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Abstract: Praeruptorin C (PC) reportedly has beneficial effects in terms of antiinflammation, 

antihypertension, and antiplatelet aggregation, and it potentially has anticancer activity. However, 

the effect of PC on human non–small cell lung cancer (NSCLC) is largely unknown. Compared with 

the effects of praeruptorin A and praeruptorin B, we observed that PC significantly suppressed cell 

proliferation, colony formation, wound closure, and migration and invasion of NSCLC cells. It 

induced cell cycle arrest in the G0/G1 phase, downregulated cyclin D1 protein, and upregulated p21 

protein. PC also significantly reduced the expression of cathepsin D (CTSD). In addition, the 

phosphorylation/activation of the ERK1/2 signalling pathway was significantly suppressed in PC-

treated NSCLC cells. Cotreatment with PC and U0126 synergistically inhibited CTSD expression, 

cell migration, and cell invasion, which suggests that the ERK1/2 signalling pathway is involved in 

the downregulation of CTSD expression and invasion activity of NSCLC cells by PC. These findings 

are the first to demonstrate the inhibitory effects of PC in NSCLC progression. Therefore, PC may 

represent a novel strategy for treating NSCLC. 
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1. Introduction 

Lung cancer is the most commonly diagnosed cancer and the leading cause of cancer-related 

deaths globally because of its poor prognosis [1]. According to data from the GLOBOCAN database, 

2.09 million new cases of lung cancer are reported yearly (11.6% of all cancer cases), resulting in 1.76 

million deaths (18.4% of all cancer-related deaths) worldwide [2]. Non–small cell lung cancer 

(NSCLC) is the most common type of lung cancer, comprising 85% of all lung cancers. NSCLC can 

be divided into subtypes, such as lung adenocarcinoma (40%), lung squamous cell carcinoma (25%–

30%), and large cell carcinoma (10%–15%) [3,4]. Metastasis and drug resistance are the main causes 

of death in lung cancer patients [5]. Approximately 66% of patients exhibit metastatic lesions when 

they are first diagnosed with lung cancer [6]. Therefore, inhibition of metastasis is a critical topic in 

cancer research. New strategies for the treatment of lung cancer should be explored. 

Because metastasis is such a concern in patients with lung cancer, many cancer treatments have 

focused on the prevention of metastasis. Metastasis is a complex process that involves the destruction 

of extracellular matrix (ECM) components, an increase in cancer cell invasion from the primary 

tumour site and their suspension in the circulatory system, and, finally, growth at a target organ [7,8]. 

Migration and invasion of cancer cells and the degradation of the ECM exacerbate the development 

of malignant tumours. However, cancer cells must undergo several changes for distant metastasis to 

occur. First, cancer cells gain the ability to migrate and invade surrounding tissues. Second, cancer 

cells destroy intercellular relationships. Third, the ECM is lysed or destroyed. Finally, the ability of 

cancer cells to adhere to the ECM is increased [9]. Cathepsin D (CTSD) plays a decisive role in bone 

metastasis in lung cancer by degrading basement membrane components and the ECM [10,11]. 

Mitogen-activated protein kinase (MAPK) superfamily members are closely associated with 

increased migration, invasion, proliferation, survival, and apoptosis, thus playing diverse and crucial 

roles in lung cancer progression [12,13]. 

Natural plant compounds have been investigated for potential efficacy in the treatment of 

various cancers. Certain phytochemicals in medicinal herbs reportedly possess antitumorigenic 

activity. The synergistic effects of herbal medicines and natural foods might improve the effectiveness 

of conventional antitumor agents or might even be suitable replacements for conventional 

chemotherapeutic drugs [14,15]. Praeruptorin C (PC) is a bioactive compound derived from the dried 

roots of Peucedanum praeruptorum Dunn and is used as an antioxidant and a calcium antagonist to 

treat diseases. PC has efficacy in lowering blood pressure and dilating coronary arteries [16], anti-

hypertension [17], anti-inflammation [18], and antiplatelet aggregation properties. Furthermore, it 

exhibits neuroprotective abilities [19] and has potential anticancer activity [20]. However, the effects 

of PC on the proliferation and metastasis of NSCLC cells and the molecular mechanisms involved 

are still unknown. In the present study, we investigated whether PC treatment is sufficient to 

downregulate cell survival and suppress migration abd invasion. We also identified the precise 

molecular mechanisms in NSCLC cells. Our findings demonstrated that PC treatment inhibits cell 

proliferation, invasive motility, and CTSD expression by suppressing the ERK1/2 signalling pathway. 

