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Abstract: A new approach to the synthesis of selected quinolinecarbaldehydes with carbonyl 

groups located at C5 and/or in C7 positions is presented in this paper in conjunction with 

spectroscopic characterization of the products. The classical Reimer-Tiemann, Vilsmeier-Haack and 

Duff aldehyde synthesis methods were compared due to their importance. Computational studies 

were carried out to explain the preferred selectivity of the presented formylation transformations. 

A carbene insertion reaction based on Reimer-Tiemann methodology is presented for making 

7-bromo-8-hydroxyquinoline-5-carbaldehyde. Additionally, Duff and Vilsmeier-Haack reactions 

were used in the double formylation of quinoline derivatives and their analogues 

benzo[h]quinolin-10-ol, 8-hydroxy-2-methylquinoline-5,7-dicarbaldehyde, 8-(dimethylamino) 

quinoline-5,7-dicarbaldehyde and 10-hydroxybenzo[h]quinoline-7,9-dicarbaldehyde. Four Schiff 

base derivatives of 2,6-diisopropylbenzenamine were prepared from selected 

quinoline-5-carbaldehydes and quinoline-7-carbaldehyde by an efficient synthesis protocol. Their 

properties have been characterized by a combination of several techniques: MS, HRMS, GC-MS, 

FTIR, electronic absorption spectroscopy and multinuclear NMR. The electrochemical properties of 

8-hydroxy-quinoline-5-carbaldehyde, 6-(dimethylamino)quinoline-5-carbaldehyde and its 

methylated derivative were investigated, and a strong correlation between the chemical structure 

and obtained reduction and oxidation potentials was found. The presence of a methyl group 

facilitates oxidation. In contrast, the reduction potential of methylated compounds was more 

negative comparing to non-methylated structure. Calculations of frontier molecular orbitals 

supported the finding. The structures of 8-hydroxy-2-methylquinoline-5,7-dicarbaldehyde and 

four Schiff bases were determined by single-crystal X-ray diffraction measurements. 

Keywords: vilsmeier-haack; reimer-tiemann; duff; aldehyde; aldazine; heterocyclic; cyclic 

voltammetry 
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1. Introduction 

Aldehydes are a class of compounds of great interest from the synthetic, theoretical and 

application point of view, which can be transformed into a wide range of structural frameworks 

through application of a variety of reactions. Various synthetic protocols have been developed 

including the classical Reimer-Tiemann, Vilsmeier-Haack and Duff reactions, which are well known 

as versatile synthetic tools for the formylation of electron-rich aromatics. However, literature data 

has often inaccurately reported the position of the newly formed carbonyl group(s). Formylation of 

8-hydroxyquinoline under Reimer-Tiemann condition can go to both the C5 (38%) and C7 (10%) 

positions [1]. On the other hand González-Vera et al. reported the formylation of 

2-methylquinolin-8-ol leading exclusively to 8-hydroxy-2-methylquinoline-5-carbaldehyde in 64% 

yield [2] similarly to Chen et al. who formylated 8-hydroxyquinoline and obtained 

8-hydroxyquinoline-5-carbaldehyde in 19.3% yield [3]. Ding. et al. only obtained 

8-hydroxy-7-quinaldinecarbaldehyde, a product formylated in a different position [4]. In this study 

we propose the transformation of some newly formed aldehydes into sterically hindered crystalline 

Schiff bases. 

2. Results and Discussion 

In the current study, the formylation reactions of selected quinoline derivatives at R, R1 and R2 

positions were the focus. These type compounds have not been fully exploited and may be served as 

interesting building blocks for synthetic purposes. 

2.1. Synthesis and Structural Characterization 

The synthesis of certain quinolinecarbaldehydes 2 were based on closely related 

Reimer-Tiemann (R-T), Vilsmeier-Haack (V-H) and Duff (D) formylation reactions (Scheme 1). 

 

Scheme 1. Formylation of 8-hydroxyquinoline (1c). 

The aim of the current study is to explore selected synthetic routes, and formylated a series of 

derivatives of 8-hydroxyquinoline have been prepared as shown in Schemes 2 and 3. 



Molecules 2020, 25, 2053 3 of 21 

 

 
Compound Method Yield (%) 

2 R R1 R2 HC=O R-T V-H D 

a H C8-OH H C5 10.1 - - 

b H C8-OH C5-Cl C7 7.2 - - 

b H C8-OH C5-Cl C7 - - 70.0 

c H C8-OH C5-CH3 C7 8.0   

c H C8-OH C5-CH3 C7 - - 75.0 

d CH3 C8-OH C7-Br C5 <1 - - 

e CH3 C6-NMe2 H C5 - 38.6 - 

f H C6-NMe2 H C5 - 73.8 - 

g H C6-OH H C5 - - 28.1 

h CH3 C8-OH H C5, C7 - - 14.9 

i H C8-NMe2 H C5 - <1 - 

j H C8-NMe2 H C5, C7 - <1 - 

Scheme 2. Synthesis of quinolinecarbaldehydes 2. 

 

Scheme 3. Duff type formylation of benzo[h]quinolin-10-ol (1j). 

A lone pair of electrons on the hydroxyl oxygen or dimethylamino nitrogen at R1 position on 

phenyl ring are conjugated with the π system of quinolone, which increases the electron density at 

both the C5 and C7 positions on the phenyl ring in all studied quinolines [5,6]. Both positions are 

suitable for substitution reaction via a SEAr mechanism [6]. The formulation mechanisms of 

Reimer-Tiemann, Vilsmeier-Haack and Duff reactions are similar to each other and to other 

electrophilic aromatic substitution reactions. However the initial electrophile reactions are different 

among these methods. In the case of the Reimer-Tiemann reaction, it is in situ Fisher type 

electrophilic carbene generated (in most cases dichlorocarbene), for Vilsmeier-Haack it is Vilsmeier’s 

reagent, and for Duff reaction it has been proposed an initial aminoalkylation followed by 

dehydrogenation (generated from HMTA) [7] (Scheme 1). It is important to notice that all these 

electophiles possess different electrophilicity. The attack by an electrophile generates a Wheland 

intermediate cation (or arenium ion) followed by the loss of a proton to restore the aromaticity 

(Scheme 1). Analogically to our recent results [6] the substitution at C5 (R2) position would have a 

great stabilizing effect on the adjacent carbon than at C7 (R1) position in quinoline constitution 

(Scheme 2). Several authors announced the similar structure of 8-hydroxyquinoline with newly 

formed group at C5 position on phenol ring in the same type of reactions. 

The Vilsmeier’s reagent and electrophilic dichlorocarbene possess electron-withdrawing (EW) 

ability. One consequence of the existence of EW groups in electrophiles is a decreased electron 

density in the newly generated Wheland cations (Scheme 1), which deactivate the 
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N,N-dimethylaniline (or phenol) ring for the next substitution. A dimethylamino moiety, like a 

hydroxyl group in the C8 position, increases the electron density at both the C5 and C7 sites, which 

makes double formylation leading to 8-(dimethylamino)quinoline-5,7-dicarbaldehyde (2j, yield < 

1%) possible in the case of the Vilsmeier-Haack transformation (Figure 1). In contrast the Duff cyclic 

electrophile, after the generation of a Wheland cation (Scheme 1), does not deactivate the phenol ring 

for the next substitution, which allows the double formylation to generate 

8-hydroxy-2-methylquinoline-5,7-dicarbaldehyde (2h) and 

10-hydroxybenzo[h]quinoline-7,9-dicarbaldehyde (2j) in good yields. Zhang et al. have claimed an 

82% isolated yield of 8-hydroxyquinoline-5,7-dicarbaldehyde in a similar procedure [8]. The absence 

of a methyl group in the C2 (R) position could have a positive influence to increase the yield of 

products. R substituents can undergo further side reactions. Additionally, in both reaction mixtures 

we identified monoformylated products. It is, at first sight, somewhat surprising that the 

formylation of 6-hydroxyquinoline (1h) using the Duff method led exclusively to a monoaldehyde 

with the newly formed carbonyl group in the C5 position (Scheme 2) [9]. The differences in reactivity 

between 8-hydroxyquinoline (1c), 6-hydroxyquinoline (1h), N,N-dimethylquinolin-6-amine (1e) and 

N,N-dimethylquinolin-8-amine (1i) could be explained by the differences in electrostatic potentials 

of the atoms participating in the formylation transformation (Figure 1). The formal charge of atoms 

in the C5-H and C7-H bonds were calculated based on electrostatic potentials, which are given in 

units of electrons and are shown in Figure 1. A positive charge indicates a deficiency of electrons on 

an atom and a negative charge, an excess of electrons. The electrostatic potential for a hydrogen 

atom is marked in gray (positive value) and for carbon in black (negative value). The differences in 

their potential are marked in blue. The higher difference in atomic charges between C5 and C7 

positions show the preference of selected monoformylations products with novel carbonyl group 

only in C5 position. The difference of electrostatic potential of C5-H bond 0.556 for 1e suggests the 

easier cleavage of H atom from C5, compared to C7-H with electrostatic potential difference 0.318 

(for 1h, similarly). The smaller differences in the atomic charges difference of atoms in bonds C5-H 

and C7-H suggest the possibility of double formylation and the presence of both regioisomers with 

new carbonyl group in C5 and C7 positions (Figure 1). 

