Supplementary materials

Anti-inflammatory and cytotoxic potential of new phenanthrenoids from Luzula sylvatica

Maël Gainche ¹, Isabelle Ripoche ^{1,*}, François Senejoux ^{2,*}, Juliette Cholet ², Clémence Ogeron ², Caroline Decombat ², Ombeline Danton ³, Laetitia Delort ², Marjolaine Vareille-Delarbre ², Alexandre Berry ², Marion Vermerie ², Didier Fraisse ², Catherine Felgines ², Edwige Ranouille ⁴, Jean-Yves Berthon ⁴, Julien Priam ⁵, Etienne Saunier ⁵, Albert Tourrette ⁶, Yves Troin ¹, Florence Caldefie-Chezet ² and Pierre Chalard ¹

- ¹ Université Clermont-Auvergne, CNRS, SIGMA Clermont, ICCF, F-63000 Clermont-Ferrand, France; mael.gainche@sigma-clermont.fr (M.G.); yves.troin@sigma-clermont.fr (Y.T.), pierre.chalard@sigmaclermont.fr (P.C.)
- ² Université Clermont-Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, F-63000 Clermont-Ferrand, France; juliette.cholet@uca.fr (J.C.); clemence.ogeron@uca.fr (C.O); caroline.decombat@uca.fr (C.D.); laetitia.delort@uca.fr (L.D.); marjolaine.vareille-delarbre@uca.fr (M.V.-D.); alexandre.berry@uca.fr (A.B.); marion.vermerie@uca.fr (M.V.); didier.fraisse@uca.fr (D.F.); catherine.felgines@uca.fr (C.F.); florence.caldefie-chezet@uca.fr (F. C.-C.)
- ³ Pharmaceutical Biology, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland; ombeline.danton@unibas.ch (O.D.)
- ⁴ Greentech, Biopôle Clermont-Limagne, 63360 Saint-Beauzire, France, developpement@greentech.fr (E.R.); jeanyvesberthon@greentech.fr (J.-Y.B.)
- ⁵ Dômes Pharma, 3 Rue André Citroën, 63430 Pont-du-Château, France, j.priam@domespharma.com (J.P.); e.saunier@domespharma.com (E.S.)
- ⁶ AltoPhyto, 7 rue des gargailles, 63370 Lempdes, France, albert.a.tourrette@gmail.com (A.T.)
- * Correspondence: isabelle.ripoche@sigma-clermont.fr (I.R.); francois.senejoux@uca.fr (F.S.)

Figure S1. ¹ H-NMR spectrum of hydrangetin (1) (500MHz, CDCl ₃)
Figure S2. ¹³ C-NMR Spectrum of hydrangetin (1) (100MHz, CDCl ₃)
Figure S3. HRESIMS of hydrangetin (1) (negative ionisation mode)4
Figure S4. ¹ H-NMR spectrum of juncusol (2) (400MHz, CDCl ₃)
Figure S5. ¹³ C-NMR spectrum of juncusol (2) (100MHz, CDCl ₃)
Figure S6. HRESIMS of juncusol (2) (negative ionisation mode)
Figure S7. ¹ H-NMR spectrum of juncunol (3) (400MHz, CDCl ₃)
Figure S8. ¹³ C-NMR spectrum of juncunol (3) (100MHz, CDCl ₃)
Figure S9. HRESIMS of juncunol (3) (negative ionisation mode)7
Figure S10. ¹ H-NMR spectrum of 1,7-dimethyl-5-vinyl phenanthren-2-ol (4) (400MHz, CDCl ₃)7
Figure S11. ¹³ C-NMR spectrum of 1,7-dimethyl-5-vinyl phenanthren-2-ol (4) (100MHz, CDCl ₃)
Figure S12. ¹ H- ¹³ C HSQC spectrum of 1,7-dimethyl-5-vinyl phenanthren-2-ol (4) (400MHz, CDCl ₃)8
Figure S13. ¹ H- ¹³ C HMBC spectrum of 1,7-dimethyl-5-vinyl phenanthren-2-ol (4) (400MHz, CDCl ₃)9
Figure S14. HRESIMS of 1,7-dimethyl-5-vinyl phenanthren-2-ol (4) (negative ionisation mode)9
Figure S15. ¹ H-NMR spectrum of 1-hydroxymethyl-7-methyl-5-vinyl-9,10-hydrophenanthren-2-ol (5)
(400MHz, CDCl ₃)10
Figure S16. ¹³ C-NMR spectrum of 1-hydroxymethyl-7-methyl-5-vinyl-9,10-hydrophenanthren-2-ol (5)
(100MHz, CDCl ₃)10
Figure S17. ¹ H- ¹ H COSY spectrum of 1-hydroxymethyl-7-methyl-5-vinyl-9,10-hydrophenanthren-2-ol
(5) (400MHz, CDCl ₃)11
Figure S18. ¹ H- ¹³ C HSQC spectrum of 1-hydroxymethyl-7-methyl-5-vinyl-9,10-hydrophenanthren-2-ol
(5) (400MHz, CDCl ₃)

