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Abstract: Antimicrobial resistance represents an enormous global health crisis and one of the
most serious threats humans face today. Some bacterial strains have acquired resistance to
nearly all antibiotics. Therefore, new antibacterial agents are crucially needed to overcome
resistant bacteria. In 2017, the World Health Organization (WHO) has published a list of
antibiotic-resistant priority pathogens, pathogens which present a great threat to humans and
to which new antibiotics are urgently needed the list is categorized according to the urgency of
need for new antibiotics as critical, high, and medium priority, in order to guide and promote
research and development of new antibiotics. The majority of the WHO list is Gram-negative
bacterial pathogens. Due to their distinctive structure, Gram-negative bacteria are more resistant
than Gram-positive bacteria, and cause significant morbidity and mortality worldwide. Several
strategies have been reported to fight and control resistant Gram-negative bacteria, like the
development of antimicrobial auxiliary agents, structural modification of existing antibiotics,
and research into and the study of chemical structures with new mechanisms of action and
novel targets that resistant bacteria are sensitive to. Research efforts have been made to meet
the urgent need for new treatments; some have succeeded to yield activity against resistant
Gram-negative bacteria by deactivating the mechanism of resistance, like the action of the β-lactamase
Inhibitor antibiotic adjuvants. Another promising trend was by referring to nature to develop
naturally derived agents with antibacterial activity on novel targets, agents such as bacteriophages,
DCAP(2-((3-(3,6-dichloro-9H-carbazol-9-yl)-2-hydroxypropyl)amino)-2(hydroxymethyl)propane1,3-
diol, Odilorhabdins (ODLs), peptidic benzimidazoles, quorum sensing (QS) inhibitors, and
metal-based antibacterial agents.

Keywords: antimicrobial; antibiotic; resistance; Gram-negative; multidrug resistance (MDR);
pathogens; bacteria; alternative therapies

1. Introduction

Throughout history, natural products have been utilized to treat a variety of diseases; cinchona
tree containing quinine to treat malaria, penicillin for the treatment of infectious diseases, and others.
Since the discovery of penicillin by Fleming in 1929, a large number of antibacterial agents have been
developed and have had a huge impact on human health and the mortality rates of humans around
the world [1].

Widespread excessive dispensing and irresponsible use of antibiotics has resulted in the
development of resistant strains. Unfortunately, most antibiotics are available over the counter
in the developing countries and can be dispensed without prescription; therefore, patients and general
public education are crucially needed [2].
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The global effort to develop new antibiotics or modify existing ones to fight resistant pathogens
globally is now huge. Antibiotic resistance evolves when the bacteria can escape the effect of
antibiotics by different mechanisms, like neutralizing the antibiotics, pumping them outside of the
cell, or modifying their outer structure resulting in inhibition of the drugs’ attachment to the bacteria.
The mechanisms of antibiotic resistance are categorized into four groups: intrinsic resistance in which
bacteria can change their structures or components, another way is acquired resistance, where bacteria
can acquire new resistance genes and DNA from other resistant bacteria. Furthermore, genetic changes
in the DNA which can alter the production of protein leading to different components and receptors
that cannot be recognized by the antibiotic, and finally DNA transfer through a horizontal gene transfer
between bacteria via transformation or transduction or by conjugation [3].

Resistance to antimicrobials is a growing crisis in clinical medicine. In 2017, the WHO published a
list of bacteria where new antibiotics to tackle them are needed urgently and grouped them according
to their priority as critical, high, and medium (Figure 1).

Molecules 2020, 25, x FOR PEER REVIEW 2 of 25 

 

cell, or modifying their outer structure resulting in inhibition of the drugs’ attachment to the bacteria. 
The mechanisms of antibiotic resistance are categorized into four groups: intrinsic resistance in which 
bacteria can change their structures or components, another way is acquired resistance, where 
bacteria can acquire new resistance genes and DNA from other resistant bacteria. Furthermore, 
genetic changes in the DNA which can alter the production of protein leading to different 
components and receptors that cannot be recognized by the antibiotic, and finally DNA transfer 
through a horizontal gene transfer between bacteria via transformation or transduction or by 
conjugation [3]. 

Resistance to antimicrobials is a growing crisis in clinical medicine. In 2017, the WHO published 
a list of bacteria where new antibiotics to tackle them are needed urgently and grouped them 
according to their priority as critical, high, and medium (Figure 1). 

 
Figure 1. WHO list of priority pathogens grouped under three priority categories according to their 
antibiotic resistance: Critical, high and medium to encourage research and development of new 
antibiotics. 

1.1. Gram Negative Bacteria 

In 1884 Hans Christian Gram developed a method to distinguish between Gram-positive and 
Gram-negative bacteria by using a crystal violet-iodine complex and a safranin counter stain. Gram- 
positive bacteria stained violet or purple and Gram-negative bacteria don’t retain the complex stain 
and counter stain with safranin to give a pink color. This difference is due to the composition or the 
morphology of the cell wall in each bacterial type [1,2]. 

Gram-negative bacteria have an envelope that consists of three layers (Figure 2).The first layer 
is the outer membrane (OM), a protective and a unique feature that distinguishes Gram-negative 
bacteria from Gram-positive bacteria. The OM has phospholipids that are bound to the inner leaflet 
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new antibiotics.

Gram Negative Bacteria

In 1884 Hans Christian Gram developed a method to distinguish between Gram-positive and
Gram-negative bacteria by using a crystal violet-iodine complex and a safranin counter stain. Gram-
positive bacteria stained violet or purple and Gram-negative bacteria don’t retain the complex stain
and counter stain with safranin to give a pink color. This difference is due to the composition or the
morphology of the cell wall in each bacterial type [1,2].
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Gram-negative bacteria have an envelope that consists of three layers (Figure 2).The first layer is
the outer membrane (OM), a protective and a unique feature that distinguishes Gram-negative bacteria
from Gram-positive bacteria. The OM has phospholipids that are bound to the inner leaflet of the
membrane, and lipopolysaccharide (LPS) bound to the outer leaflet which is known to cause endotoxic
shock. Moreover, the OM contains proteins called the outer membrane proteins (OMPs) such as
porins and others which allow the passage of small molecules like amino acids and small saccharides.
The second layer is the peptidoglycan cell wall which is a rigid exoskeleton that determines the cell
shape and consists of a repeat unit of the disaccharide N-acetyl glucosamine-N-acetylmuramic acid [3].
The third layer is the inner membrane (IM) which is a phospholipid bilayer that is responsible for
multifunctional processes like structure, transport, and biosynthetic functions. In addition, it is the site
for DNA anchoring and plays an important role in sister chromosomes separation [4].
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The outer membrane of Gram-negative bacteria is the main reason for resistance to a wide range
of antibiotics including β-lactams, quinilons, colistins and other antibiotics. Most antibiotics must
pass the outer membrane to access their targets, for example, hydrophobic drugs can pass through by
a diffusion pathway, on the other hand, hydrophilic antibiotics like β-lactams pass through porins,
and vancomycin can’t cross the outer membrane due to its structure that hinder it from using any of
these passages. Any alteration in the outer membrane by Gram-negative bacteria like changing the
hydrophobic properties or mutations in porins and other factors, can create resistance. Gram-positive
bacteria lack this important layer, which makes Gram-negative bacteria more resistant to antibiotics
than Gram-positive ones [5–7].