Therefore, PC might serve as a therapeutic agent to limit cancer progression by inhibiting cell growth 

and invasive motility in NSCLC.  

2. Results 

2.1. Effect of PC on Cell Viability and Cytotoxicity in NSCLC Cells  

We compared the effects of praeruptorin A (PA), praeruptorin B (PB), and PC on cell viability 

and cytotoxicity in two human lung cancer cell lines, A549 and H1299. These cells were treated with 

various concentrations (0, 10, 20, 30, 40, and 50 μM) of PA, PB, and PC for 24 h, followed by a MTT 

assay. We observed a significant decrease in cell viability in A549 (IC50 = 33.5M ± 7.5) and H1299 

cells (IC50 = 30.7M ± 8.4) treated with PC, but the same effect was not observed with PA and PB 

treatment (Figure 1A,B). We further measured the concentration at whih cytotoxicity side effects 

appear in two normal cell lines, WI-38 cells (human lung fibroblast cell line) and HK-2 cells (human 

proximal tubular cell [PTC] line derived from a healthy kidney). PC (50 μM) treatment reduced cell 
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viability in WI-38 cells, and PC (40 and 50 μM) treatment caused cell cytotoxicity in HK-2 cells (Figure 

1C,D). Therefore, we used PC in concentrations below 30 μM to execute the subsequent experiments 

and studies. Colony formation was measured in A549 cells treated with PC (0, 10, 20, and 30 μM) for 

24 h to confirm the effect of PC in reducing cell viability (Figure 1E). The results indicated that PC 

significantly inhibits NSCLC cell growth.  

 

Figure 1. Effect of PC on cell viability and cytotoxicity in NSCLC cells. (A) A549 cells (human lung 

adenocarcinoma cell line), (B) H1299 cells (human lung adenocarcinoma cell line), (C) WI-38 cells 

(human lung fibroblast cell line), and (D) HK-2 cells (human PTC line derived from normal kidney) 

were treated with various concentrations (0, 10, 20, 30, 40, and 50 μM) of PA, PB, or PC for 24 h and 

then measured using MTT assay. (E) Colony formation of A549 cells treated with PC (0, 10, 20, and 

30 μM) for 24 h were measured. * p ＜ 0.05; ** p＜ 0.01 versus control (line 1), (Mean ± SE, n = 3). 

2.2. Effect of PC on Cell Cycle Arrest in NSCLC Cells 

Human A549 lung cancer cells were treated with various concentrations (0, 10, 20, and 30 μM) 

of PA, PB, and PC for 24 h, followed by flow cytometry assay. PC treatment (20 and 30 μM) 

significantly induced cell arrest at the G0/G1 phase but PA and PB treatment did not (Figure 2A). 

Immunoblotting assay was performed to further confirm the effect of PC in the regulation of the cell 
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cycle and induction of apoptosis by measuring cell cycle regulation proteins cyclin D1 and p21. The 

results indicated that PC significantly affects the induction of cell cycle arrest at the G0/G1 phase and 

apoptosis in these NSCLC cells (Figure 2B).  

 

Figure 2. Effect of PC on cell cycle arrest in NSCLC cells. (A) Cell cycle and apoptosis of human A549 

lung cancer cells treated with various concentrations (0, 10, 20, and 30 μM) of PA, PB, and PC were 

measured using flow cytometry. (B) Cell cycle regulation proteins, cyclin D1 and p21, were further 

detected to confirm the effect of PC on A549 cells. ** p ＜ 0.01 versus control (line 1), (Mean ± SE, n = 

3). 

2.3. PC Inhibits Cell Migration, Invasion and CTSD Expression in NSCLC Cells 

To identify the effect of PC on cellular migration and invasion activity in NSCLC cells, we treated 

human A549 cells with various concentrations of PC (0, 10, 20, and 30 μM) for 12 or 24 h and executed 

wound healing assay (Figure 3A) and migration and invasion assay (Figure 3B). We found that PC 

significantly inhibited cellular migration and invasion activity in A549 cells in a dose-dependent 

manner. 

