under mild basic conditions (NaHCO3; room temperature). Water elimination
was effected by the addition of p-toluene sulfonic acid and heating to 120 ◦C to furnish the
imidazole core. Selective Sonogashira coupling of the iodine with trimethyl silyl acetylene provided
intermediate 37. Conversion of the acetylene side chain to the desired acid was achieved by
hydroboration (cyclohexene/borane-dimethylsulfide complex) and oxidative workup. Efficient and
selective bromination of the imidazole core was effected by treatment with N-Bromosuccinimide
(NBS) in acetonitrile at room temperature, providing the suitable substrate for Suzuki coupling with
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commercially available 3-chloro-4-fluoro boronic acid. Orthogonal ester protection/deprotection steps
provided acid 38, which was converted to the 2-amino-oxadiazole in a two-step sequence (HATU
((1-[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxide hexafluorophosphate,
Hexafluorophosphate Azabenzotriazole Tetramethy Uronium) promoted hydrazone formation and
ring closure with BrCN). Finally, deprotection of the tert-butyl ester 39 liberated carboxylic acid, which
was converted to the corresponding carboxamide 40 using Propsal™ as a coupling reagent.Molecules 2020, 25, x FOR PEER REVIEW 8 of 19 
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The most potent compounds of the series show significant and specific anti-proliferative activity in
cultures of p53-dependent cancer cells. These results warrant further evaluations of the new inhibitors
towards the goal of developing anti-cancer agents to fight tumors harboring an overexpressed or
amplified MDM2 gene [36].

2.3. Spirooxindole Derivatives

The most promising MDM2 inhibitor sare possibly the compounds obtained by Shaomeng Wang’s
group from the University of Michigan [37]. Based on molecular docking data for these structures,
the group proposed modeling the tryptophan fragment in the p53 protein with a spirooxindole
fragment, which, due to its greater conformational rigidity, is able to provide a better affinity for
the MDM2 protein. This class of compounds can be obtained as shown in Scheme 6, with high
stereoselectivity. The condensation reaction of the aromatic aldehydes with oxindoles was initially
carried out either in the presence of a base during boiling or using microwave radiation, to obtain
E-3-aryl-1,3-dihydroindol-2-ones 41, which were further introduced into 1,3-dipolar cycloaddition
reaction with aliphatic aldehydes 42 and optically active (5R,6S) -5,6-diphenylmorpholin-2-one 43 in
toluene. The resulting product 44 was purified by column chromatography and then treated with a
solution of dimethylamine in tetrahydrofuran and lead(IV) acetate to give amide 45 in a quantitative
yield. The absolute configuration of the products was confirmed by X-ray diffraction data [38].
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Scheme 6. The general scheme for the synthesis of compounds of the MI series, proposed by a group
of researchers from the University of Michigan [38].

The synthesized compounds showed a significant cytotoxic effect on the prostate cancer cell line
LNCap, with IC50 = 86 nM, and on the colorectal cancer cell line HCTwt, with IC50 = 22 µM. Based
on this method, a large library of spiro derivatives was synthesized, the most active of which are
shown in Figure 4. Compounds MI-43 (46), MI-63 (47), and MI-219 (48) showed excellent binding to
the MDM2 protein (Ki~5.7 nM), and compound MI-219 (48) was recognized as a selective inhibitor of
the p53–MDM2 interaction due to its ability to induce cell apoptosis in tumor cells without affecting
healthy ones [39]. Upon an oral injection of compound 48 in xenograft models with the SJSA-1 grafted
tumor line, the inhibition of tumor growth was 86% at a double dose of 200 mg/kg [40].
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Figure 4. Most active compound-leaders of the MI series, synthesized by a team of researchers from
the University of Michigan [39,40].

In 2019, Barakata and co-workers [41] synthesized a series of spiroindolinones using an asymmetric
1,3-dipolar reaction as the key step (Figure 5). Their investigation involved the design and synthesis of
substituted spirooxindoles as potent MDM2 inhibitors, using an efficient 1,3-dipolar cycloaddition
reaction [42,43]. The one-pot multi-component reactions of a α,β-unsaturated dienone derivative with
substituted isatines and amino acid derivative (l-4-thiazolidinecarboxylic acid), and underheating in
MeOH at 60 ◦C for 1.5–2.0 h, were conducted to generate the focused cycloadducts library, which had
four stereogeneric centers with an excellent yield (69–89%).