Figure S19. ¹ H- ¹³ C HMBC spectrum of 1-hydroxymethyl-7-methyl-5-vinyl-9,10-hydrophenanthren-2-
ol (5) (400MHz, CDCl ₃)
Figure S20. HRESIMS of 1-hydroxymethyl-7-methyl-5-vinyl-9,10-hydrophenanthren-2-ol (5) (negative
ionisation mode)12
Figure S21. ¹ H-NMR spectrum of juncuenin A (6) (400MHz, CDCl ₃)13
Figure S22. ¹³ C-NMR spectrum of juncuenin A (6) (100MHz, CDCl ₃)13
Figure S23. HRESIMS of juncuenin A (6) (negative ionisation mode)14
Figure S24. ¹ H-NMR spectrum of dehydrojucuenin A (7) (400MHz, CDCl ₃)14
Figure S25. ¹³ C-NMR spectrum of dehydojuncuenin A (7) (100MHz, CDCl ₃)15
Figure S26. ¹ H-NMR spectrum of 2-methoxy-1,7-dimethyl-5-vinyl-9,10-dihydrophenanthren-10-ol (8)
(400MHz, CDCl ₃)15
Figure S27. ¹³ C-NMR JMOD spectrum of 2-methoxy-1,7-dimethyl-5-vinyl-9,10-dihydrophenanthren-
10-ol (8) (100MHz, $CDCl_3$, CH and CH_3 down, C and CH_2 up)16
Figure S28. ¹ H- ¹ H COSY spectrum of 2-methoxy-1,7-dimethyl-5-vinyl-9,10-dihydrophenanthren-10-ol
(8) (400MHz, CDCl ₃)
Figure S29. ¹ H- ¹³ C HSQC spectrum of 2-methoxy-1,7-dimethyl-5-vinyl-9,10-dihydrophenanthren-10-
ol (8) (400MHz, CDCl ₃)
Figure S30. ¹ H- ¹³ C HMBC spectrum of 2-methoxy-1,7-dimethyl-5-vinyl-9,10-dihydrophenanthren-10-
ol (8) (400MHz, CDCl ₃)
Figure S31. ¹ H-NMR spectrum of 2-methoxy-1,7-dimethyl-5-vinyl-9,10-dihydrophenanthren-10-ol (8)
(500MHz, CD ₃ OD)
Figure S32. ¹ H- ¹ H NOESY spectrum of 2-methoxy-1,7-dimethyl-5-vinyl-9,10-dihydrophenanthren-10-
ol (8) (400MHz, CD ₃ OD)
Figure S33. Experimental ECD spectra of compound (8)19
Figure S34. HRESIMS of 2-methoxy-1,7-dimethyl-5-vinyl-9,10-dihydrophenanthren-10-ol (8) (positive
ionisation mode)24
Figure S35. ¹ H-NMR spectrum of 2-hydroxy-1,7-dimethyl-9,10-dihydrophenanthrene-5-carbaldehyde
(9) (400MHz, CDCl ₃)
Figure S36. ¹³ C-NMR spectrum of 2-hydroxy-1,7-dimethyl-9,10-dihydrophenanthrene-5-
carbaldehyde (9) (100MHz, CDCl ₃)25
Figure S37. ¹ H- ¹ H COSY spectrum of 2-hydroxy-1,7-dimethyl-9,10-dihydrophenanthrene-5-
carbaldehyde (9) (400MHz, CDCl ₃)
Figure S38. ¹ H- ¹³ C HSQC spectrum of 2-hydroxy-1,7-dimethyl-9,10-dihydrophenanthrene-5-
carbaldehyde (9) (400MHz, CDCl ₃)
Figure S39. ¹ H- ¹³ C HMBC spectrum of 2-hydroxy-1,7-dimethyl-9,10-dihydrophenanthrene-5-
carbaldehyde (9) (400MHz, CDCl ₃)27
Figure S40. HRESIMS of 2-hydroxy-1,7-dimethyl-9,10-dihydrophenanthrene-5-carbaldehyde (9)
(negative ionisation mode)