Gram-negative bacteria can cause serious diseases in humans, especially in immuno-compromised
individuals. Nosocomial infections caused by Gram-negative bacilli (GNB) are the most challenging
issue for health care professionals due to resistance to antibiotics [8].

Resistant GNB is responsible for most of the cases of ventilator-associated pneumonia,
catheter-related bloodstream infections and other ICU-acquired sepsis such as urinary tract infections.
The major Gram-negative bacteria that cause complications are Enterobacteriaceae and non-fermenting
GNB (Pseudomonas aeruginosa, Acinetobacter baumannii and Stenotrophomonas maltophilia).

The mechanism of antimicrobial resistance in GNB arises from the expression of antibiotic
inactivating enzymes and non-enzymatic paths (Figure 3) which may result from increasing the
intrinsic resistance due to mutations in chromosomal genes (such as increasing the expression of
antibiotic-inactivating enzymes, efflux pumps, permeability or target modifications) or acquired by
transfer of mobile genetic elements carrying resistance genes such as plasmid encoding β-lactamases,
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aminoglycosides modifying enzymes, or non-enzymatic mechanisms like Qnr (plasmid-borne
quinolone resistance gene) for fluoroquinolone (FQ) resistance in Enterobacteriaceae [9].Molecules 2020, 25, x FOR PEER REVIEW 4 of 25 
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Enterobacteriaceae resistance to third generation cephalosporins is now above 10%, and 2-7% for
carbapenem. This is because of the rapid spread of extended-spectrum β-lactamase (ESBL) producing
strains. Carbapenem resistance rates for klebsiella pneumonia are above 25% while 20 to 40% is for
P. aeruginosa and 40 to 70% ICU acquired infections being carbapenem-resistant for A. baumannii [9].In
this review, we discuss the most important resistant Gram-negative bacteria at a global level as
determined by the WHO, and the treatment approaches to combat such resistance.

2. Resistant Gram-Negative Bacteria

2.1. Enterobacteriaceae

Enterobacteriaceae family such as Escherichia coli, Klebsiell spp., and Enterobacter spp. is the major
cause of urinary tract infections (UTIs), blood-stream infections, hospital, and healthcare-associated
pneumonia. Resistance is mainly related to the production of ESBLs, but other mechanisms of resistance
are also emerging, leading to multidrug-resistance (MDR) [10].

2.1.1. Enterobacteriaceae- 3rd Generation Cephalosporin-Resistant

Enterobacteriaceae resistance to third-generation cephalosporins is a result of the production of
β-lactamases. For example, ESBLs can hydrolyze broad-spectrum cephalosporins, monobactams,
and penicillins. Enzymes of class A β-lactamases, like TEM-1, TEM-2, and SHV-1 are responsible
for the resistance to ampicillin, amoxicillin, and early generation cephalosporins. Resistance to
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third-generation cephalosporins arises when mutation of genes encoding TEM-1, TEM-2, or SHV-1
gives rise to new β-lactamases that can hydrolyze them.

Other types of ESBLs may be expressed by Enterobacteriaceae like, CTX-M (CTX-Munich, an ESBL
enzyme) that hydrolyzes cefotaxime more efficiently than ceftazidime and carbapenem hydrolyzing
oxacillinases (OXA) which are mainly found in P. aeruginosa and rarely in Enterobacteriaceae. In addition
to ESBLs, AmpC β-lactamases are also able to hydrolyze third-generation cephalosporins and are
resistant to inhibition by clavulanate and other β-lactamase inhibitors [10].

2.1.2. Enterobacteriaceae- Carbapenem-Resistant

Carbapenem-resistant Enterobacteriaceae (CRE) is an Enterobacteriaceae isolate that is resistant to
ertapenem, imipenem, meropenem or any carbapenem antimicrobial. The first isolates were reported
in the 1990s and the resistance was due to AmpC β-lactamase production and loss of outer membrane
protein. There are two types of CRE: carbapenemase-producing CRE (CP-CRE) in which their genes
are present on mobile genetic elements and none carbapenemase-producing CRE (non-CP-CRE) [11].

There are five major carbapenemases which include: (1) Klebsiella pneumonia carbapenemase(KPC),
class A serine based β-lactamases, (2) class B, New Delhi Metallo-β-lactamases (NDM), (3) Verona
integrin encoded Metallo-β-lactamase (VIM), (4) class D, OXA or OXA-48-like carbapenemases and (5)
IMP, active on imipenem. Enterobacteriaceae species that have intrinsic imipenem resistance include
Morganella morganii, Proteus spp. And Providencia spp. [12]

2.2. Acinetobacter baumannii

Acinetobacter baumannii is an aerobic Gram-negative bacteria and one of the most serious
Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumonia, A. baumannii, Pseudomonas aeruginosa,
and Enterobacter species (ESKAPE) organisms, as declared by the WHO that can escape the effect of
antibacterial drugs [13]. A. baumannii is associated with hospital-acquired infections worldwide and
rapidly develops resistance to antimicrobials by different mechanisms such as:

(1) The inactivation of β-lactams by β-lactamases which is considered as a major MDR mechanism
in A. baumannii. All four classes of β-lactamases; A, B, C, and D were identified in A. baumannii,
which can incorporate exogenous DNA into its genome and identify a large number of β-lactamases.
Some of these enzymes are narrow-spectrum β-lactamases like TEM-1, SCO-1, and CARB-4, but some
others are responsible for the hydrolysis of ESBL; GES-11 and CTX-M which can reduce susceptibility to
carbapenems. Class B is metallo-β-lactamases (MBLs) that have a broad range, potent carbapenemase
activity and resistance to all β-lactam antibiotics but not to monobactams. Class C β-lactamases are
resistant to cephamycins (cefoxitin and cefotetan), penicillins and cephalosporins. A. baumannii has an
intrinsic AmpC cephalosporinase. Class D or OXAs β-lactamases preferred to oxacillin can hydrolyze
extended-spectrum cephalosporins and carbapenems.

(2) Another resistance way is multidrug efflux pumps against many different classes of antibiotics,
including tigecycline or imipenem resistance in A. baumannii. There are four categories of efflux pumps:
the resistance nodulation division (RND) superfamily, the major facilitator superfamily (MFS), the
multidrug and toxic compound extrusion (MATE) family and the small multidrug resistance (SMR)
family transporters. Overexpression of the AdeABC efflux pump an RND type results in decreasing
susceptibility to tigecycline.

(3) The resistance of A. baumannii to aminoglycoside is mediated by three classes of enzymes,
including acetyltransferases, adenyltransferases, and phosphotransferases. These enzymes chemically
modify aminoglycosides. The coding genes can be transferred through plasmids, transposons,
and integrons.

(4) Permeability defects by changing in envelope permeability. Porins are proteins that form
channels to allow transport of molecules across the outer membrane and play a significant role in the
mechanism of resistance. Reducing the expression of some porins like Caro, Omp22-33 is associated
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with carbapenem resistance in A. baumannii. In addition to outer membrane proteins, loss of LPS
increases colistin resistance in A. baumannii due to a decrease in membrane integrity.