 

Figure 1. The electrostatic potentials for the selected quinolines. 

The two transition states presented in Scheme 1 would be similar in terms of structure between 

intermediate A and B. If we accept Scheme 1 as a model for the formylation, a substitution at the C5 
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position would have a greater stabilizing effect on the adjacent carbon than that at the C7 position in 

the quinoline scaffold. This discrepancy between the electron density and preferred position of 

substitution was explained by Olah, as the weaker electrophiles (or with less nucleophilicity of 

aromatics) showed higher substrate selectivity. The transition states are of a “late” nature 

resembling the intermediates and the ortho/para ratio decreases, with para-substitution becoming 

predominant [10]. Formylation of 2-methylquinolin-8-ol (1b) and 8-hydroxyquinoline (1c) in all the 

presented methodologies led to complicated reaction mixtures. However, it was noticed that 

dialdehydes 2h and 2k were easy to isolate because of their low solubility in most solvents. In this 

case isolation relies on filtration, followed by washing with chloroform and methanol. In the reaction 

mixtures of the Reimer-Tiemann and Vilsmeier-Haack transformations the presence of two possible 

regioisomers with newly formed carbonyl groups at the C5 and C7 positions was detected by 
1H-NMR and GC-MS techniques for the first time (Schemes 1 and 2, Figure S1e in the Supplementary 

Data). For the Reimer-Tiemann reaction both regioisomers were obtained in a 35:28 ratio (2a:2a’) 

(Figure S1e). These regioisomers with trC5-C=O = 6.024 min. and trC7-C=O = 6.360 min. possess similar 

mass spectral patterns, and the same m/z (Figure S1c and S1d, Supplementary Data) and display 

characteristic m/z = 173 M+ molecular ions, and m/z = 144 and 116 fragment ions. All the presented 

quinolinecarbaldehydes 2 show a preferential fragmentation with the initial loss of a carbonyl 

group, followed by the loss of C=O of the phenolic ring and further decomposition (Supplementary 

Data). 

The 1H-NMR spectra of molecules 2 showed distinctive H-1 signals from the HC=O proton of 

carbonyl group located at the C5 and C7 positions (or C7 and C9 in the case of heterocycle 2k) with 

chemical shifts of ca. 10.1 and 10.5 ppm, respectively. The analysis of the trends in 1H-NMR chemical 

shifts revealed that the presence of intramolecular hydrogen bonds between neighboring carbonyl 

group located at C7 position and hydroxyl or dimethylamino group at C8 position increased the 

deshielding effect, resulting in the low-field signals. The chemical shifts in DMSO solution were 

moved to downfield (larger δ; 10.5 ppm), while the higher field signal (10.1 ppm) is for a carbonyl 

group located at C5 position, where intramolecular hydrogen bonds were absent. In contrast, the 

proton of HC=N group for molecules 3 (Scheme 5) are located at C5 (8.51 ppm) and C7 (8.38 ppm). 

The 13C-NMR spectra showed an opposite effect to the 1H-NMR ones. The carbon atoms of the 

carbonyl groups located at the C5 and C7 positions showed distinctive signals with 13C chemical 

shifts of ca. 192 and 188 ppm, respectively. The chemical shifts were moved to downfield (larger δ) 

for a non-protonated carbonyl group at the C5 position with resonance signals at ca. 192 ppm. The 

deprotonation of the carbonyl group makes the carbon atom more positive, which moves the 

chemical shift downfield (larger δ). In the constitution of molecules 3 (Scheme 5), the carbon atoms 

of the HC=N group located at C5 (163 ppm) and C7 (165 ppm) positions showed opposite effects, 

which can be explained in the frame of electron density. 

The IR spectra of molecules 2 showed distinctive carbonyl signals for the groups located at C5 

and C7 [or C7 and C9 in the case of heterocycle 2k] positions in the range 1663–1686 νC=O. The 

analysis of the trends suggests that carbonyl group located at C5 possess rather smaller values than 

that at C7. In the case of 2j, for the first time we were able to detect two signals from both carbonyl 

groups located at C5 and C7 (Figure 2). 

Comparison of the double formylated products 2h and 2j revealed that the presence of 

intramolecular and intermolecular hydrogen bonds between the carbonyls and hydroxyl groups has 

the impact on overlapping signals (Figure 2). This could explain why compound 2j possesses a 

dimethylamino group at the C8 position instead of a hydroxyl group and has two separate signals at 

1678 νC=O and 1661 νC=O. 
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Figure 2. IR spectra of 2j (left) and 2i (right). 

Comparing the yields of heterocycles 2 presented in Scheme 2, the Duff methodology appeared 

superior to the Reimer-Tiemann and Vilsmeier-Haack reactions for formylation of phenol 

derivatives, and gave a lower yield for N,N-dimethylaniline derivatives. More attention has been 

paid to the Reimer-Tiemann reaction and the generation of Fisher type electrophilic carbenes to 

show its potentially rich chemistry. One of the characteristic reactions of the carbene moiety is 

insertion reactions. DeAngelis et al. reacted an initially generated dichlorocarbene with indoles to 

form a ring expansion or a dichloromethyl-substituted product [11]. We applied the 

Reimer-Tiemann methodology the first time to show carbene insertion into a C-Br bond to produce 

7-bromo-8-hydroxyquinoline-5-carbaldehyde (2d). Under standard Reimer-Tiemann conditions, 

molecule 1a and other reagents were irradiated by a 75 W lamp to initiate the reactions in the 

presence of carbenes. Although relatively higher yields was observed during irradiation, 

unfortunately, the yield of this preliminary reaction is not satisfactory yet (Scheme 1). 

The Reimer-Tiemann and Vilsmeier-Haack reactions occur at a basic environment in contrast to 

the Duff protocol which occurs in an acidic medium. A negative impact on the synthesis of 

quinolinecarbaldehydes 2 was noticed during final stage when a basic environment was applied in 

hydrolysis reactions. This is not surprising, because aromatic aldehydes can disproportionate in 

strongly basic solutions according to well-known Cannizzaro reaction mechanism, especially during 

long time exposure. To avoid this possible reactivity in a basic environment the reaction time was 

reduced to three hours for the Reimer-Tiemann protocol. The next limitation or potentially a further 

development for both Reimer-Tiemann and Vilsmeier-Haack reactivity could be linked to the 

presence of a methyl group at the R position in the quinoline skeleton. The newly formed aldehydes 

can be reacted under base-catalyzed condensation reactions, such as the Perkin transformation, 

leading to styryl type compounds. Like Nandhakumar et al. we isolated the product from the 

reaction between the electrophilic Vilsmeier’s reagent generated in situ and the methyl group 

located at the R position in the quinoline ring [12]. After hydrolysis a moderate yield of 

(Z)-8-hydroxy-2-(2-hydroxyvinyl)quinoline-5-carbaldehyde (2l) was isolated (Scheme 4). This 

product adopts a Z conformation due to the presence of a pseudo-ring which is stabilized by 

intramolecular hydrogen bonding (Scheme 4). The small JH,H coupling constants proved the presence 

of Z conformer over E, due to the Karplus equation. The molecule 2l is similarly to other 
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quinolinecarbaldehydes 2 which had preferential fragmentation with the initial loss of carbonyl 

group (Figure S6d). 

 

Scheme 4. Synthesis of (Z)-8-hydroxy-2-(2-hydroxyvinyl)quinoline-5-carbaldehyde (2l). 

Intramolecular hydrogen-bonding interactions influencing the conformation of molecule 2l. 

As presented above, the reactivity between the electrophilic Vilsmeier’s reagent and the methyl 

group located at the C2 position in the quinoline moiety could be explained by the electron density 

at the C2 (−0.714 1b) position. It is important to pay attention to the hazards of the Vilsmeier-Haack 

reaction due to its thermal instability of the Vilsmeier intermediate, especially for multigram scale 

reactions [13]. A further limitation of the Vilsmeier-Haack reaction was described by Morimura et al. 

Derivatives of 8-hydroxyquinoline like other phenol-type reagents possess hydroxyl nucleophilic 

substituents that can react with POCl3 and the Vilsmeier’s reagent leading to aryl formates [14]. 