l e 1. EDC data

Figure S1. ¹H-NMR spectrum of hydrangetin (1) (500MHz, CDCl₃)

Figure S2. ¹³C-NMR Spectrum of hydrangetin (1) (100MHz, CDCl₃)

Figure S3. HRESIMS of hydrangetin (1) (negative ionisation mode)

Figure S5. ¹³C-NMR spectrum of juncusol (2) (100MHz, CDCl₃)

Figure S6. HRESIMS of juncusol (2) (negative ionisation mode)

Figure S8. ¹³C-NMR spectrum of juncunol (3) (100MHz, CDCl₃)

Figure S9. HRESIMS of juncunol (3) (negative ionisation mode)

Figure S10. ¹H-NMR spectrum of 1,7-dimethyl-5-vinyl phenanthren-2-ol (4) (400MHz, CDCl₃)

Figure S11. ¹³C-NMR spectrum of 1,7-dimethyl-5-vinyl phenanthren-2-ol (4) (100MHz, CDCl₃)

Figure S12. ¹H-¹³C HSQC spectrum of 1,7-dimethyl-5-vinyl phenanthren-2-ol (4) (400MHz, CDCl₃)

Figure S13. ¹H-¹³C HMBC spectrum of 1,7-dimethyl-5-vinyl phenanthren-2-ol (4) (400MHz, CDCl₃)

Figure S14. HRESIMS of 1,7-dimethyl-5-vinyl phenanthren-2-ol (4) (negative ionisation mode)

Figure S15. ¹H-NMR spectrum of 1-hydroxymethyl-7-methyl-5-vinyl-9,10-hydrophenanthren-2-ol (5) (400MHz, CDCl₃)

Figure S16. ¹³C-NMR spectrum of 1-hydroxymethyl-7-methyl-5-vinyl-9,10-hydrophenanthren-2-ol (5) (100MHz, CDCl₃)

Figure S17. ¹H-¹H COSY spectrum of 1-hydroxymethyl-7-methyl-5-vinyl-9,10-hydrophenanthren-2-ol (5) (400MHz, CDCl₃)

Figure S18. ¹H-¹³C HSQC spectrum of 1-hydroxymethyl-7-methyl-5-vinyl-9,10-hydrophenanthren-2-ol (5) (400MHz, CDCl₃)

11

Figure S19. ¹H-¹³C HMBC spectrum of 1-hydroxymethyl-7-methyl-5-vinyl-9,10-hydrophenanthren-2-ol (5) (400MHz, CDCl₃)

Figure S20. HRESIMS of 1-hydroxymethyl-7-methyl-5-vinyl-9,10-hydrophenanthren-2-ol (5) (negative ionisation mode)

Figure S21. ¹H-NMR spectrum of juncuenin A (6) (400MHz, CDCl₃)

Figure S22. ¹³C-NMR spectrum of juncuenin A (6) (100MHz, CDCl₃)

Figure S23. HRESIMS of juncuenin A (6) (negative ionisation mode)

Figure S24. ¹H-NMR spectrum of dehydrojucuenin A (7) (400MHz, CDCl₃)