CTSD has been shown to be instrumental in lung cancer cell migration and invasion. To identify 

the effect of PC on the gene and protein expression of CTSD in NSCLC cells, we treated human A549 

lung cancer cells with various concentrations (0, 10, 20, and 30 μM) of PC for 24 h, followed by 

immunoblotting and RT-qPCR assays. The results revealed that gene and protein levels of CTSD in 

human A549 cells were significantly reduced in a dose-dependent manner when exposed to PC (10, 

20, and 30 μM) for 24 h (Figure 3C,D). 
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Figure 3. Inhibitory effect of PC on cell migration, invasion, and CTSD expression in NSCLC cells. (A 

and B) Human A549 lung cancer cells were treated with various concentrations of PC (0, 10, 20, and 

30 μM) for 12 and 24 h, and subsequently their capacity for cell migration and invasion was measured. 

(C and D) Human A549 lung cancer cells were treated with PC (0, 10, 20, and 30 μM) for 24 h. Cells 

were then harvested for detection of CTSD gene and protein levels by RT-qPCR and immunoblotting 

assay. * p ＜ 0.05; ** p ＜ 0.01 versus control (line 1), (Mean ± SE, n = 3). 

2.4. PC inhibits the Activation of the ERK1/2 Pathway in NSCLC Cells  

To investigate which a signal transduction pathway were involved in the downregulation of 

migration and invasion activity in NSCLC cells after PC treatment, we treated human A549 cells with 

PC (0, 10, 20, and 30 μM). A549 cells were then harvested for immunoblotting assay to observe the 

phosphorylation/activation of the signalling pathways. We found that PC significantly reduced the 

phosphorylation/activation of the ERK1/2 signalling pathway (Figure 4A). 

2.5. ERK1/2 Activation is Involved in the PC-Induced Suppression of Cell Migration and Invasion and 

CTSD Expression in NSCLC Cells 

To examine the effect of PC and U0126 (a specific MEK1/2 inhibitor) on cellular migration and 

invasion activity in NSCLC cells, we subjected human A549 cells to treatments of PC (0 and 20 μM) 

and/or U0126 (0 and 20 μM) for 24 h. We found that individual treatments of PC (20 μM) or U0126 

(20 μM) significantly inhibited CTSD expression, cellular migration, and invasion in A549 cells. 

Cotreatment of PC (20 μM) or U0126 (20 μM) revealed had a greater inhibitory effect on CTSD 

expression and invasive motility in human A549 lung cancer cells (Figure 4B,C). The results 

suggested that the ERK1/2-CTSD signalling pathway was involved in the suppression of migration 

and invasion in NSCLC cells by PC. 
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Figure 4. Synergistic inhibitory effect of PC and U0126 on cell migration and invasion by 

downregulation of the EKR1/2 signalling pathway. (A and B) Human A549 lung cancer cells were 

treated with PC in the presence or absence of U0126 (a specific MEK1/2 inhibitor) and then harvested 

for an immunoblotting assay to observe the activation of the EKR1/2 signalling pathway and CTSD 

protein expression. (C) Human A549 lung cancer cells were treated with various concentrations of PC 

(0 and 20 μM) and/or U0126 (0 and 20 μM) for 24 h, and subsequently their capacity for cell migration 

and invasion was measured. ** p＜0.01 versus control (line 1); #, p ＜ 0.05 versus PC treatment (line 

2). (Mean ± SE, n = 3). 

3. Discussion 

Lung cancer has a low survival rate and remains the leading cause of global cancer-related 

deaths. Therefore, novel approaches must be urgently explored for lung cancer treatment and the 

prevention of its recurrence and metastasis. Many plant-derived compounds have potential 

bioactivities that counteract cancer development. In this study, we observed the following results. (i) 

According to viability, cytotoxicity, and colony formation assays, PC treatment revealed significant 

cell cytotoxicity and reduced cell survival in NSCLC cells. (ii) PC treatment led to a significant 

induction in cell cycle arrest at G0/G1 phase and apoptosis in these NSCLC cells. However, PA and 

PB did not influence the induction of cytotoxic effects, cell cycle arrest, or apoptosis. (iii) PC 

significantly suppressed cell invasive motility activity in NSCLC cells. (iv) PC significantly 

downregulated the expression of CTSD gene and protein levels in a dose-dependent manner. (v) PC 

substantially inhibited the activation of the ERK1/2 signalling pathway. (vi) Cotreatment of PC and 

U0126 synergistically downregulated the invasive motility activity and CTSD expression of NSCLC 

cells. These results demonstrate that PC downregulates migration, invasion, and CTSD expression 

by blocking the ERK1/2 signalling pathway in NSCLC cells. 