The Duff reaction occurring in acidic environments also has some limitations. The low yield 

obtained in the formylation of amine derivatives is a result of the acidic environment used during 

the procedure. The nitrogen atoms of molecule 1e are protonated in an acidic environment and 

consequently form a dimethylaminium group in situ at the C6 position which does not activate the 

benzene ring to facilitate aromatic electrophilic substitution, and consequently does not undergo the 

Duff reaction. In this case the starting material was recovered (Scheme 1). 

Some selected quinolinecarbaldehydes 2 were reacted with 2,6-diisopropylbenzenamine as an 

example of a primary amine giving four crystalline Schiff bases with yields up to 80% (Scheme 5). 

The addition of a 2,6-diisopropylbenzenamine nucleophile to heterocycles 2a, 2c, 2e or 2f is a 

nucleophilic addition–elimination reaction. The final products are an imine-Schiff base and water. 

As a reversible reaction, in acidic aqueous solutions, the products are hydrolyzed back to the 

aldehydes and amine. The equilibrium favors the nitrogen-protonated tetrahedral intermediate 

because nitrogen is more basic than oxygen. The equilibrium can be forced toward the imine species 

by removing water as it is formed. MgSO4 was used as dehydrating agent. The choice of 

2,6-diisopropylbenzenamine is because it easily forms high quality crystals [15]. 
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3 Yield 

% 
 R R’ HC=N 

a H C8-OH C5 71.1 

b CH3 C6-NMe2 C5 74.3 

c H C6-NMe2 C5 80.3 

d H C8-OH C7 78.0 

Scheme 5. Synthesis of Schiff bases 3. R = H, CH3, R’ = Me, C8-OH, C6-NMe2. 

2.2. Crystal Structure Determination and Refinement 

Data for the molecules 2h, 3a, 3b and 3d were collected on a SuperNova diffractometer using an 

Atlas CCD detector, while the measurement of compound 3c was performed on an Xcalibur 

diffractometer with a Sapphire 3 CCD detector. Graphite-monochromated Mo-Kα radiation was 

used for all measurements. The crystals of compounds 2h, 3a, 3b and 3d were cooled down by a cold 

dry nitrogen gas stream (Oxford Cryosystems equipment), while the crystal of compound 3c was 

measured at room temperature. The temperature stability was ±1 K. The structures were solved by 

direct methods using SHELXS-2013 program and refined by full-matrix least-squares on F2 (all data) 

using the SHELXL-2014/7 program [16]. All non-hydrogen atoms were refined anisotropically. All H 

atoms bound to C atoms were refined using a riding model with C–H distances of 0.95 Å (aromatic), 

0.98 Å (methyl) or 1Å (methine) and Uiso(H) values of 1.2 Ueq(C) or 1.5 Ueq(C). Hydroxyl H atoms 

were refined with distances of 0.84 Å and Uiso(H) values of 1.5 Ueq(O). Details concerning crystal 

data and refinement are gathered in Tables 1 and 2. 

Table 1. Crystal data and structure refinement details of compounds 2h, 3a, 3b, 3c and 3d. 

 2h 3a 3b 3c 3d 

Empirical formula C12H9NO3,CHCl3 3(C22H24N2O)·CH3CN C25H31N3 C24H29N3 C23H26N2O 

Temperature (K) 100(1) 100(1) 100(1) 293(1) 80(1) 

Wavelength (Å)  0.71073 (Mo Kα) 

Crystal system Orthorhombic Trigonal Orthorhombic Monoclinic Monoclinic 

Space group Pnma P31c Pbca P21/c P21/c 

Unit cell dimensions 

a (Å) 

b (Å) 

c (Å) 

α (o) 

β (o) 

γ (o) 

 

26.1040(14) 

6.4668(4) 

8.2056(4) 

90 

90 

90 

 

29.4970(4) 

29.4970(4) 

12.0258(3) 

90 

90  

120 

 

18.8459(8) 

11.0427(3) 

20.8067(6) 

90 

90 

90 

 

9.0651(3) 

11.2850(3) 

20.8767(7) 

90 

93.873(3) 

90 

 

24.0519(9) 

16.2882(7) 

9.7079(3) 

90 

99.189(3) 

90 

Volume (Å3) 1385.18(13) 9061.5(3) 4330.1(3) 2130.80(12) 3754.4(2) 

Z 4 6 8 4 8 

Calculated density 

(Mg/m3) 
1.604 1.142 1.146 1.121 1.226 

Absorption 

coefficient (mm–1) 
0.666 0.070 0.068 0.066 0.075 

F (000) 680 3336 1616 776 1488 

Crystal dimensions 

(mm) 
0.12 × 0.10 × 0.02 0.18 × 0.13 × 0.03 0.25 × 0.02 × 0.02 0.56 × 0.22 × 0.09 0.30 × 0.05 × 0.02 

 range for data 2.932 to 26.371 2.875 to 24.710 3.452 to 26.370 3.401 to 26.367 3.033 to 26.371 
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collection (o) 

Index ranges 

−32 ≤ h ≤ 32; 

−6 ≤ k ≤ 8; 

−10 ≤ l ≤ 10 

−34 ≤ h ≤ 34; 

−34 ≤ k ≤ 31; 

−14 ≤ l ≤ 14 

−21 ≤ h ≤ 23; 

−13 ≤ k ≤ 9; 

−26 ≤ l ≤ 26 

−11 ≤ h ≤ 11; 

−14 ≤ k ≤ 9;  

−26 ≤ l ≤ 26 

−30 ≤ h ≤ 30; 

−20 ≤k ≤ 20; 

−9 ≤ l ≤ 12 

Reflections collected 13863 69751 25986 25693 30149 

Independent 

reflections 
1543 [R(int) = 0.0162] 10284 [R(int) = 0.0713] 4420 [R(int) = 0.0680] 

4343 [R(int) = 

0.0509] 

7669 [R(int) = 

0.0599] 

Data/restraints/para

meters 
1543/0/120 10284/1/721 4420/0/260 4343/0/251 7669/0/493 

Goodness-of-fit on F2 1.223 1.070 1.072 1.026 1.032 

Final R indices (I > 

2σ(I)) 

R1 = 0.0547; 

wR2 = 0.1379 

R1 = 0.0581; 

wR2 = 0.1287 

R1 = 0.0488; 

wR2 = 0.1082 

R1 = 0.0494; 

wR2 = 0.1180 

R1 = 0.0521; 

wR2 = 0.1228 

R indices (all data) 
R1 = 0.0556; 

wR2 = 0.1385 

R1 = 0.0811; 

wR2 = 0.1436 

R1 = 0.0776; 

wR2 = 0.1262 

R1 = 0.0763; 

wR2 = 0.1329 

R1 = 0.0884; 

wR2 = 0.1499 

Largest diff. Peak 

and hole 
0.696 and −0.377 0.159 and −0.257 0.203 and −0.191 0.158 and −0.154 0.325 and −0.297 

CCDC-Number 1890715 1501807 1501808 1829344 1829345 

Table 2. Selected bond lengths and angles of compounds 2h, 3a, 3b, 3c and 3d (Å and o). 

 Bond lengths (Å) 

 2h 3a 3b 3c 3d 

C(10)–N(2) - 1.269(6) 1.2741 1.265(2) 1.2816 

C(33)–N(4) - 1.421(6) 1.417(2) 1.426(2) 1.4263 

C(5)–C(10) - 1.459(7) 1.465(2) 1.4631 1.4488 

C(5)–C(11) 1.448 - - - - 

C(7)–C(12) 1.452 - - - - 

C(8)–O(1) 1.243 1.350(5) - - 1.341 

C(6)–N(3) - - 1.415(2) 1.403(2) - 

 Angles (o) 

C(10)–N(2)–C(11)  116.8(4) 120.5(1) 117.5(1) 121.18 

C(5)–C(10)–N(2)  127.2(5) 124.0(1) 126.1(1) 121.52 

2.3. X-Ray Studies 

8-Hydroxy-2-methylquinoline-5,7-dicarbaldehyde (2h) crystallizes with chloroform in the 

Pnma space group (Figure 3). The molecular ring systems are both essentially planar. The packing of 

the compound 2h in the structure is stabilised by parallelly-displaced π-π stacking interactions, 

forming a π-stacking interaction as illustrated in Figure 4. The centroid–centroid distances is 3.544 Å 

and the shift distances is 1.451 Å. Compound co-crystallised with chloroform is associated through 

strong C8-O1H···Cl2C13 hydrogen bonds. In the crystal structure of compound 2h several intra- and 

intermolecular hydrogen bonds are observed. To the best of our knowledge, this is first time that the 

X-ray structure of quinolinecarbaldehyde has been reported. 
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Figure 3. ORTEPs drawing of compound 2h with 50% probability displacement ellipsoids. 

 

Figure 4. The π-stacking interactions in cell packing of compound 2h. 

The molecules 3a, 3b, 3c and 3d were crystallized in the trigonal, orthorhombic, monoclinic and 

monoclinic space groups, respectively, which are displayed as ORTEP representations in Figure 5. 