Figure S26. ¹H-NMR spectrum of 2-methoxy-1,7-dimethyl-5-vinyl-9,10-dihydrophenanthren-10-ol (8) (400MHz, CDCl₃)

Figure S27. ¹³C-NMR JMOD spectrum of 2-methoxy-1,7-dimethyl-5-vinyl-9,10-dihydrophenanthren-10-ol (**8**) (100MHz, CDCl₃, CH and CH₃ down, C and CH₂ up)

Figure S28. ¹H-¹H COSY spectrum of 2-methoxy-1,7-dimethyl-5-vinyl-9,10-dihydrophenanthren-10-ol (8) (400MHz, CDCl₃)

Figure S29. ¹H-¹³C HSQC spectrum of 2-methoxy-1,7-dimethyl-5-vinyl-9,10-dihydrophenanthren-10-ol (8) (400MHz, CDCl₃)

Figure S30. ¹H-¹³C HMBC spectrum of 2-methoxy-1,7-dimethyl-5-vinyl-9,10-dihydrophenanthren-10-ol (8) (400MHz, CDCl₃)

Figure S31. ¹H-NMR spectrum of 2-methoxy-1,7-dimethyl-5-vinyl-9,10-dihydrophenanthren-10-ol (8) (500MHz, CD₃OD)

Figure S32. ¹H-¹H NOESY spectrum of 2-methoxy-1,7-dimethyl-5-vinyl-9,10-dihydrophenanthren-10-ol (8) (400MHz, CD₃OD)

Figure S33. Experimental ECD spectra of compound 8

Circular Dichroism Data Analysis			
Compound:	Compound 8	Concentration [M]:	0,0004
MW:	500		
Concentration in mg/mL:	0,2	Formula:	[q] = (100 * q)/C*I
Pathlength in cm:	0,1		De = [q]/3298.2
Wavelength (nm)	CD mdeg (!)	Molar ellipticity [θ] (deg cm ² dmol ⁻¹)	CD (Δε) (mol ⁻¹ cm ⁻¹)
Wavelength (nm) 400	CD mdeg (!) -0,163119	Molar ellipticity [θ] (deg cm ² dmol ⁻¹) -407,7975	CD (Δε) (mol ⁻¹ cm ⁻¹) -0,123642441
Wavelength (nm) 400 399	CD mdeg (!) -0,163119 0,113959	Molar ellipticity [θ] (deg cm ² dmol ⁻¹) -407,7975 284,8975	CD (Δε) (mol ⁻¹ cm ⁻¹) -0,123642441 0,086379692
Wavelength (nm) 400 399 398	CD mdeg (!) -0,163119 0,113959 0,176983	Molar ellipticity [θ] (deg cm ² dmol ⁻¹) -407,7975 284,8975 442,4575	CD (Δε) (mol ⁻¹ cm ⁻¹) -0,123642441 0,086379692 0,134151204
Wavelength (nm) 400 399 398 397	CD mdeg (!) -0,163119 0,113959 0,176983 0,0305125	Molar ellipticity [θ] (deg cm ² dmol ⁻¹) -407,7975 284,8975 442,4575 76,28125	CD (Δε) (mol ⁻¹ cm ⁻¹) -0,123642441 0,086379692 0,134151204 0,023128146
Wavelength (nm) 400 399 398 397 396	CD mdeg (!) -0,163119 0,113959 0,176983 0,0305125 -0,043186	Molar ellipticity [θ] (deg cm ² dmol ⁻¹) -407,7975 284,8975 442,4575 442,4575 76,28125 -107,965	CD (Δε) (mol ⁻¹ cm ⁻¹) -0,123642441 0,086379692 0,134151204 0,023128146 -0,032734522
Wavelength (nm) 400 399 398 397 396 395	CD mdeg (!) -0,163119 0,113959 0,176983 0,0305125 -0,043186 0,201054	Molar ellipticity [θ] (deg cm ² dmol ⁻¹) -407,7975 284,8975 442,4575 76,28125 -107,965 502,635	CD (Δε) (mol ⁻¹ cm ⁻¹) -0,123642441 0,086379692 0,134151204 0,023128146 -0,032734522 0,152396762
Wavelength (nm) 400 399 398 397 396 395 394	CD mdeg (!) -0,163119 0,113959 0,176983 0,0305125 -0,043186 0,201054 -0,272805	Molar ellipticity [θ] (deg cm ² dmol ⁻¹) -407,7975 284,8975 442,4575 442,4575 76,28125 -107,965 502,635 -682,0125	CD (Δε) (mol ⁻¹ cm ⁻¹) -0,123642441 0,086379692 0,134151204 0,023128146 -0,032734522 0,152396762 -0,206783245
Wavelength (nm) 400 399 398 397 397 396 395 395 394 393	CD mdeg (!) -0,163119 0,113959 0,176983 0,0305125 -0,043186 0,201054 -0,272805 0,0376598	Molar ellipticity [0] (deg cm ² dmol ⁻¹) -407,7975 284,8975 442,4575 76,28125 -107,965 502,635 -682,0125 94,1495	CD (Δε) (mol ⁻¹ cm ⁻¹) -0,123642441 0,086379692 0,134151204 0,023128146 -0,032734522 0,152396762 -0,206783245 0,028545722