ECM remodelling and cellular migration and invasion contribute to the distant metastasis of 

cancer cells through multifactorial biological processes. Cathepsin D (CTSD), an aspartyl 

endoproteinase, is involved in various physiological processes and signalling pathways. Studies have 

reported increased overexpression and hypersecretion of CTSD in many cancer types. Enhanced 

CTSD expression is considered an indicator of malignancy in serous ovarian cancer [20,21]. A 
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significant overexpression of CTSD in the omental lesion of serous ovarian carcinoma was observed, 

and it is believed to be associated with poor disease-specific survival [22]. Higher expression of CTSD 

has also been correlated with an increased risk of clinical metastasis and short survival of patients 

with breast cancer [23–25]. CTSD overexpression promotes breast cancer cell migration, invasion, and 

metastasis by upregulating the expression of intercellular cell adhesion molecule-1 [26]. CTSD 

enhances the proliferation and invasiveness of NSCLC cells [27] CTSD was validated in a clinical 

study and could acts as a biomarker for osteosarcomas, pulmonary metastasis, and bone 

malignancies [28]. CTSD also has a pivotal role in the regulation of angiogenesis, metastasis, invasion, 

apoptosis, and cell proliferation; therefore, it is considered a potential therapeutic target for natural 

products in cancer chemoprevention [29]. In this study, we observed that PC inhibits gene and 

protein expressions of CTSD and suppresses cell migration and invasion in NSCLC cells.  

The molecular mechanisms underlying the regulation of cancer progress have been explored 

with the goal of identifying the complete network of signalling pathways and developing effective 

approaches against cancers. MAPKs include three major subfamilies, namely ERKs, JNKs, and p38 

MAPK, that contribute to the control of cancer development and progression [30–33]. Huaier Granule 

extract suppresses proliferation and metastasis in lung cancer cells by downregulating the MTDH, 

JAK2/STAT3, and MAPK signalling pathways [34]. MAPK inhibitors, particularly JNK, enhance the 

cell death effects in H2O2-treated lung cancer cells by increasing superoxide anion and glutathione 

depletion [35]. The EGFR/MAPK pathway mediates aldolase A–promoted cyclin D1 expression and 

proliferation and G1/S transition in NSCLC [36]. Activation of the MAPK pathway by the long 

noncoding RNA TUC338 promotes the invasion of lung cancer [37]. The FGFR1–ERK1/2–SOX2 axis 

promotes cell proliferation, epithelial–mesenchymal transition (EMT), and metastasis in FGFR1-

amplified lung cancer [38]. PEAK1 overexpression contributes to EMT and tumour metastasis by 

activating ERK1/2 and JAK2 signalling in lung cancer [39]. ERK1/2-upregulated expression of PUMA 

contributes to propofol-inhibited cell survival and propofol-induced cell apoptosis in NSCLC [40]. 

The results of the aforementioned studies suggest that targeting MAPK activation is a potential 

therapeutic strategy against the development and progression of human lung cancer. In this study, 

we observed that PC treatment significantly inhibited activation of the ERK1/2 signalling pathway. 

Furthermore, cotreatment of PC and U0126 synergistically suppressed migration, invasion, and 

CTSD expression in NSCLC cells. 

The bioactivity of plant-derived compounds has shown promise as anticancer agents for 

increasing patients’ survival rate. Angular pyranocoumarin extracted from P. praeruptoruom 

reportedly inhibits proliferation and induces apoptosis in human U266 myeloma cells by 

upregulating caspase-8 and caspase-3 proteins and downregulating phospho-ERK and phospho-

AKT proteins and hTERT mRNA [41]. Prenylated coumarins, the ethanol extracts of P. praeruptorum, 

exhibit in vitro cytotoxic activity against various types of human cancer cells [42]. Pyranocoumarins 

from the root extracts of P. praeruptorum Dunn, reportedly reduce nitric oxide production and inhibit 

the multidrug-resistant protein-mediated efflux of drugs [23]. PA has antiproliferative and cytotoxic 

effects and promotes the inhibitory effects of doxorubincin in human SGC7901 gastric cancer cells 

[43]. PA inhibits human cervical cancer cell growth and invasion by suppressing MMP-2 expression 

and ERK1/2 pathway activation [32]. In this study, we investigated the anticancer properties of PA, 

PB, and PC in NSCLC cells. PC significantly decreased cell growth by inducing cell cytotoxicity, cell 

cycle arrest in the G0/G1 phase, and apoptosis in NSCLC cells in comparison with PA and PB 

treatments. PC exhibited specific inhibitory effects in human NSCLC cells through the 

downregulation of cyclin D1 protein and upregulation of p21 protein. Furthermore, PC might 

suppress cell migration and invasion by downregulating CTSD expression and ERK1/2 pathway 

activation. Previously reports have been showed that ectopic expression of CTSD in CTSD-deficient 

fibroblasts stimulates 3D outgrowth that is associated with a significant increase in fibroblast 

proliferation, survival, motility, and invasive capacity via activation of ERK1/2 pathway. 