Details concerning crystal data and refinement are gathered in Tables 1 and 2. 
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3a 3b 

 
 

3c 3d 

Figure 5. ORTEPs drawing of Schiff bases (3a), (3b), (3c) and (3d) with 50% probability displacement 

ellipsoids. 

The phenyl and quinoline rings in the compounds adopt an E configuration along the imino 

functional group. In the Schiff base compounds both the planes of the quinoline and the phenyl 

moieties are aligned almost perpendicularly at angles of 89.64° (3a), 87.51° (3b), 78.65° (3c) and 79.98° 

(3d), respectively. The –C=N– bond lengths of 1.27 Å are typical E Schiff base compounds 3a, 3b and 

3c, the –C=N– bond length of 1.28 Å for compound 3d is longer due to participation in pseudo-ring. 

The substituents located on the phenol ring in molecule 3d and on the imino group show their ability 

to form a pseudo-ring, which is stabilized by intramolecular hydrogen bond indicated on Scheme 5. 

The consequence of the formation of pseudo-ring in compound 3d constitution is the presence of 

strongest hydrogen bond (O1–H1−N2) among all presented Schiff bases 3. The structures of the 

presented compounds are stabilized by hydrogen bonds. 
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2.4. Electrochemical Measurements 

Electrochemical measurements were performed on a glassy carbon electrode in acetonitrile. 

Compound 2a yields three reduction waves in a range of potentials from 0.1 V to −2.2 V (Figure 6A). 

The first reduction wave at −1.300 V is followed by reduction wave 2 at a peak potential −1.400 V. 

The charge consumed during the exhaustive electrolysis behind the second reduction wave 

corresponded to one electron. 

 

Figure 6. Cyclic voltammograms of 0.2 mM 2a (A), 2e (B) and 2f (C) in acetonitrile and 0.1 M TBAPF6 

on glassy carbon electrode. 

The third one-electron reduction wave occurred at −2.133 V, the potentiostatic electrolysis at 

−2.1 V resulted in the consumed charge corresponding to two electrons. Such a discrepancy in 

number of electrons suggests that the first two reduction waves correspond to different dissociation 

forms of compound 2a, which are present in solution under experimental conditions; the consumed 

charge corresponds to the sum of their concentrations. The spatial distribution of LUMO orbitals 

suggests that carboxyl group accepts the first electron (Figure 7C). The reduction of aldehyde is 

usually two-electron and two-proton process according to literature [17] We suggest that hydroxyl 

group present in the chemical structure of compound 2a (Figure 7A) can serve as a proton donor, 

which participate in reduction process. Such effects were found in literature in the case of reduction 

of hydroxylated benzonitriles, where half molecules present in solution served as proton donors and 

the charge after the exhaustive electrolysis corresponded to the reduction of half molecules present 

in solution [18,19]. The study of this effect is not the aim of this manuscript and will be investigated 

in further study. 
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Figure 7. Chemical structures of compounds 2a, 2e and 2f (A), the spatial distribution of the HOMO 

orbitals (B) and LUMO orbitals (C). 

Cyclic voltammogram obtained for compound 2e yields four reduction waves up to −2.2 V 

(Figure 6B). All reduction waves increase linearly with concentration. The first reduction wave at 

−1.233 V is irreversible, the second one-electron wave at −1.510 V is quasi-reversible. The 

peak-to-peak separation of the wave 2 is |Epc − Epa| = 68 mV. This behavior is similar to that of 

compound 2f, which yields five reduction waves in the same range of potentials. The first 

irreversible reduction wave of 2f occurs at −1.087 V and the second reversible one-electron reduction 

wave with peak-to-peak separation of |Epc − Epa| = 59 mV occurs at −1.346 V. Most likely, a radical 

anion is formed at the first reduction wave, it is delocalized over the whole π-conjugated molecule 

as shown by LUMO spatial distribution (Figure 7C) and a fast protonation follows. The formed 

radical can undergo a dimerization process or is further reduced to form corresponding alcohol. The 

latter can be preferential under used experimental conditions, because the exhaustive electrolysis at 

the potential behind the second reduction wave resulted in charge consuming corresponding to two 

electron process. We tend to investigate the reduction mechanism in details in further study. 

Importantly, the peak potential of the first reduction peak of compound 2e occurs at more negative 

potential than Ep1 of compound 2f. The difference is caused by induction effect of methyl group. 

This agrees with calculated energies of LUMO orbitals for both compounds, which increase in order 

ELUMO(2e) = −1.89 eV < ELUMO(2f) = −1.97 eV. 

Oxidation properties were studied by means of cyclic voltammetry (Figure S1, Supplementary 

material). Cyclic voltammetry of 2a yields two oxidation waves at potentials 1.349 V and 1.637 V. 

The charge consumed during the exhaustive electrolysis of compound 2a at the potential behind the 

first oxidation wave corresponded to two electrons. According to Figure 7B, the electroactive site for 

oxidation is most likely hydroxyl group in para position to the aldehyde. Compound 2e yields better 

defined oxidation waves at E1 = 1.276 V and E2 = 1.662 V and oxidation waves at E1 = 1.385 V and E2 = 
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1.765 V were registered for compound 2f. According to the spatial distribution of HOMO orbitals 

(Figure 7B) the amine can be oxidized. According to the literature, oxidation can yield a dealkylated 

product [20], and tail to tail coupling is also known in the literature for dialkylanilines [17]. The 

energies of HOMO orbitals calculated for the molecule in a vacuum suggest that compound 2e is 

more easily oxidized than compound 2f; EHOMO(2e) = −5.67 eV > EHOMO(2f) = −5.77 eV, which is in 

agreement with the experimental results. 

3. Materials and Methods 

3.1. Materials 

All experiments were carried out in an atmosphere of dry argon and flasks were flame dried. 

Solvents were dried by usual methods (diethyl ether and THF over benzophenone ketyl, CHCl3 and 

CH2Cl2 over P4O10, hexane over sodium-potassium alloy and DMF over molecular sieves) and 

distilled. Chromatography was carried out on Silica Gel 60 (0.15–0.3 mm, Macherey-Nagel GmbH & 

Co. KG, Düren, Germany). 2,2,2-Trifluoroacetic acid (Caution! TFA is a known nigrostriatal 

neurotoxin, and therefore compounds of this class should be handled using disposable gloves in a 

properly ventilated hood), 5,7-dibromo-2-methylquinolin-8-ol (1a), hexamethylenetetramine 

(HMTA), 2,6-diisopropylbenzenamine, 2-methylquinolin-8-ol (1b), 8-hydroxyquinoline (1c) and 

benzo[h]quinolin-10-ol (1j) were purchased from Sigma–Aldrich (Poznan, Poland), and were used 

without further purification. 5-Chloroquinolin-8-ol (1d), N,N-dimethylquinolin-6-amine (1e), 

5-methylquinolin-8-ol (1f), N,N,2-trimethylquinolin-6-amine (1g), quinolin-6-ol (1h) and 

N,N-dimethylquinolin-8-amine (1i) were synthesized according to our procedures described in the 

literature [21–24]. 

3.2. Instrumentation 

NMR spectra were obtained with Avance 400, 500 and 600 spectrometers (Bruker, Billerica, MA 

USA) operating at 600.2, 500.2 or 400.1 MHz (1H) and 150, 125.78 or 100.5 MHz (13C) at 21 °C. 

Chemical shifts referenced to ext. TMS (1H, 13C) or using the residual CHCl3 signal (δH 7.26 ppm) and 

CDCl3 (δC 77.1 ppm) as internal references for 1H and 13C-NMR, respectively. Coupling constants are 

given in Hz. For GC-MS a 7890A gas chromatograph (Agilent Technologies, Wilmington, DE, USA) 

equipped with a MS (70 eV) 5975 EI/CI MSD, and a 7693 autosampler with an Agilent HP-5MS 

capillary column (30 m × 250 μm × 0.25 μm)—press. 127.5 kPa, total flow 19 mL/min, col. flow 2 

mL/min, split—7:1, temp. prog. (70 °C—hold 0.5 min, 70–290 °C/25 °C/min., 290 °C—hold 6 min) 

was used. The LCMS-IT-TOF analysis was performed on an Agilent 1200 Series binary LC system 

coupled to a micrOTOF-Q system mass spectrometer (Bruker Daltonics, Bremen, Germany). 

High-resolution mass spectrometry (HRMS) measurements were performed using a Synapt G2-Si 

mass spectrometer (Waters, New Castle, DE, USA) equipped with an ESI source and 

quadrupole-time-of-flight mass analyser. To ensure accurate mass measurements, data were 

collected in centroid mode and mass was corrected during acquisition using leucine enkephalin 

solution as an external reference (Lock-SprayTM). The results of the measurements were processed 

using the MassLynx 4.1 software (Waters, Milford, CT, USA) incorporated within the instrument. A 

iS50 FTIR spectrometer (Nicolet, Waltham, MA, USA) was used for recording spectra in the IR range 

4000–400 cm−1. FTIR spectra were recorded on a Perkin Elmer (Schwerzenbach, Switzerland) 

spectrophotometer in the spectral range 4000–450 cm−1 with the samples in the form of KBr pellets. 