391	0,0335042	83,7605	0,025395822
390	0,0172675	43,16875	0,013088579
389	0,00959835	23,995875	0,007275446
388	0,190505	476,2625	0,144400734
387	0,0958515	239,62875	0,072654402
386	0,121044	302,61	0,091750045
385	-0,388797	-971,9925	-0,294703929
384	0,0141095	35,27375	0,010694849
383	0,00168215	4,205375	0,001275052
382	-0,025767	-64,4175	-0,019531108
381	-0,239674	-599,185	-0,181670305
380	-0,159702	-399,255	-0,121052392
379	-0,0845144	-211,286	-0,064061003
378	-0,114643	-286,6075	-0,086898157
377	-0,301934	-754,835	-0,228862713
376	-0,29269	-731,725	-0,221855861
375	-0,228754	-571,885	-0,173393063
374	0,108948	272,37	0,082581408
373	-0,0282365	-70,59125	-0,021402962
372	0,0268681	67,17025	0,02036573
371	0,134921	337,3025	0,102268662
370	-0,285939	-714,8475	-0,216738676
369	-0,154974	-387,435	-0,117468619
368	-0,0294795	-73,69875	-0,022345143
367	-0,210923	-527,3075	-0,159877357
366	-0,117492	-293,73	-0,089057668
365	-0,0952536	-238,134	-0,072201201
364	-0,061256	-153,14	-0,046431387
363	-0,0375537	-93,88425	-0,028465299
362	-0,167709	-419,2725	-0,127121612
361	-0,0115339	-28,83475	-0,008742572
360	0,295626	739,065	0,224081317
359	-0,218265	-545,6625	-0,165442514
358	0,00193203	4,830075	0,001464458
357	-0,0403899	-100,97475	-0,030615108
356	-0,119997	-299,9925	-0,090956431
355	-0,197973	-494,9325	-0,150061397
354	-0,132357	-330,8925	-0,100325177
353	-0,0485545	-121,38625	-0,036803787
352	-0,0580711	-145,17775	-0,044017267
351	-0,196139	-490,3475	-0,148671245
350	-0,360191	-900,4775	-0,27302089
349	-0,261429	-653,5725	-0,19816036
348	-0,170663	-426,6575	-0,129360712
347	0,165629	414,0725	0,125544994
346	0,0112298	28,0745	0,008512067
345	-0,0119882	-29,9705	-0,009086926
344	-0,0959101	-239,77525	-0,072698821