Furthermore, CTSD could act as a key paracrine communicator between cancer and stromal cells, 

independently of its catalytic activity [44]. Depletion of CTSD gene expression by RNA interference 

decreases proliferative response and invasive potential in human breast cancer cell through 
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suppressing the activation of EKR1/2 pathway [45]. Epithelial ovarian cancer(EOC)-secreted CTSD 

acts as an extracellular ligand and induces proliferation and migration in human omental 

microvascular endothelial cells (HOMECs) through activation of ERK1/2 and PI3K/AKT 

pathways[46]. Based on our observation, we found that PC cotreated with U0126 does not affect cell 

viability in A549 and H1299 cells. Therefore, antiproliferative effect of PC in NSCLC cells is not 

involved in ERK1/2-CTSD axis, it may be participated in other signaling pathways, which we will 

continue to focus on these important issues of future study.  

4. Materials and Methods 

4.1. Reagents  

PA, PB, and PC were purchased from ChemFaces (Wuhan, China). The stock solutions of PA, 

PB, and PC were prepared at a concentration of 100 mM in dimethyl sulfoxide and stored at −80 °C. 

Crystal violet solution, MTT and U0126 were purchased from Sigma (St. Louis, MO, USA). Cyclin 

D1, p21, p-ERK1/2, ERK1/2, CTSD, and β-actin antibodies were purchased from Santa Cruz 

Biotechnology (Santa Cruz, CA, USA). Horseradish peroxidase-conjugated antimouse, antigoat, and 

antirabbit secondary antibodies were also obtained from Santa Cruz Biotechnology. All stock 

solutions were wrapped in foil and maintained at −20 °C  

4.2. Cell Culture 

A549 (human lung adenocarcinoma cell line), H1299 (human lung adenocarcinoma cell line), 

WI-38 (human lung fibroblast cell line) and HK-2 (human PTC line derived from a healthy kidney) 

cell lines were obtained from American Type Culture Collection (Manassas, VA, USA) and cultured 

in either Dulbecco’s modified Eagle’s medium (DMEM; for A549 and WI38), minimum essential 

medium (for H1299), or DMEM: Nutrient Mixture F-12 (DMEM/F-12; for HK2) supplemented with 

10% fetal bovine serum, 2 mM glutamine, 100 U/mL penicillin, and 100 μg/mL streptomycin. All cell 

cultures were maintained at 37 °C in a humidified atmosphere of 5% CO2. 

4.3. Cell Viability Assay 

To determine the effect of PA, PB, and PC on cell viability, cells were treated with different 

concentrations of PA, PB, or PC (0, 10, 20, 30, 40, and 50 μM) for 24 hr, and were subjected to MTT 

assay (Sigma). The absorbance of blue formazan crystals was measured at 570 nm using an enzyme-

linked immunosorbent assay plate reader. The quantity of formazan was directly proportional to the 

number of viable cells in the culture medium. The cell viability of cells was determined according to 

the absorbance corrected to a background reading.  

4.4. Colony Formation Assay 

Cells were seeded onto 6-well plates for 7 days. Colonies with more than 100 cells were stained 

with 0.5% crystal violet solution for 30 min at room temperature. Three independent experiments 

were performed. 

4.5. Cell Cycle Distribution by Flow Cytometric Analysis  

Cells were centrifuged at 800 rpm at 4 °C for 5 min, washed with ice-cold phosphate-buffered 

saline (PBS), and stained with Muse Annexin V and dead cell reagent. The DNA content was 

examined using Muse Cell Analyzer flow cytometry and data were analysed using the Muse Cell 

Analyzer (EMD Millipore, Billerica, MA, USA). Cells were gated to exclude cell debris, doublets, and 

clumps. Apoptotic cells with hypodiploid DNA content were detected in the sub-G1 region. 