Elementary analysis was performed using Vario EL III apparatus (Elementar, Langenselbold, 

Germany). Melting points were determined on MPA100 OptiMelt melting point apparatus (Stanford 

Research Systems, Sunnyvale, CA USA) and are uncorrected. 

3.3. Electrochemical Measurements 

Electrochemical measurements were carried out in 0.1 M TBAPF6 in acetonitrile. Cyclic 

voltammetry as well as exhaustive electrolysis were performed using a PGSTAT 12 AUTOLAB 

potentiostat (Metrohm Autolab, Utrecht, The Netherlands). A glassy carbon electrode (diameter 1 
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mm), a platinum net and an Ag|AgCl|1M LiCl electrode were used as the working, the auxiliary 

and reference electrode, respectively. Oxygen was removed from the solution by passing a stream of 

argon (99.998%, Messer, Graz, Austria). 

3.4. Theoretical Calculations 

Calculations of molecular orbital energies were performed using the density functional theory 

(DFT) calculations employing the B3LYP functional and 6-31G* basis set with Spartan ’14, v.1.1.8 

software (Wavefunction, Inc. Irvine, CA, USA). 

3.5. General Procedures for Synthesis of Selected Quinolinecarbaldehydes Based on the Reimer-Tiemann 

Protocol 

Potassium hydroxide (14.0 g; 250.0 mmol) in water (15 mL) was added into the solution of 1c, 

1d or 1f (34.5 mmol) in ethanol (20 mL) and the resulting reaction mixture was brought to a gentle 

reflux. Chloroform (8.3 mL; 103.5 mmol) was then added dropwise to the reaction mixture over the 

course of 1 h. The resulting red mixture was refluxed for another 3 h, and then was cool down to 

room temperature. The obtained suspension was acidified by an aqueous solution of hydrochloric 

acid (1%) to pH ca. 7, and then volatiles were evaporated under reduced pressure. The resulting 

solid was dried over P4O10 and extracted at Soxhlet apparatus (chloroform). From the resulting 

solution the volatiles were evaporated under reduced pressure, and finally the crude product was 

purified on a silica gel chromatography with CH3Cl/MeOH (3:1) as eluent, and purified by 

crystallization from CH3Cl/hexane to yield precipitates as follows: 

8-Hydroxyquinoline-5-carbaldehyde (2a) beige 0.6 g (3.5 mmol, 10.1%) [25]; m.p. = 171.3–171.8 °C; 
1H-NMR (DMSO–d6; 400.2 MHz) δ = 7.26 (d, 3JH,H = 8.0 Hz, 1H, aromatic), 7.78 (dd, 3JH,H = 8.6 Hz, 4JH,H 

= 4.1 Hz, 1H, aromatic), 8.17 (d, 3JH,H = 8.1 Hz, 1H, aromatic), 8.97 (dd, 3JH,H = 4.1 Hz, 4JH,H = 1.6 Hz, 1H, 

aromatic), 9.56 (dd, 3JH,H = 8.6 Hz, 4JH,H = 1.6 Hz, 1H, aromatic), 10.14 (s, 1H, HC=O); 13C{1H}-NMR 

(DMSO–d6; 100.6 MHz) δ = 110.8, 122.4, 124.6, 126.8, 133.0, 138.0, 140.2, 149.0, 159.6, 192.2; GC-MS: tr = 

6.024 min, (EI) m/z (rel. int.) M+ = 173 (100%); (M − HCO)+ = 144 (17%); UV-Vis (methanol; λ [nm] 

(logε)): 395 (3.04), 322 (3.89), 263 (3.96), 239 (4.40), 210 (4.13); IR (KBr): 3177 νOH; 2845 νCH; 1663 νC=O; 

1474 νC-H. 

8-Hydroxyquinoline-7-carbaldehyde (2a’) [4] 1H-NMR (DMSO–d6; 400.2 MHz) δ = 7.24 (d, 3JH,H = 7.9 Hz, 

1H, aromatic), 7.57 (dd, 3JH,H = 8.1 Hz, 4JH,H = 4.3 Hz, 1H, aromatic), 7.99 (d, 3JH,H = 8.0 Hz, 1H, 

aromatic), 8.78 (dd, 3JH,H = 4.4 Hz, 4JH,H = 1.5 Hz, 1H, aromatic), 9.07 (dd, 3JH,H = 8.0 Hz, 4JH,H = 1.6 Hz, 

1H, aromatic), 10.41 (s, 1H, HC=O); GC-MS: tr = 6.360 min, (EI) m/z (rel. int.) M+ = 173 (12%); (M − CO 

+ H)+ = 146 (100%). 

5-Chloro-8-hydroxyquinoline-7-carbaldehyde (2b) yellow 0.5 g (2.5 mmol, 7.2%) [26]; m.p. = 170.0–170.6 

°C; 1H-NMR (CDCl3; 500.18 MHz) δ = 7.71 (dd, 3JH,H = 8.5 Hz, 4JH,H = 4.2 Hz, 1H, aromatic), 7.86 (s, 1H, 

aromatic), 8.56 (dd, 3JH,H = 8.5 Hz, 4JH,H = 1.5 Hz, 1H, aromatic), 8.97 (dd, 3JH,H = 4.2 Hz, 4JH,H = 1.5 Hz, 

1H, aromatic), 10.39 (s, 1H, HC=O); 1H-NMR (DMSO–d6; 500.18 MHz) δ = 7.74 (s, 1H, aromatic), 7.88 

(dd, 3JH,H = 8.5 Hz, 4JH,H = 4.2 Hz, 1H, aromatic), 8.51 (dd, 3JH,H = 8.5 Hz, 4JH,H = 1.4 Hz, 1H, aromatic), 

9.05 (dd, 3JH,H = 4.2 Hz, 4JH,H = 1.4 Hz, 1H, aromatic), 10.49 (s, 1H, HC=O); 13C{1H}-NMR (DMSO–d6; 

125.78 MHz) δ = 118.7, 119.8, 122.7, 125.7, 129.3, 133.1, 140.2, 149.9, 158.4, 188.0; 13C{1H}-NMR (CDCl3; 

125.78 MHz) δ = 117.8, 121.8, 124.7, 125.4, 130.2, 133.7, 139.9, 149.9, 157.6, 190.6; GC-MS: tr = 6.917 

min.; (EI) m/z (rel. int.) M+ = 207 (15%); (M − CO)+ = 179 (100%); UV-Vis (metanol; λ [nm] (logε)): 429 

(2.86), 350 (3.27),286 (3.65), 267 (4.03), 248 (3.83), 207 (4.09); IR (KBr): 3344 νOH; 2859 νCH; 1667 νC=O; 

1425 νC-H. 

5-Methyl-8-hydroxyquinoline-7-carbaldehyde (2c) greenish 0.5 g; (2.8 mmol, 8.0%) [27]; m.p. = 172.7–

173.5 °C; 1H-NMR (CDCl3; 400.2 MHz) δ = 2.56 (s, 3H, CH3), 7.53 (s, 1H, aromatic), 7.58 (dd, 3JH,H = 8.2 

Hz, 4JH,H = 3.5 Hz, 1H, aromatic), 8.26 (d, 3JH,H = 8.3 Hz, 1H, aromatic), 8.90 (d, 3JH,H = 2.7 Hz, 1H, 

aromatic), 10.36 (s, 1H, HC=O); 13C{1H}-NMR (CDCl3; 100.6 MHz) δ = 17.9, 117.2, 124.3, 124.7, 124.9, 

131.8, 133.0, 139.5, 148.9, 157.4, 192.3; GC-MS: tr = 7.186 min.; (EI) m/z (rel. int.) M+ = 187 (19%); (M − 
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CO)+ = 159 (100%); UV-Vis (metanol; λ [nm] (logε)): 452 (2.88), 426 (3.04), 358 (3.51), 291 (3.88), 270 

(4.37), 246 (4.05), 207 (4.35); IR (KBr): 3063 νOH; 2852 νCH; 1686 νC=O; 1426 νC-H. 

3.6. Synthesis of 7-Bromo-8-hydroxy-2-methylquinoline-5-carbaldehyde through a Carbene Insertion Reaction 

Potassium hydroxide (40.0 g; 714.3 mmol) in water (15 mL) was added into the solution of 1a 

(5.6 g; 18.0 mmol) in ethanol (20 mL). The resulting solution was irradiated (75 W) and stirred under 

reflux. Next, chloroform (30 mL, 372.0 mmol) was slowly added dropwise over an hour. The 

resulting red mixture was refluxed for another 16 h, and then cooled down to room temperature. 