	1		1
343	0,0758133	189,53325	0,057465663
342	0,0616317	154,07925	0,046716163
341	-0,0982898	-245,7245	-0,074502607
340	0,0347702	86,9255	0,026355436
339	0,180514	451,285	0,136827664
338	0,182117	455,2925	0,13804272
337	0,092337	230,8425	0,069990449
336	0,0403143	100,78575	0,030557804
335	0,230242	575,605	0,174520951
334	0,204752	511,88	0,155199806
333	0,0879622	219,9055	0,066674398
332	0,0873766	218,4415	0,06623052
331	0,30962	774,05	0,234688618
330	0,376706	941,765	0,285539082
329	0,370335	925,8375	0,280709933
328	0,19714	492,85	0,149429992
327	0,403825	1009,5625	0,306094991
326	0,817276	2043,19	0,619486387
325	0,31799	794,975	0,241032988
324	0,936611	2341,5275	0,709941028
323	0,966358	2415,895	0,732488933
322	0.766985	1917.4625	0.581366351
321	0.900962	2252.405	0.682919471
320	1.25257	3131.425	0.94943454
319	1.46974	3674.35	1.114047056
318	1.35443	3386.075	1.026643321
317	1.51093	3777.325	1.145268631
316	2.1112	5278	1.600266812
315	1,99186	4979,65	1,50980838
314	2.55771	6394.275	1.938716573
313	2.23978	5599.45	1.697729064
312	2,60288	6507,2	1,972954945
311	2,90215	7255,375	2,199798375
310	3.24893	8122.325	2,462653872
309	3.26255	8156.375	2,472977685
308	3,25726	8143,15	2,468967922
307	3,55347	8883,675	2,693491905
306	3.79064	9476.6	2.873264205
305	3.30769	8269.225	2.507193318
304	3.49303	8732.575	2.647679037
303	3.65719	9142.975	2.772110545
302	3,75378	9384.45	2.845324723
301	3 73557	9338 925	2 831521739
300	4 04728	10118 2	3 067794555
299	4 49757	11243 925	3,409109514
298	4 1346	10336 5	3 133982172
297	4 50255	11258 875	3 4136/229
297	4 66720	11668 / 75	3,71304223
230	ч,00735	11000,475	5,557651241

295	4,23045	10576,125	3,206635438
294	5,40447	13511,175	4,096529925
293	5,2372	13093	3,969741071
292	5,77874	14446,85	4,380222546
291	5,3931	13482,75	4,087911588
290	5,83668	14591,7	4,42414044
289	5,95453	14886,325	4,513469468
288	5,91351	14783,775	4,482376751
287	6,46694	16167,35	4,901870717
286	6,35853	15896,325	4,819697108
285	8,00074	20001,85	6,064474562
284	7,59444	18986,1	5,756503547
283	7,84919	19622,975	5,949601298
282	8,43413	21085,325	6,392979504
281	8,11056	20276,4	6,147716937
280	8,82744	22068,6	6,691104239
279	7,91855	19796,375	6,002175429
278	8,57804	21445,1	6,502061731
277	8,52826	21320,65	6,464329028
276	8,48301	21207,525	6,430030016
275	7,84431	19610,775	5,94590231
274	7,73147	19328,675	5,860370808
273	8,0453	20113,25	6,098250561
272	7,25386	18134,65	5,498347584
271	7,21191	18029,775	5,466549936
270	6,69367	16734,175	5,07372961
269	6,32994	15824,85	4,798026196
268	5,57663	13941,575	4,227025347
267	4,89786	12244,65	3,712525014
266	4,80467	12011,675	3,641888
265	3,64094	9102,35	2,759793221
264	3,24267	8106,675	2,457908859
263	2,48478	6211,95	1,88343642
262	2,15737	5393,425	1,635263174
261	1,1748	2937	0,890485719
260	0,493709	1234,2725	0,374226093
259	-0,595266	-1488,165	-0,451205203
258	-1,53945	-3848,625	-1,166886484
257	-3,16377	-7909,425	-2,398103511
256	-5,01369	-12534,225	-3,800322903
255	-6,05618	-15140,45	-4,590519071
254	-8,11801	-20295,025	-6,153363956
253	-9,46223	-23655,575	-7,172268207
252	-11,3297	-28324,25	-8,58779031
251	-12,177	-30442,5	-9,230034564
250	-13,165	-32912,5	-9,9789279
249	-14,835	-37087,5	-11,24476987
248	-15,918	-39795	-12,06567218