The anticancer activities of the synthesized compounds were tested against colon (HCT-116),
prostate (PC-3), and hepatocellular (HepG-2) cancer cell lines. The mechanism underlying the
anti-cancer activity of the obtained spiroindolinones was further evaluated, and the study showed
that these compounds inhibited colony formation and cell migration, arrested cancer cell growth at
G2/M, and induced apoptosis through intrinsic and extrinsic pathways. The transactivation of p53 was
confirmed using flow cytometry, where tested compounds increased the level of activated p53 and
induced mRNA levels of cell cycle inhibitor p21.
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Using molecular docking results, it was found that in the co-crystalline structure of molecule 54
with the MDM2 protein, there is a π–π-stacking interaction between the benzylamine fragment in the
inhibitor molecule and the His96 protein fragment. Based on these data, a library of 19 possible isomers
of compound 54, with different positions of the fluorine atom in the benzyl position, was obtained [44].
These compounds were tested for binding to the MDM2 protein in the form of racemic mixtures;
however, only one of the synthesized molecules with a 3,4,5-trifluorobenzylamine substituent was
active and showed a binding constant of 130 nM−1.

In 2014, the dispiro-compound 58, as a potential p53–MDM2 inhibitor, was proposed [45,46].
This compound was obtained via a 1,3-dipolar cycloaddition reaction with isatine 57, sarcosine 56,
and thiohydantoin-based dipolarophiles 55 (Scheme 8).
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2.4. Benzodiazepine-2,5-diones (BDP)

The pharmaceutical company Johnson and Johnson screened a library of 1,4-benzodiazepine-
2,5-dione (BDP) capable of binding to the p53 domain of the MDM2 protein. These compounds can be
obtained in two stages (Scheme 9), with the initial multi-component Ugi reaction between equimolar
amounts of aldehyde 59, amine 60, Boc-protected anthranilic acid 61, and 1-isocyanidecyclohexane
62 in methanol, to obtain the product 63, which then forms target cyclic product 64 under the
action of acetyl chloride [47]. The most active compound of this group is the enantiomer containing
the para-chlorophenyl group at R1, an α-carboxybenzyl group at R2, and an iodine atom at R3;
this compound has a binding constant with the MDM2 protein of Kd = 80 nM.
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In the next investigation step, Johnson and Johnson undertook an enantioselective synthesis of the
benzodiazepine compounds of the BDP series (Scheme 10). Compound 65 was initially introduced into
an alkylation reaction with methyl lithium to form a racemic secondary alcohol 66, which reacted with
camphoric acid chloride to form a mixture of two diastereomers. This mixture was then recrystallized
to isolate ester 68 as a single stereoisomer, which was then hydrolyzed and introduced into a Mitsunobu
reaction with phthalimide, and the phthalimide protection was then removed with hydrazine to form
amine 70. This amine was used in the Ugi reaction, followed by cyclization, described above, and the
mixture of diastereomers was then separated by column chromatography, after which alkylation at
the nitrogen atom yielded the necessary compound 71 [48], the structure of which was confirmed by
X-ray diffraction.

Compound 71 was further modified by introducing carboxyalkyl groups at the unsubstituted
amide nitrogen atom, as well as by replacing the nitro group with an amino group. The obtained
compound showed higher than initial activity in a polarization fluorescence immunoassay (0.25 µM
compared to 0.85 µM), since the presence of the amino group ensured binding to the Val93 carbonyl
atom in the MDM2 protein, but it showed less activity in cytotoxicity experiments, possibly due to its
zwitterionic structure, which limited the ability to penetrate the cell membrane. The authors also made
attempts to introduce morpholine and isopropyloxy groups into the target molecule; however, these
substitutions led to a decrease in cytotoxicity and loss of activity.