Subsequently the obtained suspension was acidified by an aqueous solution of hydrochloric acid 

(1%) to pH ca. 7, and then volatiles were evaporated under reduced pressure. The resulting solid 

was dried over P4O10 and extracted at Soxhlet apparatus with chloroform. From the resulting 

solution the volatiles were evaporated under reduced pressure, and finally the crude product was 

purified on a silica gel chromatography with CH3Cl/MeOH (3:1) as eluent, and purified by 

crystallization from CH3Cl/hexane to yield precipitates as follows: 

7-Bromo-8-hydroxy-2-methylquinoline-5-carbaldehyde (2d) < 1% [26]; 1H-NMR (DMSO–d6; 400.2 MHz) δ 

= 2.77 (s, 3H, CH3), 7.73 (d, 3JH,H = 8.7 Hz, 1H, aromatic), 8.32 (s, 1H, aromatic), 9.45 (d, 3JH,H = 8.7 Hz, 

1H, aromatic), 10.05 (s, 1H, HC=O); GC-MS: tr = 7.617 min.; (EI) m/z (rel. int.) M+ = 267 (15%); (M − CO 

+ H)+ = 238 (20%). 

3.7. General Procedures for Synthesis of Selected Quinoline-5-carbaldehydes Based on Vilsmeier-Haack 

Protocol 

To the solution of dry chloroform (6.5 mL) and dry DMF (0.8 mL, 32.0 mmol) POCl3 (3.2 mL, 4.0 

mmol) was added at 0 °C and the mixture was stirred for an hour. Next 1b, 1e, 1g or 1i (8.0 mmol), 

respectively was added, and the resulting reaction mixture was brought to a gentle reflux for 16 h. 

The reaction was quenched by the addition of crushed ice and was neutralized by aqueous solution 

of Na2CO3 (10%) to pH 6–7 and then the layers were separated. The aqueous layer was extracted by 

chloroform (3 × 30 mL), collected, and was dried over anhydrous MgSO4. After filtration, the solvent 

was evaporated on a rotary evaporator and the obtained residue was purified by column 

chromatography on silica gel with CH3Cl/THF/hexane (2:1:1) as eluent. 

6-(Dimethylamino)-2-methylquinoline-5-carbaldehyde (2e) yellow 0.7 g (3.1 mmol, 38.6%); m.p. = 75.2–

75.8 °C; 1H-NMR (DMSO–d6; 400.2 MHz) δ = 2.58 (s, 3H, CH3), 3.11 (s, 6H, 2NCH3), 7.43 (d, 3JH,H = 8.8 

Hz, 1H, aromatic), 7.64 (d, 3JH,H = 9.4 Hz, 1H, aromatic), 7.98 (d, 3JH,H = 9.4 Hz, 1H, aromatic), 9.18 (d, 
3JH,H = 8.8 Hz, 1H, aromatic), 10.20 (s, 1H, HC=O); 13C{1H}-NMR (DMSO–d6; 100.6 MHz) δ = 24.2, 45.7, 

114.8, 121.9, 124.1, 125.2, 131.4, 135.2, 142.4, 155.6, 157.1, 190.4; GC-MS: tr = 7.683 min, (EI) m/z (rel. 

int.) M+ = 214 (85%); (M − HCO)+ = 185 (55%); UV-Vis (methanol; λ [nm] (logε)): 416 (3.55), 365 (3.12), 

304 (3.60), 289 (3.68), 260 (4.35), 214 (4.21); IR (KBr): 3386 νOH; 2878 νCH; 1671 νC=O; 1498 νC-H. 

6-(Dimethylamino)quinoline-5-carbaldehyde (2f) yellow 1.2 g (5.9 mmol, 73.8%); m.p. = 56.1–56.8 °C; 
1H-NMR (DMSO–d6; 400.2 MHz) δ = 3.16 (s, 6H, 2NCH3), 7.54 (dd, 3JH,H = 8.7 Hz, 4JH,H = 4.2 Hz, 1H, 

aromatic), 7.70 (d, 3JH,H = 9.5 Hz, 1H, aromatic), 8.05 (d, 3JH,H = 9.4 Hz, 1H, aromatic), 8.69 (dd, 3JH,H = 

4.2 Hz, 4JH,H = 1.6 Hz, 1H, aromatic), 9.30 (dd, 3JH,H = 8.7 Hz, 4JH,H = 1.5 Hz, 1H, aromatic), 10.19 (s, 1H, 

HC=O); 13C{1H}-NMR (DMSO–d6; 125.8 MHz) δ = 45.5, 113.4, 122.7, 123.6, 127.5, 132.0, 134.7, 141.6, 

146.6, 157.5, 190.0; GC-MS: tr = 7.259 min, (EI) m/z (rel. int.) M+ = 200 (76%); (M − HCO)+ = 171 (20%); 

UV-Vis (methanol; λ [nm] (logε)): 423 (3.61), 373 (3.18), 307 (3.60), 268 (4.33), 222 (4.17), 204 (3.96); IR 

(KBr): 3421 νOH; 2895 νCH; 1636 νC=O; 1458 νC-H. 

8-(Dimethylamino)quinoline-5-carbaldehyde (2i) yellow 0.01 g (0.05 mmol, 0.6%); m.p. = 100.8–101.0 °C; 
1H-NMR (CDCl3; 400.2 MHz) δ = 3.36 (s, 6H, 2NCH3), 6.97 (d, 3JH,H = 8.2 Hz, 1H, aromatic), 7.53 (dd, 
3JH,H = 8.6 Hz, 4JH,H = 4.1 Hz, 1H, aromatic), 7.84 (d, 3JH,H = 8.3 Hz, 1H, aromatic), 8.87 (dd, 3JH,H = 4.0 Hz, 
4JH,H = 1.7 Hz, 1H, aromatic), 9.72 (dd, 3JH,H = 8.6 Hz, 4JH,H = 1.7 Hz, 1H, aromatic), 10.06 (s, 1H, HC=O); 
13C{1H}-NMR (CDCl3; 125.8 MHz) δ = 44.1, 111.2, 122.2, 123.3, 128.3, 133.9, 139.5, 141.0, 146.9, 155.0, 

191.3; GC-MS: tr = 7.156 min, (EI) m/z (rel. int.) M+ = 200.1 (24%), (M − Me)+ = 185.1 (100%), (M − 
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HCO)+ = 171.1 (38%); UV-Vis (methanol; λ [nm] (logε)): 390 (4.07), 289 (3.91), 263 (4.20), 234 (3.99), 

206 (4.36); IR (KBr): 2840 νCH; 1665 νC=O; 1555; 1509 νC-H; 1352; 1251; 1080; 760. 

8-(Dimethylamino)quinoline-5,7-dicarbaldehyde (2j) yellow 0.006 g (0.002 mmol, 0.3%); m.p. = 100.0–

100.1 °C; 1H-NMR (CDCl3; 400.2 MHz) δ = 3.61 (s, 6H, 2NCH3), 7.57 (dd, 3JH,H = 8.6 Hz, 4JH,H = 4.1 Hz, 

1H, aromatic), 8.26 (s, 1H, aromatic), 8.88 (d, 3JH,H = 4.1 Hz, 4JH,H = 1.7 Hz, 1H, aromatic), 9.70 (dd, 3JH,H 

= 8.6 Hz, 4JH,H = 1.7 Hz, 1H, aromatic), 10.06 (s, 1H, HC=O), 10.17 (s, 1H, HC=O); 13C{1H}-NMR 

(CDCl3; 125.8 MHz) δ = 48.3, 122.1, 122.6, 124.7, 130.2, 134.0, 141.9, 144.4, 147.5, 157.0, 188.5, 191.3; 

GC-MS: tr = 7.952 min, (EI) m/z (rel. int.) M+ = 227.9 (100%), (M − Me)+ = 213.0 (3%), (M + 2H − CO)+ = 

202 (10%); LCMS-IT-TOF: m/z (rel. int.) (M + H)+ = 229 (100%), (M + H − CO)+ = 201 (100%); HRMS 

(IT-TOF): m/z Calcd for C13H13N2O2 (M + H)+ = 229.0977, Found 229.0970; UV-Vis (methanol; λ [nm] 

(logε)): 400 (4.33), 355 (4.04), 287 (4.38), 234 (4.33), 210 (4.33); IR (KBr): 2872 νCH; 1678 νC=O; 1661 νC=O; 

1515 νC-H; 1381, 1265, 1103, 765. 