(5) Alteration of target sites, such as penicillin-binding proteins (PBPs), mutations of DNA gyrase
and others, alter the target sites for antibiotics. Overexpression of certain PBPs results in imipenem
resistance and mutation in DNA gyrase as in the cases of quinolone and tetracycline resistance in A.
baumannii.

(6) Integrons are located on bacterial chromosomes or plasmids and have four classes. Integrons
have a unique capacity to cluster and express drug resistance genes and are a useful marker for
epidemic strains of A. Baumannii [13,14].

Carbapenems like imipenem, meropenem, and doripenem were the best agents to treatA. baumannii,
but due to the decreased susceptibility of A. baumannii to those agents, minocycline/tigecycline and
polymyxins are the most effective and showed a synergistic effect against A. baumannii infections.
However, tigecycline and colistin-resistant A. baumannii arose. The combined therapy of ampicillin with
sulbactam and ampicillin + sulbactam + carbapenem combination therapy is effective for treating MDR
A. baumannii bacteremia. Minocycline therapy also has high treatment success rates and good tolerability,
but due to the introduction of minocycline, around 20% of A. baumannii have developed resistance.
Minocycline combined with colistin is effective for treating minocycline-resistant A. baumannii
infections and colistin/rifampin is the most effective treatment for colistin-resistant A. Baumannii.
Also, trimethoprim-sulfamethoxazole combined with colistin rapidly kills carbapenem-resistant
A. baumannii infections. Other non-antibiotic therapies are bacteriophages which are viruses that
lyse the bacteria. American alligator plasma peptide and antimicrobial peptide dendrimer G3KL
have in vitro antimicrobial activity against MDR A. baumannii but they have a short half-life and high
production costs. Therefore, effort must be done to invoke new strategies for discovering new classes
of antibiotics to control A. baumannii infections successfully [13,14].

2.3. Pseudomonas aeruginosa

Pseudomonas aeruginosa is a Gram-negative aerobic bacterium found as part of normal intestinal
flora and a powerful pathogen classified as an ESKAPE organism responsible for ICU-acquired
infections in critically ill patients. Many mechanisms can contribute to its antibiotic resistance: innate
resistance of P. aeruginosa such as over-expression of efflux pumps and decreasing outer membrane
permeability, also acquired resistance mechanisms like acquisition of resistance genes or mutation in
genes that encode for porins and other proteins these all can make this microorganism difficult to treat.

P. aeruginosa was first isolated from green pus in 1882 and found to be an opportunistic pathogen
in immuno-compromised patients that can survive on dry surfaces of hospital environments such
as respiratory equipment and dialysis tubing. It is the fourth-most commonly isolated nosocomial
pathogen, the second-most common cause of ventilator-associated pneumonia and the third-most
common Gram-negative cause of bloodstream infections.

β-Lactam antibiotics such as penicillin, cephalosporin, and carbapenem inhibit the synthesis of
bacterial peptidoglycan cell walls. The third and fourth generation of cephalosporins like ceftazidime
and cefepime, respectively, are the most effective β-lactams used in the treatment of P. aeruginosa.
Resistance to these antibiotics is mediated by β-lactamases which destroy the amide bond of the
β-lactam ring and make the antibiotics ineffective. There are four major classes of β-lactamases that
have been identified in P. aeruginosa: Classes A, C, and D inactivate the β-lactams through the catalytic
activity of serine-residue, whereas class B or MBLs need zinc cation for their action.

Endogenous β-lactamase such as AmpC β-lactamase can be induced by several β-lactams such
as benzylpenicillin and imipenem. P. aeruginosa can acquire resistance through a gene mutation
which leads to overexpression of AmpC β-lactamase. Several genes are involved in the induction
of ampC gene including ampR that encodes for a positive transcriptional regulator which is
necessary for β-lactamase induction, ampG which encodes a transmembrane protein that acts as
a permease for 1,6-anhydromurapeptides that induce ampC, and ampD which encodes a cytosolic
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N-acetyl-anhydromuramyl-L-alanine amidase and acts as a repressor of ampC expression. AmpE
is the fourth gene that encodes a cytoplasmic-membrane protein that acts as a sensory transducer
molecule necessary for induction.

Pseudomonas resistance to aminoglycosides is mediated by transferable aminoglycoside modifying
enzymes (AMEs) which are divided into three classes: aminoglycoside phosphoryl transferases (APHs),
aminoglycoside adenylyl transferases (AADs) and aminoglycoside acetyltransferases (AACs) that
inactivate aminoglycoside by attaching a radical of phosphate, adenyl or acetyl to antibiotic molecule,
and decrease the binding affinity to their target in the bacterial cell.

Resistance to FQ is developed via mutation in the bacterial chromosomal gene encoding DNA
gyrase or topoisomerase 1 V or by active transport of a drug out of the cell.

Colistin found to be effective in treating MDR Pseudomonas than otherβ-lactam drugs and
was more efficient when used in combination with an anti-pseudomonas agent like imipenem,
piperacillin, aztreonam, ceftazidime or ciprofloxacin. Also, fosfomycin therapy with aminoglycosides,
cephalosporins, and penicillins, has been used for a better result for the treatment of drug resistance
P. aeruginosa [15].

2.4. Helicobacter pylori- Clarithromycin-Resistant

Helicobacter pylorus (HP) is a Gram-negative bacterium recognized as the most important pathogen
responsible for infections in humans such as gastritis, peptic ulcers and gastric cancer. The efficacy
of the treatment of HP has decreased due to the quick development of antibiotic resistance [16,17].
Clarithromycin is part of the first-line triple therapy; resistance may develop due to different mutations
in the domain V of the 23S rRNA gene such as A2142G, A2142C, or A2143G in the bacteria which
results in decreasing the affinity to the drug. Other resistances also were reported which were linked to
translation initiation factor IF-2, ribosomal protein L22 and overexpression of efflux pumps. According
to the WHO, clarithromycin resistance to HP is listed as a high priority for antibiotic research and
development [18].

2.5. Campylobacter- Fluoroquinolone-Resistant

Campylobacter are Gram-negative bacteria cause infection to human and animals such as
gastroenteritis usually after consuming contaminated or undercooked food. Campylobacter jejuni
and Campylobacter coli are common pathogenic species that colonize several animal foods like poultry.
No antibiotics are required for treatment because it is usually self-limiting but in severe cases, FQ
such as ciprofloxacin is used. In the 1980s, FQ resistance Campylobacter was reported and spread
rapidly and was due to independent mutation and horizontal transfer of resistance DNA among
strains, single point mutation C257T in the gyrA gene has been reported in ciprofloxacin resistance
strains which results in an amino acid substitution in the gyrase A subunit. Resistance to FQ can be
enhanced by overexpression of the CmeABC efflux pump, a mutation in 16 bp inverted repeat (IR) in
the cmeR–cmeABC intergenic region and variation if mutant frequency decline gene (mfd) [19,20].