4.6. Immunoblotting  

To isolate total proteins, cells were washed with cold PBS and resuspended in lysis buffer (50 

mM Tris, pH 7.5, 0.5 M NaCl, 1.0 mM ethylenediaminetetraacetic acid, 10% glycerol, 1 mM -
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mercaptoethanol, and 1% Nonidet P-40) with mixtures of proteinase inhibitors and phosphatase 

inhibitors (Roche Molecular Biochemicals, Pleasanton, CA, USA). After incubation for 30 min on ice, 

the supernatant was collected by centrifugation at 12,000 g for 15 min at 4 °C, and the protein 

concentration was determined using the Bradford method. Samples containing equal amounts of 

total protein (20 g) were separated by 10–12% SDS-PAGE and transferred onto PVDF membranes 

(Life Technologies, Carlsbad, CA, USA). The membranes were blocked with a 5% nonfat dry milk in 

blocking buffer for at least 2 h at room temperature and then incubated with primary antibodies in 

the aforementioned solution on an orbital shaker at 4 °C overnight. Subsequently, the membranes 

were incubated with horseradish peroxidase–linked secondary antibodies (anti-rabbit, anti-mouse, 

or anti-goat IgG). Antibody-bound protein bands were detected using highly sensitive Immobilon 

Western Chemiluminescent HRP Substrate (Millipore), and photographed using the Luminescent 

Image Analyzer LAS-4000mini (GE Healthcare, Pittsburgh, PA, USA). 

4.7. Cell motility Determined by Wound Healing Assay  

A549 cells (4 × 105 cells/well) were seeded onto a 6-well plate and grown overnight to 90% 

confluence. After removing the medium, we scratched the cell monolayer with a 200-L pipette tip 

to create a wound. The cells were then washed twice with PBS to remove floating cells and fresh 

medium (containing 2 g/mL of mitomycin c) was added. Cells migrating from the leading edge of 

the wound were photographed at 0, 12, and 24 h. 

4.8. Migration and Invasion Assay  

A549 cells were treated with different concentrations of PC for 24 h by using 48-well modified 

Boyden chambers containing membrane filter inserts with 8-m pores (Corning Incorporated Life 

Sciences, Tewksbury, MA, USA). These filter inserts were coated with Matrigel (BD Biosciences, 

Billerica, MA, USA) prior to the invasion assay. The lower compartment was filled with DMEM 

containing 10% FCS. Cells were placed in the upper part of the chamber, which contained serum-free 

medium, and incubated for 16–24 h. Cell migration and invasion were determined by counting cells 

that migrated to the lower side of the filter at 100× magnification, respectively. Four microscopic fields 

were counted for each filter, and each sample was assayed in triplicate. 

4.9. Reverse Transcription and Real-Time PCR Assay  

Total RNA was isolated from cultured cells by homogenisation in TRIzol reagent (Invitrogen, 

Carlsbad, CA, USA) in preparation for RNA extraction. Standard RT and real-time PCR protocols 

were used. For RT, the samples were incubated at 25 °C for 10 min, and real-time PCR was initiated 

with a hot start (10 min at 95 °C, 1 cycle). Samples were then subjected to 40 cycles at 95 °C for 15 s 

and 60 °C for 1 min. Data were analysed using the StepOne real-time PCR system (Applied 

Biosystems, Foster City, CA, USA). The primers were as follows: CTSD forward primer 5’-GCAAACT 

GCTGGACATCGCTTG-3’, CTSD reverse primer 5’-GCCATAGTGGATGTCAAACGAGG-3’, 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH) forward primer 5’-CATCATCCCTGCCT 

CTACTG-3’, and GAPDH reverse primer 5’-GCCTGCTTCACCACCTTC-3’ (Mission Biotech, Taipei, 

Taiwan). Relative gene expression was obtained after normalisation with endogenous GAPDH and 

determination of the difference in threshold cycle between treated and untreated cells using the 

2−ΔΔCt method. 

4.10.Statistical Analysis  

Results are presented as means ± standard errors (SEs), and statistical comparisons were 

conducted using Student’s t test by GraphPad Prism 5 (GraphPad Software, San Diego, CA, USA). 

Each experiment was performed at least three times. Significance was defined as a p value of <0.05 

or <0.01. 
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5. Conclusions 

Our results indicate that PC has specific anticancer abilities. It suppresses cell growth, migration, 

and invasion by downregulating the activation of the MEK1/2–ERK1/2 pathway and CTSD 

expression in NSCLC cells. To our knowledge, this study is the first to illuminate the effects and 

molecular mechanisms underlying the anticancer chemotherapeutic potential of PC for clinical use 

in combination treatments against NSCLC cells. 
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