(Z)-8-Hydroxy-2-(2-hydroxyvinyl)quinoline-5-carbaldehyde (2l) yellow 0.6 g (2.6 mmol, 32.1%); m.p. = 

153.1–153.8 °C; 1H-NMR (DMSO–d6; 400.2 MHz) δ = 7.28 (dd, 3JH,H = 5.7 Hz, 4JH,H = 3.2 Hz, 1H, 

aromatic), 7.45–7.48 (m, 2H, aromatic), 8.58 (d, 3JH,H = 9.3 Hz, 1H, aromatic), 8.86 (d, 3JH,H = 9.2 Hz, 1H, 

aromatic), 9.43 (s, 2H, HC=O), 11.42 (s, 1H, OH), 16.14 (s, 1H, OH); 13C{1H}-NMR (DMSO–d6; 125.8 

MHz) δ = 106.4, 115.1, 118.0, 118.1, 125.4, 125.9, 126.9, 142.1, 146.4, 150.7, 189.6, 191.8; LCMS-IT-TOF: 

m/z (rel. int.) (M + H)+ = 216 (100%); HRMS (IT-TOF): m/z Calcd for C12H10NO3 (M + H)+ = 216.0660, 

Found 216.0665; UV-Vis (methanol; λ [nm] (logε)): 402 (3.91), 382 (3.99), 297 (4.28), 262 (4.07), 241 

(4.21), 214 (4.39); IR (KBr): 3102 νOH; 2906 νCH; 1594 νC=O; 1353 νC-H. 

3.8. General Procedures for the Synthesis of Selected Quinolinecarbaldehydes Based on the Duff Protocol 

These were based on a procedure described in the literature [28]. To a solution of 1b, 1d, 1e, 1f, 

1h or 1j (5.0 mmol) in a minimum amount of TFA (7–8 mL) hexamethylenetetramine (1.4 g, 10.0 

mmol) was gently added under an argon atmosphere. The solution was stirred at 70 °C for 70 h and 

then at 100 °C for another 4 h. Subsequently, the obtained suspension was acidified by an aqueous 

solution of hydrochloric acid (10%, ~10 mL) and the reaction mixture was kept at 100 °C for 1 h. The 

whole suspension was cooled down to r.t. Next, the obtained reaction mixture was alkalified by 

aqueous solution of NaOH (10%), and the resulting precipitate was collected in a Buchner funnel, 

followed by washing with water (3 × 50 mL) and dried to afford a solid. Next, the crude product was 

purified by chromatography to yield 2c precipitates as follows, or the crude product was extracted 

with CH2Cl2 at Soxhlet apparatus to yield 2h solid as follows: 

5-Chloro-8-hydroxyquinoline-7-carbaldehyde (2b) 0.7 g (3.5 mmol, 70%). 

5-Methyl-8-hydroxyquinoline-7-carbaldehyde (2c) 0.7 g (3.7 mmol; 75.0%). 

6-Hydroxyquinoline-5-carbaldehyde (2g) beige 0.6 g (3.5 mmol, 28.1%) [29]; m.p. = 138.6–138.9 °C; 
1H-NMR (CDCl3; 400.2 MHz) δ = 7.39 (d, 3JH,H = 9.3 Hz, 1H, aromatic), 7.53 (dd, 3JH,H = 8.6 Hz, 4JH,H = 

4.2 Hz, 1H, aromatic), 8.26 (d, 3JH,H = 9.3 Hz, 1H, aromatic), 8.67 (d, 3JH,H = 8.6 Hz, 1H, aromatic), 8.85 

(d, 3JH,H = 3.1 Hz, 1H, aromatic), 10.76 (s, 1H, HC=O), 13.06 (s, 1H, OH); 13C{1H}-NMR (CDCl3; 100.6 

MHz) δ = 110.7, 123.1, 123.5, 127.0, 128.2, 140.7, 143.4, 148.7, 164.9, 192.4; GC-MS: tr = 6.168 min, (EI) 

m/z (rel. int.) M+ = 173 (100%); (M − HCO)+ = 144 (20%); UV-Vis (methanol; λ [nm] (logε)): 400 (2.46), 

346 (3.16), 300 (3.43), 290 (3.37), 226 (4.04), 203 (0.98); IR (KBr): 3050 νOH; 2733 νCH; 1632 νC=O; 1480 νC-H. 

8-Hydroxy-2-methylquinoline-5,7-dicarbaldehyde (2h) red 0.2 g (0.7 mmol, 14.9%); m.p. > 360 °C; 
1H-NMR (DMSO–d6; 400.2 MHz) δ = 2.85 (s, 3H, CH3), 7.92 (d, 3JH,H = 8.7 Hz, 1H, aromatic), 8.29 (s, 

1H, aromatic), 9.71 (d, 3JH,H = 8.7 Hz, 1H, aromatic), 9.95 (s, 1H, HC=O), 10.42 (s, 1H, HC=O); 
13C{1H}-NMR (DMSO–d6; 125.8 MHz) δ = 21.6, 115.6, 119.5, 128.0, 128.6, 137.8, 138.5, 139.0, 155.7, 

167.2, 188.2, 191.5; LCMS-IT-TOF: m/z (rel. int.) (M − H)− = 214 (100%), M− = 215 (10%); (M − HCO)− = 

186 (10%); (M − 2HCO)− = 157 (<1%); HRMS (IT-TOF): m/z Calcd for C12H8NO3 (M − H)− = 214.0504, 

Found 214.0496; UV-Vis (methanol; λ [nm] (logε)): 359 (3.65), 282 (3.91), 237 (3.59); IR (KBr): 3423 

νOH; 2965 νCH; 2847 νCH; 2835 νCH; 1657 νC=O; 1458 νC-H; CCDC 1890715. 
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10-hydroxybenzo[h]quinoline-7,9-dicarbaldehyde (2k) red 0.9 g (3.5 mmol, 70.6%); m.p.dec. > 360 °C; 
1H-NMR (DMSO–d6/KOD/D2O; 400.2 MHz) δ = 7.51 (dd, 3JH,H = 8.0 Hz, 4JH,H = 4.2 Hz, 1H, aromatic), 

7.96 (d, 3JH,H = 9.0 Hz, 1H, aromatic), 8.10 (s, 1H, aromatic), 8.26 (dd, 3JH,H = 8.1 Hz, 4JH,H = 2.0 Hz, 1H, 

aromatic), 8.89 (dd, 3JH,H = 4.2 Hz, 4JH,H = 2.0 Hz, 1H, aromatic), 9.20 (d, 3JH,H = 9.0 Hz, 1H, aromatic), 

9.65 (s, 1H, HC=O), 10.08 (s, 1H, HC=O); 13C{1H}-NMR (DMSO–d6/KOD/D2O; 125.8 MHz) δ = 115.1, 

122.2, 123.8, 124.8, 126.1, 126.9, 132.3, 137.4, 140.0, 144.6, 148.1, 151.1, 182.0, 192.6, 192.7; HRMS (ESI): 

m/z Calcd for C15H9NO3 M− = 251.05826, Found 251.07750; UV-Vis (methanol; λ [nm] (logε)): 453 

(2.41), 405 (3.22), 364 (3.38), 329 (3.46), 315 (3.48), 274 (3.96), 260 (4.03), 241 (4.02), 223 (4.01), 211 (4.04); 

IR (KBr): 3424 νOH; 3062 νCH; 2877 νCH; 1673 νC=O; 1483 νC-H. 

10-Hydroxybenzo[h]quinoline-7-carbaldehyde [30] < 1%. 

10-Hydroxybenzo[h]quinoline-9-carbaldehyde [31] < 1%. 

3.9. General Procedure the for Synthesis of Selected Schiff Base Derivatives of 2,6-Diisopropylbenzenamine 

Compounds 2a, 2c, 2e or 2f (2.0 mmol) and 2,6-diisopropylaniline (0.5 g; 0.565 mL; 3.0 mmol) 

were dissolved in dry chloroform (70 mL) and then the resulting reaction mixture was brought to a 

gentle reflux for 40 h. The reaction mixture was connected with a Soxhlet apparatus in which MgSO4 

were placed as dehydrating agent. Next the solvent was evaporated under reduced pressure and the 

obtained red residue was purified by chromatography and crystallization from acetonitrile to yield 

precipitates as follows: 

5-[(E)-{[2,6-Di(propan-2-yl)phenyl]imino}methyl]quinolin-8-ol (3a) orange 0.5 g (1.4 mmol, 71.1%); m.p. 