2.6. Salmonella spp.- Fluoroquinolone-Resistant

Salmonellae are Gram-negative bacteria, subdivided into two groups: typhoidal Salmonella and
non-typhoidal Salmonella (NTS) which are pathogenic to humans. MDR in Salmonella to ampicillin,
chloramphenicol and trimethoprim/sulfamethoxazole led to the intensive use of FQ ciprofloxacin and
the third-generation cephalosporin ceftriaxone which rapidly led to the development of resistance
to these drugs. This was the reason behind the ranking of FQ-resistant Salmonella as a high priority
pathogen for the research and development of new antibiotics by the WHO in 2017.

Resistance to quinolones is a result of multiple mechanisms such as mutations in the quinolone
resistance determining regions (QRDRs) of the chromosomal gyr and par genes which result in low
binding affinity of quinolone to topoisomerase enzymes. Another mechanism is plasmid-mediated
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quinolone resistance (PMQR) like Qnr genes which provide physical protection from quinolones, the
aac(6′)-lb-crgene decreases FQ activity, and oqxAB and qepA encodes quinolone efflux pumps [21].

2.6.1. Typhoidal Salmonella Resistance

In the seventies, chloramphenicol was the treatment of choice for enteric fever caused by
Salmonella Typhi, but chloramphenicol-resistant strain starts to appear due to determinant located
on a self-transmissible plasmid of the HI1 incompatibility type (IncHI). This led to an increase in the
use of ampicillin and trimethoprim-sulfamethoxazole to the 1980s when their resistance was reported
from multiple countries. Ciprofloxacin was used as an alternative treatment after the spread of MDR
Salmonella Typhi in 1992 [22].

2.6.2. Non-typhoidal Salmonella Resistance

In the eighties, MDR Salmonella Typhimurium began to appear and was associated with a
phage-type called definitive type 104 (DT104). The isolates are resistant to ampicillin, chloramphenicol,
streptomycin, sulfonamides, and tetracycline. FQ resistance was developed among non-typhoidal
Salmonella after the introduction of FQs as an alternative treatment [22].

2.7. Neisseria gonorrhoeae

Neisseria gonorrhoeae is a Gram-negative diplococcus and an obligatory human pathogen responsible
for the sexually transmitted disease gonorrhea. The gonococcus can infect different mucosal surfaces
such as urethra, endo-cervix, pharynx, conjunctiva and the rectum [23]. The spread of gonococcal
infections is due to the ability of N. gonorrhea to acquire resistance to antibiotics like penicillin,
tetracycline, and quinolones. In 1936 sulfonamides were the best treatment for gonococcal but
resistance developed shortly thereafter. In 1940s penicillin was introduced and penicillinase-producing
N. gonorrhoeae (PPNG) was spread, which led to a switch to alternative therapy. Tetracyclines were
widely used in some developing countries and the first reports of tetracycline resistant N. gonorrhea
e(TRNG) appeared in 1985 [24].

2.7.1. Neisseria gonorrhoeae- 3rd Generation Cephalosporin-Resistant

Third-generation cephalosporins have broader activity against Gram-negative bacteria and are
used frequently to treat N. gonorrhoeae. Resistance to cephalosporins started to develop and spread in
Asia and the United States in the 1990s then to Australia and Europe in the 2000s.There are several
mechanisms for cephalosporins resistance: (1) altered PBPs; N. gonorrhoeae has three penicillin-binding
proteins (PBPs), alteration in PBP2 by the penA gene results in decreasing the binding of penicillin
through a single amino acid insertion (Asp-345a). This alteration is mostly related to cephalosporin
resistance, (2) changes in penA transpeptidase domain to form mosaic penA; responsible for most
observed reduced susceptibility to cephalosporins such as cefixime. (3) A reduction of intracellular
antimicrobial concentration by preventing its entry or actively pumping by efflux pumps like the
MtrC-D-E system, a mutation in the mtrR gene which results in increasing efflux and resistance
to antibiotics. Finally, (4) mutations in the penB porin gene reduce permeability to antimicrobial
agents [25].

2.7.2. Neisseria gonorrhoeae- Fluoroquinolone-Resistant

Quinolones affect the activity of DNA gyrase and topoisomerase IV, resistance to ciprofloxacin is
mediated by mutations in quinolone resistance determining region (QRDR), single or more mutation
in amino acids in gyrA positions 91, 95 and 102, and point mutation in parC genes which code for the
DNA gyrase and topoisomerase IV proteins led to increasing resistance to ciprofloxacin and prevented
it from binding to their target enzymes. Other mechanisms of FQ resistance include overexpression of
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efflux pumps like NorM pumps and decrease the permeability of antimicrobial agents by a reduction
in the outer membrane porin protein expression [26,27].

2.8. Haemophilus influenza- Ampicillin-resistant

Haemophilus influenza are Gram-negative, coccobacilli, facultatively anaerobic bacteria that have two
types based on its polysaccharide: (1) capsulated with six serotypes from a to f or (2) non-capsulated [28].
Pneumonia, meningitis, and bacteremia are the major diseases caused by type b strain H. influenza
while community-acquired pneumonia, acute otitis media, and sinusitis are commonly caused by a
non-capsulated form [29].

Ampicillin, which inhibits the synthesis of the cell wall, is the main treatment against H. influenza.
The mechanism of resistance is either by acquired β- lactamases or by PBP target modifications or efflux
mechanisms [28]. Resistance to ampicillin is mediated by the production of the β-lactamase TEM-1 or
ROB-1 (TEM-1 and ROB-1 are two β-lactamases identified in Haemophilus influenza), which causes a
decrease in the affinity of penicillin-binding proteins. H. Influenza isolates are classified according to
their ampicillin resistance mechanism into a β-lactamase negative, ampicillin-sensitive (BLNAS) strains,
β-lactamase positive, ampicillin-resistant (BLPAR) strains, BLNAR strains, and BLPACR strains.

Resistance in BLNAR strains are due to PBP 3 amino acid substitutions (as a result of an acquisition
of point mutations in the ftsI gene by antibiotic pressure) and are classified into three groups (I,
II, and III) according to Ubukata et al. and Dabernat et al., however, BLPACR are more resistance
to amoxicillin-clavulanate, chloramphenicol, and cefuroxime than BLNAS strains and all strains of
BLPACR had TEM-1 type β-lactamase and multiple mutations within the ftsI gene [30]. High levels
of resistance among H. Influenza encouraged the WHO to recognize it in the list of medium-priority
antimicrobial-resistant pathogens.

2.9. Shigella spp.- Fluoroquinolone-Resistant

Shigella seps is a Gram-negative bacterium including four types: Shigella flexneri (the most
predominant), Shigella sonnei, Shigella boydii, and Shigella dysenteriae. Shigella infection causes acute
dysentery or chronic diarrhea.

FQs are the best treatment for Shigella infection but antimicrobial resistance reduces the effectiveness
of this antibiotic. FQ resistance is associated with multiple mutations in the quinolone resistance
determining region (QRDR) that encodes DNA gyrase (gyrA and gyrB) and topoisomerase IV (parC
and parE). This is in addition to plasmid-mediated quinolone resistance due toQnr genes and efflux
pump mediators like mdfA, tolC, ydhE and marA [31,32].