	1		1
247	-16,3988	-40997	-12,4301134
246	-18,2236	-45559	-13,8132921
245	-19,1244	-47811	-14,49608878
244	-19,9221	-49805,25	-15,10073677
243	-21,4392	-53598	-16,25068219
242	-22,6685	-56671,25	-17,18247832
241	-24,0986	-60246,5	-18,26647869
240	-24,5171	-61292,75	-18,58369717
239	-24,6689	-61672,25	-18,69875993
238	-24,5026	-61256,5	-18,57270632
237	-24,0983	-60245,75	-18,26625129
236	-22,777	-56942,5	-17,26472015
235	-21,5548	-53887	-16,33830574
234	-19,1994	-47998,5	-14,55293797
233	-17,1687	-42921,75	-13,01368929
232	-14,1935	-35483,75	-10,7585198
231	-12,1725	-30431,25	-9,226623613
230	-10.3688	-25922	-7.859438482
229	-7.2589	-18147.25	-5.502167849
228	-4.32955	-10823.875	-3.281752168
227	-2.05302	-5132.55	-1.556167
226	0.625187	1562.9675	0.473884998
225	2.47556	6188.9	1.876447759
224	4.70458	11761.45	3,56602086
223	6.08915	15222.875	4.615509975
222	7 17644	17941 1	5 439664059
221	8 02516	20062 9	6.082984658
220	7 70398	19259 95	5 839533685
219	6 87114	17177 85	5 208249955
213	7 5/663	18866 575	5,200245555
210	7,94005	19529 375	5 921222182
217	7,51175	18817 775	5 705468134
215	8 58697	21/67 / 25	6 508830574
213	8,55057	21142 125	6 410504214
214	8,45725	21145,125	6 6 4 5 1 4 7 2 5 2
213	9 / 2808	21517,025	7 1/6382876
212	9,42808	24200 1	7,140382870
211	3,08304	24203,1	9 64227512
210	12,0002	20000.75	0,04527512
209	12,0003	30000,75	9,090097872
208	12,1007	30251,75	9,172199988
207	14,1605	35401,25	10,73350615
200	10,7203	41800,75	12,07380692
205	10,7735	41933,75	14,02706065
204	19,5621	48905,25	14,82/86065
203	21,9164	54791	16,61239464
202	22,7995	56998,75	17,28177491
201	22,7036	56759	17,20908374
200	24,2078	60519,5	18,34925111

199	23,8393	59598,25	18,06993208
198	23,1784	57946	17,56897702
197	24,1677	60419,25	18,31885574
196	21,9197	54799,25	16,614896
195	18,1726	45431,5	13,77463465

Table 1. EDC data

Figure S34. HRESIMS of 2-methoxy-1,7-dimethyl-5-vinyl-9,10-dihydrophenanthren-10-ol (8) (positive ionisation mode)

Figure S35. ¹H-NMR spectrum of 2-hydroxy-1,7-dimethyl-9,10-dihydrophenanthrene-5-carbaldehyde (9) (400MHz, CDCl₃)

Figure S36. ¹³C-NMR spectrum of 2-hydroxy-1,7-dimethyl-9,10-dihydrophenanthrene-5-carbaldehyde (9) (100MHz, CDCl₃)

Figure S37. ¹H-¹H COSY spectrum of 2-hydroxy-1,7-dimethyl-9,10-dihydrophenanthrene-5-carbaldehyde (**9**) (400MHz, CDCl₃)

Figure S38. ¹H-¹³C HSQC spectrum of 2-hydroxy-1,7-dimethyl-9,10-dihydrophenanthrene-5-carbaldehyde (**9**) (400MHz, CDCl₃)

Figure S39. ¹H-¹³C HMBC spectrum of 2-hydroxy-1,7-dimethyl-9,10-dihydrophenanthrene-5-carbaldehyde (**9**) (400MHz, CDCl₃)

Figure S40. HRESIMS of 2-hydroxy-1,7-dimethyl-9,10-dihydrophenanthrene-5-carbaldehyde (9) (negative ionisation mode)