A group of scientists led by Alexander Domling of the University of Pittsburgh, together with
Thad Holak of the Max Planck Institute, also proposed an interesting approach to creating p53–MDM2
interaction inhibitors using the multi-component Ugi reaction [49,50].
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2.5. Chromenotriazole Pyrimidines

Another interesting example of the development of p53–MDM2 interaction inhibitors is the
synthesis of chromenotriazole pyrimidine derivatives (Scheme 11) [51]. Initial aldol condensation of
aldehydes 78 and methyl ketones 79 in an alkaline medium affords hydroxychalcones 80, which then
condensate with 4H-1,2,4-triazole-3-amine by heating to give compounds 81 as the mixtures of two
tautomers. The desired enamine tautomer can be isolated by mashing in chloroform. The condensation
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of compound 81 with various aldehydes by heating or in an acidic medium with phenols allows
the condensation products 82 to be obtained as mixtures of stereoisomers. After the methylation of
compounds 82 at the nitrogen atom, 11-methylchromenotriazolepyrimidines 83 and 84 were formed as
the mixture of the racemic anti- and syn-isomers, which could be separated by column chromatography,
giving the target compound 85.
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chromenotriazolepyrimidines [51].

The best cytotoxicity values in the analysis using the method of homogeneous fluorescence with
time resolution (HTRF assay) showed the compound with R1 = Br and R2 = Cl (IC50 = 0.89 ± 0.20 µM).

2.6. Piperidinones

A piperidinone compound AMG 232 (93) was synthesized using the Michael condensation of
ketone 86 and methacrylic acid ester, to get compound 87. Then, reduction and ester formation
with further cyclization at base conditions allowed cyclic lactone 89 to be obtained. The subsequent
alkylation with allyl bromide and the reaction of the lactone opening by an amine derivative gave the
chiral amide 91, which was then cyclized to epypiperidinone 92 (Scheme 12) [52,53].

In 2015, Gessier and co-workers published a synthesis of a new class of the piperidinone-base
small-molecule inhibitors of the p53–MDM2 protein–protein interaction (Scheme 13). Starting from
an initial hit identified by virtual screening, a derivatization program resulted in compound 101, which
is a low nanomolar inhibitor of the p53–MDM2 interaction showing significant cellular activity [54,55].
This compound reached a low nanomolar biochemical potency, accompanied by significant and specific
inhibition of the proliferation of the p53-dependent SJSA-1 cells in the low micromolar range. The production
of compound 101 allowed an interesting level of cellular potency to be reached, which was comparable to
that of the reference p53–MDM2 inhibitor Nutlin-3a (IC50 = 1.9 µM in the SJSA-1 assay).

A representative synthesis for compound 101 is described in Scheme 13. The commercially
available methyl 2-(4-hydroxy-3-methoxyphenyl)acetate was subjected to a Mitsunobu reaction
with (S)-butan-2-ol, using diethyl azodicarboxilate (DEAD) and triphenylphosphine as the reagents,
to deliver the sec-butyl ether 95 as its pure (R)-enantiomer. The methyl ester 95 was hydrolyzed with
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LiOH into the corresponding carboxylic acid 96, and then reacted with oxalyl chloride to give the acyl
chloride 97 in quantitative yields. The cycloaddition reaction of 97 with the imine 98, obtained from
the condensation of the commercially available 4-chlorobenzaldehyde and 4-nitroaniline, led to the
dihydroisoquinolinone analog 99, with no stereo selectivity observed for the newly created asymmetric
center. The nitro group of 99 was reduced with iron following classical reaction conditions, to give the
corresponding aniline 100 in nearly quantitative yields. Finally, the aniline functionality underwent
two consecutive reductive aminations with isonicotinaldehyde and formaldehyde, respectively, using
NaBH(Oac)3 as a reducing agent, to deliver compound 101 as a mixture of two diastereoisomers.
At that point, the separation of the diastereoisomeric pair could not be achieved by classical normal
phase or reversed phase chromatography and required the use of chiral chromatography conditions.

Therefore, this potent inhibitor has been the starting point of another round of medicinal chemistry
optimization that has culminated in NVP-CGM097 (highly potent and selective MDM2 inhibitor),
which is a compound currently under evaluation in a phase I clinical trial for cancer patients [54,55].