3. Treatment

Antimicrobial resistance to antibiotics is a huge and growing concern. Antimicrobial resistances
estimated to cause more than 700 thousand deaths annually worldwide and this number is expected to
grow to 10 million by the year 2050, according to the U.S. Centers for Disease Control and Prevention
(CDC). New antimicrobial drug development is needed urgently and is considered as a high priority.
Recent developments are now focusing on natural products and the return of natural product screening
to discover new therapeutics to fight resistant pathogens. Herein, we discuss some new novel
treatments that have emerged from research and development programs to be used against resistant
Gram-negative bacteria [33].

3.1. Antibiotic Adjuvants

Antibiotic adjuvants, also called ‘resistance breakers’ or ‘antibiotic potentiators’, are compounds
that have no antibiotic activity, or very little antibiotic activity; but when administered with antibiotics
as a combined drug therapy, they enhance the activity of the drug or block the resistance of the bacteria
toward that drug [34,35]. Antibiotic adjuvants revived the use of some antibiotics against resistant
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pathogens; this lessens the urge to discover new antibiotics with novel targets, which is an expensive
and challenging mission.

Three types of antibiotic adjuvants have been developed (or are being developed) so far: the
β-lactamase inhibitors, inhibitors of the efflux pump, and outer membrane permeabilizers. These
adjuvants help antibiotics overcome bacterial resistance which happens in one of four mechanisms:
enzyme inactivation of the drug, drug efflux by efflux pumps, uptake decrease as a result of
membrane permeability change, and drug target modifications [36]. In this review, we will focus on
β-lactamase inhibitors.

3.1.1. β-Lactamase Inhibitors

β-Lactamase inhibitors are the most clinically used antibiotic adjuvants. They are used to overcome
the resistance to β-lactam antibiotics. β-lactamase inhibitors remained the most successful antibiotic
adjuvants despite their long-term use (more than 70 years) [37].

β-Lactamases are enzymes produced by resistant bacteria that hydrolyze the β-lactam core of
β-lactam antibiotics through an acylation-deacylation-based process. They are categorized into two
groups: (1) Serine-β-lactamases in which a nucleophilic serine moiety of the lactamase binds covalently
to a hydrolyzed β-lactam, this group is subcategorized to Ambler class A, C, or D; classes that are
inhibited by clavulanic acid (Figure 4), sulbactam (Figure 4), and tazobactam (Figure 4). (2) MBLs
which represent Ambler class B and have active sites with one or two zinc ions that do a nucleophilic
attack to the β-lactams via a polarized water molecule [35,37–39]. MBLs are subcategorized to B1,
B2, and B3 classes according to the number of bound zinc ions and the sequence identity. Except for
monobactams, MBLs are active against all β-lactam antibiotics. So far, there are no approved inhibitors
for class B MBLs [40].

The most diverse and rapidly growing group of β-lactamases is carbapenem-hydrolyzing class D
β-lactamases (CHDLs), also known as OXAs, it is a group of over 500 reported enzymes found among
the most clinically challenging species including A. baumannii, P. aeruginosa, E. coli, and P. mirabilis.
CHDLs can hydrolyze penicillins, cephalosporins, and aztreonam. OXA-23, OXA-24/40 and OXA-48
are the most worrisome CHDLs in clinical settings [37,39].

3.1.2. Clavulanic Acid and Penicillin-based Sulfones

Clavulanic acid (Figure 4) is aβ-lactam compound isolated from Streptomyces clavuligerus bacteria in
1976 and it was the first agent to be used as a β-lactamase inhibitor in combination with amoxicillin [41].
Clavulanic acid is structurally similar to penicillin, and it covalently binds to β-lactamase through the
catalytic serine and makes a stable adduct. Clavulanic acid is clinically ineffective against class B, C,
and D β-lactamases [37].

Sulbactam and tazobactam (Figure 4) are penicillin-like sulfones that have a mechanism of
β-lactamase inhibition similar to that of clavulanic acid, but they undergo a ring-opening after the
catalytic serine attack as a result of sulfonate group formation. Extra electrostatic interactions with the
active site and generation of a good leaving group at the five-membered ring made clavulanic acid,
sulbactam, and tazobactam capable of efficient irreversible inhibition of β-lactamase of class A [35,37].

Clavulanic acid, sulbactam, and tazobactam are the main β-lactamase inhibitors in clinical
practice. Available combinations of β-Lactam– β-lactamase inhibitor include amoxicillin-clavulanate,
ticarcillin-clavulanate, ampicillin-sulbactam, piperacillin-tazobactam, and cefoperazone-sulbactam.
The latter is only used in some European countries, Japan, and India [42].

LN-1-255 (Figure 4) is a 6-alkylidene-2′-substituted penicillanic acid sulfone synthesized by
Buynak and coworkers among other compounds in a search for new OXA β-lactamase inhibitors [43].
LN-1-255 had in vitro activity against OXA, a clinically important β-lactamase (CHDL class) found
in A. baumannii that inactivates carbapenems. LN-1-255′s efficacy of inhibition was 10-1000 folds
higher than tazobactam and avibactam. LN-1-255 has the potential to be a new treatment for resistant
A. baumannii strains combined with carbapenems or cephalosporins [44].
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3.1.3. Diazabicyclooctanes (DBOs)

DBOs (Figure 4) are efficient β-lactamase inhibitors that are very potent against class A and class
C β-lactamases. DBOs were first intended to be used as β-lactam mimics and it was found that they
possess inhibition activity for β-lactamases and could be a source for β-lactamase inhibitors. Clavulanic
acid is the only approved oral β-lactamase inhibitor and DBOs are none β-lactam β-lactamase inhibitors
that have a sulfate group in their structure which limits their oral absorption [45]. DBOs have a
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five-membered ring with an amide group that targets the serine of the active site of the β-lactamase
and forms a carbamoyl adduct [46].

Avibactam (NXL104, Figure 4) is a semi-synthetic compound approved by the FDA in 2014
as a combination therapy with ceftazidime to treat complicated intra-abdominal and complicated
urinary tract infections [47]. Avibactam has excellent inhibitory activity against Ambler class A,
class C, and some class D β-lactamases, but it was inefficient against OXA-23 and OXA-24, which
are the main enzymes responsible for carbapenem-resistance in A. baumannii [48]. Two avibactam
combinations are under clinical trials; ATM-AVI which is a combination of avibactam and aztreonam
for the treatment of complicated intra-abdominal infections, and CXL in which avibactam is combined
with ceftaroline fosamil (a prodrug for ceftaroline) for the treatment of multi-resistant bacterial
infections [37,49]. Relebactam (MK-7655) (Figure 4) is another DBO β-lactamase inhibitor structurally
related to avibactam. Relebactam is active against Gram-negative bacteria and is currently in phase 3
clinical trial in combination with imipenem/cilastatin for the treatment of drug-resistant infections
including infections caused by carbapenem-resistant Enterobacteriaceae [49,50].

Zidebactam (Figure 4) is a bicyclo-acyl hydrazide DBO β-lactamase inhibitor. WCK5222,
a combination of zebibactam and cefepime, is currently under clinical development (phase 1) for the
treatment of serious infections caused by MDR Gram-negative pathogens including P. aeruginosa and
A. baumannii [51].