= 126.1–126.9 °C; 1H-NMR (CDCl3; 400.2 MHz) δ = 1.20 (d, 3JH,H = 6.9 Hz, 12H, 4CH3), 3.06 (hept, 3JH,H = 

6.9 Hz, 2H, 2CH), 7.10–7.24 (m, 3H, aromatic), 7.35 (d, 3JH,H = 8.0 Hz, 1H, aromatic), 7.66 (dd, 3JH,H = 8.7 

Hz, 4JH,H = 4.3 Hz, 1H, aromatic), 7.84 (d, 3JH,H = 8.0 Hz, 1H, aromatic), 8.51 (s, 1H, HC=N), 8.91 (dd, 
3JH,H = 4.3 Hz, 4JH,H = 1.5 Hz, 1H, aromatic), 10.04 (d, 3JH,H = 8.7 Hz, 1H, aromatic); 13C{1H}-NMR 

(CDCl3; 100.6 MHz) δ = 23.7, 28.3, 109.5, 122.7, 123.2, 123.7, 124.2, 127.3, 135.1, 135.6, 137.9, 138.3, 

148.1, 149.9, 155.2, 162.7; LCMS-IT-TOF: m/z (rel. int.) (M + H)+ = 333 (100%); HRMS (IT-TOF): m/z 

Calcd for C22H25N2O (M + H)+ = 333.1961, Found 333.1965; UV-Vis (methanol; λ [nm] (logε)): 327 

(3.88), 271 (3.94), 239 (4.38), 206 (4.43); IR (KBr): 3381 νOH; 2858 νCH; 2958 νOH; 1613 νHC=N. CCDC 

1501807. 

5-[(E)-{[2,6-Di(propan-2-yl)phenyl]imino}methyl]-N,N,2-trimethylquinolin-6-amine (3b) yellow 0.6 g (1.5 

mmol, 74.3%); m.p. = 130.1–130.5 °C; 1H-NMR (CDCl3; 400.2 MHz) δ = 1.20 (d, 3JH,H = 6.9 Hz, 12H, 

4CH3), 2.77 (s, 3H, CH3), 2.90 (s, 6H, 2NCH3), 3.11 (hept, 3JH,H = 6.9 Hz, 2H, 2CH), 7.14 (dd, 3JH,H = 8.6 

Hz, 3JH,H = 6.6 Hz, 1H, aromatic), 7.19–7.23 (m, 2H, aromatic), 7.38 (d, 3JH,H = 8.9 Hz, 1H, aromatic), 

7.64 (d, 3JH,H = 9.2, 1H, aromatic), 8.18 (d, 3JH,H = 9.2 Hz, 1H, aromatic), 8.80 (s, 1H, HC=N), 10.00 (d, 
3JH,H = 8.9, 1H, aromatic); 13C{1H}-NMR (CDCl3; 100.6 MHz) δ = 23.9, 24.7, 28.1, 46.2, 121.3, 122.7, 

123.3, 123.7, 124.2, 126.1, 132.5, 135.4, 137.9, 144.1, 150.17, 155.1, 157.1, 162.5; LCMS-IT-TOF: m/z (rel. 

int.) (M + H)+ = 374 (100%); HRMS (IT-TOF): m/z Calcd for C25H32N3 (M + H)+ = 374.2590, Found 

374.2588; UV-Vis (methanol; λ [nm] (logε)): 377 (3.87), 306 (4.06), 260 (4.59), 214 (4.71); IR (KBr): 2959 

νCH; 1629 νHC=N. CCDC 1501808. 

5-[(E)-{[2,6-Di(propan-2-yl)phenyl]imino}methyl]-N,N-dimethylquinolin-6-amine (3c) dark yellow 0.6 g 

(1.6 mmol, 80.3%); m.p. = 116.9–117.2 °C; 1H-NMR (CDCl3; 400.2 MHz) δ = 1.25 (d, 3JH,H = 6.9 Hz, 12H, 

4CH3), 2.97 (s, 6H, 2NCH3), 3.14 (hept, 3JH,H = 6.9 Hz, 2H, 2CH), 7.16–7.32 (m, 3H, aromatic), 7.53 (dd, 
3JH,H = 8.8 Hz, 4JH,H = 4.1 Hz, 1H, aromatic), 7.72 (d, 3JH,H = 9.2 Hz, 1H, aromatic), 8.27 (d, 3JH,H = 9.2 Hz, 

1H, aromatic), 8.84 (s, 1H, HC=N), 8.89 (dd, 3JH,H = 4.0 Hz, 4JH,H = 1.4 Hz, 1H, aromatic), 10.15 (d, 3JH,H = 

8.7 Hz, 1H, aromatic); 13C{1H}-NMR (CDCl3; 100.6 MHz) δ = 23.9, 28.1, 46.2, 120.8, 122.6, 122.7, 123.2, 

124.2, 128.0, 133.5, 134.9, 137.9, 144.8, 148.4, 150.1, 155.7, 162.3; LCMS-IT-TOF: m/z (rel. int.) (M + H)+ = 

360 (100%); HRMS (IT-TOF): m/z Calcd for C24H30N3 (M + H)+ = 360.2434, Found 360.2432; UV-Vis 

(methanol; λ [nm] (logε)): 379 (3.62), 305 (3.80), 263 (4.29), 213 (4.42); IR (KBr): 2959 νCH; 1619 νHC=N. 

CCDC 1829344. 
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(E)-7-(((2,6-Diisopropylphenyl)imino)methyl)-5-methylquinolin-8-ol (3d) yellow 0.5 g (1.6 mmol, 78.0%); 

m.p. = 175.1–176.1 °C; 1H-NMR (CDCl3; 500.18 MHz) δ = 1.25 (d, 3JH,H = 6.9 Hz, 12H, 4CH3), 2.63 (d, 
4JH,H = 0.9 Hz, 3H, CH3), 3.09 (hept, 3JH,H = 6.8 Hz, 2H, 2CH), 7.23–7.24 (m, 4H, aromatic), 7.58 (dd, 3JH,H 

= 8.5 Hz, 4JH,H = 4.2 Hz, 1H, aromatic), 8.28 (dd, 3JH,H = 8.5 Hz, 4JH,H = 1.6 Hz, 1H, aromatic), 8.38 (s, 1H, 

HC=N), 9.03 (dd, 3JH,H = 4.2 Hz, 4JH,H = 1.6 Hz, 1H, aromatic), 14.46 (s, 1H, OH); 13C{1H}-NMR (CDCl3; 

125.78 MHz) δ = 18.1, 23.7, 28.3, 113.9, 123.1, 123.3, 123.5, 126.1, 127.5, 130.9, 132.5, 139.7, 141.3, 144.5, 

149.1, 161.2, 165.3; LCMS-IT-TOF: m/z (rel. int.) (M − H)− = 345 (100%); HRMS (IT-TOF): m/z Calcd for 

C23H25N2O (M − H)− = 345.1967, Found 345.1969; UV-Vis (methanol; λ [nm] (logε)): 446 (2.98), 361 

(3.17), 277 (3.93), 226 (3.71), 208 (4.02); IR (KBr): 3062 νOH; 2962 νCH; 1617 νHC=N. CCDC 1829345. 

3.10. Crystallization 

Crystals suitable for X-ray analysis were obtained from a hot acetonitrile solution for 3a, 3b, 3c 

and 3d, and from a hot CHCl3 solution for 2h. 

4. Conclusions 

The research has been focused on the synthesis of quinolinecarbaldehydes 2 and Schiff bases 3 

as their derivatives. The presented synthesis protocols allowed the synthesis of the target 

compounds more efficiently with yields up to 75% for molecule 2c and 80.3% for compound 3c. The 

structures of the obtained molecules were proved by a combination of various techniques, such as 

NMR, IR, GC-MS, MS, HRMS, UV-Vis and X-ray crystallography. The chemistry was mostly based 

on inexpensive and commercially available reagents. A variety of substituents (halogens Cl and Br 

and hydroxyl, methyl and NMe2 groups) were chosen in order to represent different electronic 

features. Formylation reactions of electron-rich aromatics in our studies mainly led to 

quinoline-5-carbaldehyde structures with newly formed carbonyl groups at the C5 position. In the 

case of a C5 position blocked by bromine or chlorine atoms or methyl groups, formylation reactions 

produced quinoline-7-carbaldehydes with the carbonyl group in C7 position. We presented a very 

simple, chromatography-free procedure for the double formylation of 2-methylquinolin-8-ol and 

benzo[h]quinolin-10-ol using very convenient Duff reaction protocols. For the first time we showed a 

carbene insertion reaction into C-Br bonds to produce 7-bromo-8-hydroxyquinoline-5-carbaldehyde 

by applying the Reimer-Tiemann method. The electrochemical properties of compounds 2a, 2e and 

2f were investigated. Oxidation and reduction potentials of these compounds in acetonitrile showed 

the influence of the various functional groups in the structure. 

Supplementary Materials: The following are available online at www.mdpi.com/1420-3049/25/9/2053/s1, 

CCDC 1890715, 1501807, 1501808, 1829344 and 1829345 for 2h, 3a, 3b, 3c and 3d, respectively contains the 

supplementary crystallographic data for the compounds. These data can be obtained free of charge from 

http://www.ccdc.cam.ac.uk/conts/retrieving.html, or from the Cambridge Crystallographic Data Centre, 12 

Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk. Calculations 

have been carried out in Wroclaw Centre for Networking and Supercomputing (http://www.wcss.wroc.pl). 
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