2.7. Peptide-Based Compounds

Peptides and peptide derivatives can be designed to become potent p53–MDM2/X interaction
inhibitors. The Novartis group mapped the MDM2-binding site on p53 using synthetic peptide libraries
derived from the N-terminal region of p53. The active peptides defined the consensus MDM2-binding
site on p53 to be Thr18-Phe-Ser-Asp-Leu-Trp23. This hexapeptide, however, was only a weak inhibitor,
with an IC50 value, or concentration required for the inhibition of 50% of p53 binding to MDM2, of 700 µM
in an ELISA format [60]. The most active peptide obtained in this way (Figure 6) showed a 28-fold
greater inhibition of the p53/MDM2 interaction than the wild-type p53-derived peptide. (Peptide 102 was
effective at inhibiting the p53/MDM2 interaction in cells [56]; in addition, this sequence was active when
expressed either with a glutathione S-transferase tag51 or in the active-site loop of thioredoxin [57].Molecules 2020, 25, x FOR PEER REVIEW 14 of 19 
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Scheme 12. The synthesis of piperidinone 93 [52]. 

A representative synthesis for compound 101 is described in Scheme 13. The commercially 
available methyl 2-(4-hydroxy-3-methoxyphenyl)acetate was subjected to a Mitsunobu reaction with 
(S)-butan-2-ol, using diethyl azodicarboxilate (DEAD) and triphenylphosphine as the reagents, to 
deliver the sec-butyl ether 95 as its pure (R)-enantiomer. The methyl ester 95 was hydrolyzed with 
LiOH into the corresponding carboxylic acid 96, and then reacted with oxalyl chloride to give the 
acyl chloride 97 in quantitative yields. The cycloaddition reaction of 97 with the imine 98, obtained 
from the condensation of the commercially available 4-chlorobenzaldehyde and 4-nitroaniline, led to 
the dihydroisoquinolinone analog 99, with no stereo selectivity observed for the newly created 
asymmetric center. The nitro group of 99 was reduced with iron following classical reaction 
conditions, to give the corresponding aniline 100 in nearly quantitative yields. Finally, the aniline 
functionality underwent two consecutive reductive aminations with isonicotinaldehyde and 
formaldehyde, respectively, using NaBH(OAc)3 as a reducing agent, to deliver compound 101 as a 
mixture of two diastereoisomers. At that point, the separation of the diastereoisomeric pair could not 
be achieved by classical normal phase or reversed phase chromatography and required the use of 
chiral chromatography conditions. 

Therefore, this potent inhibitor has been the starting point of another round of medicinal 
chemistry optimization that has culminated in NVP-CGM097 (highly potent and selective MDM2 
inhibitor), which is a compound currently under evaluation in a phase I clinical trial for cancer 
patients [54,55]. 

Scheme 12. The synthesis of piperidinone 93 [52].
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Fifteen years after the discovery of Nutlin, a number of new potential inhibitors of the p53–
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encouraging results in preclinical and clinical studies. Over the past decade, some attention has been 
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to obtain enantiomerically pure compounds. Further directions of research in this area will depend 
on the results of ongoing clinical trials. Among the most promising classes of small molecules tested 
for the inhibition of p53–MDM2 protein–protein interactions are Nutlin’s analogues, as well as 
spirooxindoles and benzodiazepine-2,5-diones, whose rigid polycyclic framework allows one to 
achieve the optimal arrangement of substituents in the molecule necessary for interactions with the 
MDM2 binding site. 
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3. Conclusions

Fifteen years after the discovery of Nutlin, a number of new potential inhibitors of the p53–MDM2
interaction have been proposed, some of which have shown a high cytotoxicity and encouraging
results in preclinical and clinical studies. Over the past decade, some attention has been paid both
to the search for new small molecules and the improvement of the biomedical properties of already
known classes of compounds, as well as to the modification of existing synthesis schemes to obtain
enantiomerically pure compounds. Further directions of research in this area will depend on the
results of ongoing clinical trials. Among the most promising classes of small molecules tested for the
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inhibition of p53–MDM2 protein–protein interactions are Nutlin’s analogues, as well as spirooxindoles
and benzodiazepine-2,5-diones, whose rigid polycyclic framework allows one to achieve the optimal
arrangement of substituents in the molecule necessary for interactions with the MDM2 binding site.
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