3.1.4. Boronic Acids as Transition State Analogs

Boronic acids have been recognized as inhibitors of serine proteases [52]. Diverse boronic acid
analogues exhibited activity as inhibitors of β-lactamases of class A and C [53,54]. They inhibit the
enzyme mainly by formation of tetrahedral intermediate with the catalytic serine residue, mimicking
the transition state in the hydrolytic reaction that β-lactamases catalyze [52,54].

Many derivatives of boronic acid were synthesized and designed to have increased selectivity for
β-lactamases over other serine proteases. The most promising analog was the compound RPX7009
(vaborbactam) (Figure 4), which is a cyclic boronate ester that restored the activity of carbapenems
against KPC. RPX7009 combined with biapenem is called carbavance, and it is currently under phase 3
clinical trials for the treatment of various infections caused by KPC-producing Enterobacteriaceae [54,55].

3.2. Antibiotic Alternatives

3.2.1. Bacteriophages

Bacteriophages or phages are bactericidal agents which are a type of virus that exclusively infect
bacteria. Bacteriophages were discovered and named by Felix d’Herelle in 1917 [56]. The idea of
using bacteriophages to treat infections is an old idea that has been overshadowed by antibiotic
surge during the golden age of antibiotics. Today, after antibiotic resistance has reached a crisis,
there is renewed interest in bacteriophage therapy. With advanced modern technology and genome
sequencing availability, the discovery and development of new bacteriophage treatments are enjoying
more interest.

Bacteriophages are bactericidals that disrupt many or all bacterial processes. Bacteriophages
have a high degree of species or strain specificity, avoiding dysbacteriosis and secondary infections.
Bacteriophages are unable to penetrate eukaryotic cells and no adverse effects have been reported so
far. Phages are self-amplifying while target bacteria are present thus amplifying the local antibacterial
effects. Unlike conventional antibiotics, phages can penetrate and destroy biofilms [57–60].

In contrast to antibiotics, new phages can be introduced in a much cheaper and faster process [57].
The obstacle is to perform properly designed, randomized, placebo-controlled, and double-blind
clinical trials for the implementation of phage therapy. Most clinical trials have failed either to recruit
enough patients or to provide statistically relevant conclusions. So far, there are only a few reports on
the clinical use of bacteriophages [58,61].
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In 2009, a controlled clinical study was conducted to evaluate the efficacy and safety of a new
bacteriophage preparation called Biophage-PA, which is a cocktail of six phages with lytic activity
against antibiotic-resistant P. aeruginosa in chronic otitis. No adverse events were reported indicating
the safety of the therapy, and the trial showed efficacy as the count of P. aeruginosa was significantly
reduced for the phage treated group compared to control [61].

A clinical study was conducted in 2016 to test the efficacy and safety of two phage cocktails against
E. coli in acute diarrhea in children in Bangladesh. The phage administered was a T4-like coliphage
containing 11 phages or a commercial Russian coliphage product 17 phage in oral rehydration solution.
A control group was given the standard treatment of oral rehydration solution. There were no adverse
effects observed but the phage cocktails did not improve diarrheal outcome over the control group.
The reason for this might be that the phages failed to amplify in the intestine [62].

The most recent clinical trial of bacteriophages was a randomized, controlled, double-blind phase
1/2 trial to study the efficacy and tolerability of PhagoBurn (a cocktail of 12 natural lytic anti-P. aeruginosa
bacteriophages in an alginate template) to treat burn wounds infected by P. aeruginosa. In this trial,
PhagoBurn was added directly to the wound. The concentration of the phage cocktail had decreased
after manufacturing and participants were given a lower concentration than expected. As a result, the
phage cocktail decreased bacterial burden in burn wounds at a slower pace than the standard care
given to the control group. The trial was stopped on Jan 2, 2017, due to insufficient efficacy [63].

Several in vitro and in vivo studies have reported synergism between bacteriophages and
antibiotics. Oechslin et al. reported that an antipseudomonal phage cocktail was active and highly
synergistic with ciprofloxacin both in vitro and in vivo, and it reduced virulence of P. aeruginosa and
reduced bacterial load 10,000-fold in rats. in experimental endocarditis [64]. Huff et al. found that
bacteriophage and the antibiotic enrofloxacin decreased the mortality of birds challenged with E. coli
to no mortality compared to 3% and 15% mortality with individual treatments with enrofloxacin and
bacteriophage, respectively [65].

However, the evolution of bacterial resistance to phages is unavoidable. Fortunately, bacteria
resistant to one phage remain sensitive to other phages [57]. Despite all the potential of bacteriophage to
help treat infections especially of resistant bacteria, some studies suggest that bacteriophages contribute
to the evolution and spread of antibiotic resistance, as phages can be a vehicle for the acquisition,
maintenance, and spread of antibiotic resistance genes [66].

3.2.2. DCAP

The compound 2-((3-(3,6-dichloro-9H-carbazol-9-yl)-2-hydroxypropyl)amino)-2-(hydroxy-methyl)
propane1,3-diol (DCAP, Figure 4) is an antibacterial agent introduced in 2012 by Hurley and colleagues.
DCAP is a potent broad-spectrum antibiotic that kills Gram-positive and Gram-negative bacteria,
including E. coli and P. aeruginosa. DCAP was discovered in a high throughput screen of small
molecules that inhibit the activity of MipZ, an ATPase that regulates the placement of the division site
in Caulobacter crescentus in vitro [67]. DCAP is a specific inhibitor of Gram-positive and Gram-negative
bacteria membrane and has two mechanisms of action that lead to cell lysis first, by facilitating ion
transport across the membrane and so decreases the membrane potential, and second, by disrupting
the lipid bilayer permeability. It is suggested that the activity of DCAP on Gram-negative bacteria is
due to the effect on the inner membrane [68,69].

DCAP is a membrane-active drug that has the advantage of acting against bacteria in the dormant
phase and biofilms. And what makes it distinct from other membrane-active agents is the specificity
toward bacterial membranes. DCAP does not affect the red blood cell membrane, and when tested for
the effect on the viability of the mammalian cell; a decrease in the viability was observed only at high
concentrations and after more than 6 h [68].

Hurley et al. performed a structure-activity relationship of DCAP by synthesizing 15 analogs and
found that the stereochemistry of the compound does not affect the activity. In contrast, the aromaticity
and electronegativity of the chlorine-substituted carbazole were found to be essential for the biological
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activity. According to this finding, they suggested that the orientation of DCAP in the membrane is via
its planar and dipolar characteristics. The study also found that when the hydrophobicity of the tail
region of DCAP increased, the antibiotic activity was enhanced. Hurley et al. also synthesized two
promising analogs of DCAP with activity against Bacillus anthrax and Francisella tularensis. Co-dosing
DCAP analogs with ampicillin or kanamycin (antibiotics that target the cell wall differently) showed
synergistic antibiosis [69,70]. This indicates that DCAP and its analogs represent promising candidates
for new antibiotic therapy for the treatment of persistent infections caused by slow-growing and
dormant bacteria.

3.2.3. Odilorhabdins (ODLs)

The ribosome is a major target for antibiotics, but due to increasing MDR bacteria, the effectiveness
of ribosome targeting antibiotics is reduced, thus amplifying the need for the development of new
compounds that can bind to novel sites on the ribosome [71]. Gram-positive Actinomycetes and
Gram-negative Xenrhabdus are two bacterial genera known for their capacity to produce a great
variety of secondary metabolites via possessing genes encoding for non-ribosomal peptide synthetases
(NRPSs) and polyketide synthases (PKSs) [72].ODLs (Figure 4) are a new class of modified peptide
antibiotics produced by enzymes of the NRPSs gene cluster of Xenorhabdus nematophila. ODLs have
broad-spectrum antibacterial activity against Gram-positive and Gram-negative pathogens, including
carbapenem-resistant Enterobacteriaceae. ODLs act as inhibitors by binding to the small subunit of
bacterial ribosomes that are distinct from those of existing antibiotics, and make contact with rRNA
and tRNA; which induce miscoding in the translation system and increase the affinity of non-cognate
aminoacyl tRNAs to the ribosome. In vitro and in vivo studies show promising results that make this
new class an attractive starting point to develop ODL clinical candidates [73].

3.2.4. Peptidic benzimidazoles

The benzimidazole moiety is recognized as a pharmacophore of chemotherapeutic agents that
act like antibacterial, antifungal, anthelmintic, antiviral, anticancer, and anti-inflammatory agents
for the treatment of a diverse range of diseases [74,75]. Benzimidazole-containing molecules inhibit
peptide deformylase (PDF). PDF is a metalloprotease that removes of the N-terminal formyl group
from the first methionine of newly synthesized polypeptides through Fe2+ -mediated catalysis, PDF
consequently stops ribosomal protein synthesis in bacteria, protozoans, and some fungi [76,77]. PDF
represents a good target for antimicrobials because it is highly conserved and ubiquitous in bacteria,
fungi, and protozoa, and at the same time it is not required by mammalian cells [78,79]. Most PDF
inhibitors are pseudopeptidehydroxamic acids, peptidic benzimidazoles are emerging alternative
inhibitors. Several peptidic benzimidazol conjugates have shown in vitro antimicrobial activities.
Peptidic benzimidazol (Figure 4) can be promising novel antibiotics for resistant Gram-negative
bacteria [45,79,80].

Buğday et al. have reported the synthesis for the first time of sixteen novel benzimidazole amino
acid/dipeptide conjugates incorporating glycine, alanine, phenylalanine, cysteine, and glycine-glycine
dipeptide substitutions at position 1 of the benzimidazoles. In vitro antibacterial and antifungal
activities of the compounds were tested against Gram-positive bacteria (S. aureus and E. faeciumNJ-1) and
Gram-negative bacteria (E. coli and P. aeruginosa), Candida albicans and Candida tropicalis. The antioxidant
activities were measured as well. All of the compounds tested showed low to moderate antimicrobial
and antioxidant activities [80].

In 2018, Bird et al. reported concise and expedient syntheses of internal and C-terminal peptidic
benzimidazoles. The reported method is simply performed in wholly solid-phase at room temperature
with the need for only minimal purification [79]. The Bird et al. method is expected to be an essential
tool for the design and synthesis of novel antibiotics incorporating the benzimidazole pharmacophore.
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3.2.5. Quorum Sensing (QS) Inhibitors

Bacterial chemical communication (quorum sensing) is a term used to refer to coordinated
bacterial gene expression to act as a population to regulate processes like virulence factor production,
susceptibility to antibiotics and biofilm formation. QS is mediated by small molecules called
auto-inducers (AIs) such as Autoinducer-2 (AI-2), the so-called universal auto-inducer, which is
responsible for intra- and interspecies bacterial communication [81].The most common QS mediators
in Gram-positive are the oligopeptides and in Gram-negative bacteria theN-acyl homoserine lactones
(AHLs). (S)-4,5-Dihydroxy-2,3-pentanedione ((S)-DPD), is a QS modulator found in both Gram-negative
and Gram-positive bacteria, which is phosphorylated to phosphoryl DPD by LsrK to activate QS.
Therefore, DPD derivatives with different core structures can be used to inhibit LsrK and work
as antimicrobial agents. Isobutyl-DPD and phenyl-DPD (Figure 4) showed activity to inhibit QS
in combination with gentamicin and small molecules. 2-Substituted aminobenzoic acids are other
compounds structurally related to DPD that were identified as LsrK inhibitors by virtual screening.
Working on a hit-to-lead process to increase LsrK inhibition by changing in the heterocyclic core can
be used as QS-interfering compounds in the treatment of bacterial infections [82]. Modulation or
inhibition of QS has emerged as a potential therapeutic that can control several bacterial virulence
factors such as biofilm formation and reduce the bad effect of bacterial infections. QS Inhibitors can be
used in combination with other antibiotics to fight antimicrobial resistance [81].

3.2.6. Metal-Based Antibacterial Agents

Metal complexes have been used extensively throughout recorded history in medicine [83,84].
In recent times, research into metal-based antimicrobials has become of great interest. Metal compounds
have unique modes of action, and exist in a wider range of three-dimensional geometries, a feature that
is associated with higher clinical success rates compared to the generally flat organic molecules [85,86].
There is intense ongoing research focused on metal-based drugs, and massive contribution to literature
by such studies. Ruthenium, gallium, bismuth, silver and copper are the main metals that have been
applied in metal-based antimicrobials.

Ruthenium (Ru): Ruthenium (Ru) complexes have significant biological activities due to their
ability to bind to different targets in the cell, like nucleic acids and proteins. Ru(II) complexes also have
photo-physical properties that can be used to study cellular accumulation and localization [87]. Not
only Ru(II) complexes are used as imaging probes and anticancer agents, they have the potential to act
as antimicrobial agents. Smitten et al. tested the effect of luminescent dinuclear Ru(II) complexes on E.
coli. Luminescent derivatives showed potent activity against Gram-negative bacteria and some MDR
strains. This activity is due to the disruption of bacterial cell wall, which was confirmed by membrane
damage assays. These results may lead to vital new treatments to life-threatening Gram-negative and
MDR bacteria [88]. Atakilt Abebe et al. tested the antibacterial activity in vitro for two complexes:
ruthenium (III) ([Ru(phen)2Cl2]Cl·2H2O and [Ru(phen)2(G)Cl]2Cl·H2O) on Gram-positive (S. aureus
and methicillin-resistant Staphylococcus aureus (MRSA)) and Gram-negative (E. coli and K. pneumonia)
bacteria. Results showed that these complexes have a broad range of activities against these resistant
bacteria more than Chloramphenicol and Ciprofloxacin. Therefore, Ru(II) complexes can be considered
as a good candidate for antibiotic drug development [89].

Gallium (Ga): Gallium has been explored as an antimicrobial. Gallium compounds target bacterial
iron uptake and/or iron metabolism by inhibiting iron-dependent enzymes. Due to its similarity to
iron, Ga(III) is incorporated into iron-dependent enzymes, but cannot be reduced to Ga(II), inhibiting
the enzyme. Gallium protoporphyrin IX showed antibacterial activity against Gram-negative P.
aeruginosa, K. pneumoniae and A. baumannii and Gram-positive various strains [90]. Ga(NO3)3, a
sources of free gallium is currently undergoing a phase 2 clinical trial as an intravenous treatment
for chronic P. aeruginosa infections in patients with cystic fibrosis [91]. Recently, Wang et al. have
reported the discovery of two subunits of RNA polymerase, RpoB and RpoC, as Ga-binding proteins
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in P. aeruginosa. They showed that gallium attenuates transcription, and that co-treatment of Ga(III)
and acetate increases the efficacy for combating antibiotic resistant P. aeruginosa [92].

Bismuth (Bi): Bismuth has low toxicity to humans and is already present in some approved
medications. Bismuth has however potent bacterial toxicity, and some bismuth compounds, like
bismuth subsalicylate, colloidal bismuth subcitrate and ranitidine bismuth citrate, are used to treat
H. pylori infections [93,94]. The mechanism of the bactericidal activity of bismuth complexes is
still not well known, though, Wang et al. have shown that Bi(III) antimicrobial drugs inhibit
broad spectrum metallo-β-lactamase; with one Bi(III) displacing two Zn(II) ions [95]. Bismuth(III)
thiolates derived from small heterocyclic thiones showed potent broad spectrum antimicrobial
activity against Mycobacteriumsmegmatis, E. coli and Enterococcus faecalis [96,97]. Bismuth phosphinates
exhibited antibacterial activity against E. coli, and some Gram-positive pathogens like MRSA and
vancomycin-resistant Enterococcus [98]. Moreover, a study showed that bismuth-containing quadruple
therapy (bismuth subcitrate potassium, metronidazole, tetracycline and omeprazole) achieved effective
eradication of metronidazole-resistant H. pylori in infected patient [99].

Silver (Ag): Silver, colloidal silver and silver nitrate have been applied as wound antiseptics long
before the discovery of antibiotics [100]. Today, a range of silver-based compounds are still used for
their medicinal properties, such as silver sulfadiazine, a broad-spectrum topical antibiotic for burn
wounds [101,102]. Silver compounds display a broad spectrum of antibacterial activity and are often
used as antibacterial additives [103,104]. The exact mechanism of action of silver compounds is largely
unknown, most studies ascribed the antibacterial activity to silver ions (Ag(I)) being released through
dissociative mechanisms inside of the bacteria [105].

Silver nanoparticles are known for their antibacterial activity in low concentrations against
multidrug resistant strains of P. aeruginosa, E. coli, Salmonella enterica, and Proteus mirabilis [106–109].
N-Heterocyclic carbene–silver (Ag(I)-NHC) complexes are a new class of silver complexes that was
found to have potent antimicrobial activity against numerous pathogens including antibiotic resistant
bacteria [84,110,111]. Despite the promising potential of the new silver complexes, the clinical
application has remained unattained goal, more investigation and research is required to improve
selective uptake and accumulation and to understand the specific mode of action [111].

Copper (Cu): For centuries copper compounds have been used as disinfectant agents, but the
urgent need for new antibiotics forced research to turn in a different direction to find alternative
treatments, especially for compounds that have the ability to penetrate bacterial membranes. Copper
plays a major roles in cellular processes in living organisms such as free radical control and oxidative
phosphorylation. Despite this fact, copper ions were recognized in 2008 as a metallic antibacterial agent,
since they cause inhibition of growth and have a toxic effect on bacteria at higher concentrations due to
the production of reactive oxygen species [112–115]. Copper has been used in various forms to test its
antimicrobial properties. Cu ions need specific transport proteins to cross membranes, which limits
their penetration to the target. As a result, lipophilic ligands called Cu ionophores have been developed
as Cu ion carriers to deliver Cu ions across bacterial membranes. Djoko et al. prepared copper
(bis-thiosemicarbazone) (Cu(btsc)) complex and tested its antimicrobial activity against Gram-positive,
and Gram-negative bacteria such as N. gonorrhoeae, Mycobacterium tuberculosis, and E. coli, and showed
the susceptibility of these bacteria to Cu(btsc) complex and its ability to be used as treatment [116].In
addition, copper has been found to act synergistically with drugs, complexes coupled with quinolone
drugs have been studied and reported. Psomas et al. synthesized copper complexes with second
generation quinolone norfloxacin and ofloxacin. Results showed that these complexes have similar or
higher binding affinity to DNA than free quinolones and more data are needed to study their exact
mechanism of action [117].On the other hand, copper was used in nanoparticles technologies and were
found to have high antibacterial activity against Gram-positive and Gram-negative bacteria especially
due to their ability to penetrate the defense layer of bacteria; the outer membrane [112,113]. However,
development of copper resistance could become a serious concern in hospitals and environments. New
studies have found that bacteria developed tolerance to copper ions and can protect themselves from
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the toxic effect by several mechanisms such as active efflux systems and detoxifications by copper
oxidase enzymes [118].

4. Patient Education

The spread of resistant pathogenic bacteria such as Gram-negative bacteria represents a huge and
emerging threat to public health, and this threat is increasing every day. The major reason for the low
response or difficulties in treating multi-resistant Gram-negative bacteria is the excessive and overuse
of antibiotics in community and in hospitals. Therefore, strategies must be planned and applied to
decrease the use and unnecessary prescription of antibiotics. This can be achieved by: (1) educational
lectures, campaigns or patient information leaflets which explain the misuse of antibiotics and the
adverse effects, and (2) preventing self-medication by the control and registration of antibiotic drug
consumption in pharmacies. This and other strategies can increase patient knowledge and decrease
the improper use and prescription of antibiotics [8,119,120].

5. Conclusions

Resistant Gram-negative bacteria such as Enterobacteriaceae, Pseudomonas aeruginosa, Acinetobacter
baumannii, Salmonella spp., Neisseria gonorrhoeae, Haemophilus influenza, Campylobacter, Helicobacter pylori,
and Shigella spp. are a real threat and a burden on the health and economy, which is why the WHO
has published a priority list for antibiotic-resistant bacteria to discover and develop new treatments
urgently. Novel approaches are aiming to overcome intrinsic and acquired resistance of Gram-negative
bacteria and represent hope for the future. Some treatments have succeeded in yielding activity
against Gram-negative resistant bacteria by deactivating the mechanism of resistance like the action of
the β-lactamase inhibitor antibiotic adjuvants. Another promising trend refers to Nature to develop
naturally derived agents with antibacterial activity against novel targets, such as bacteriophages which
are bactericidal viruses that disrupt many bacterial processes, in addition to ODLs, new modified
peptide antibiotics that bind to small subunits of bacterial ribosomes and others like DCAP, peptidic
benzimidazoles, QS inhibitors, and Ru complexes. On the other hand, overuse and the misuse of these
drugs contribute the spread of antibiotic resistance globally, therefore, efforts must be done to educate
people and implement new policies and control programs on how to use and dispense antibiotics.
Gram-negative resistance bacteria are the most dangerous group among other MDR bacteria and all
these new treatments and approaches are needed to limit antimicrobial resistance and MDR strains.
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