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Abstract: The synthesis and structural characterization of 5,6′-dimethyl-2,2′-bipyridine (5,6′-Me2bpy)
are reported, along with the preparations and characterizations of [Cu(POP)(5,6′-Me2bpy)][PF6] and
[Cu(xantphos)(5,6′-Me2bpy)][PF6] (POP = bis(2-(diphenylphosphanyl)phenyl)ether, xantphos = 4,5-
bis(diphenylphosphanyl)-9,9-dimethyl-9H-xanthene). Single-crystal X-ray structure determinations of
[Cu(POP)(5,6′-Me2bpy)][PF6] and [Cu(xantphos)(5,6′-Me2bpy)][PF6] confirmed distorted tetrahedral
copper(I) coordination environments with the 5-methylpyridine ring of 5,6′-Me2bpy directed towards
the (C6H4)2O unit of POP or the xanthene unit of xantphos. In the xantphos case, this preference may
be attributed to C–H . . . π interactions involving both the 6-CH unit and the 5-methyl substituent
in the 5-methylpyridine ring and the arene rings of the xanthene unit. 1H NMR spectroscopic
data indicate that this ligand orientation is also preferred in solution. In solution and the solid
state, [Cu(POP)(5,6′-Me2bpy)][PF6] and [Cu(xantphos)(5,6′-Me2bpy)][PF6] are yellow emitters, and,
for powdered samples, photoluminescence quantum yields (PLQYs) are 12 and 11%, respectively,
and excited-state lifetimes are 5 and 6 µs, respectively. These values are lower than PLQY and τ values
for [Cu(POP)(6,6′-Me2bpy)][PF6] and [Cu(xantphos)(6,6′-Me2bpy)][PF6], and the investigation points
to the 6,6′-dimethyl substitution pattern in the bpy ligand being critical for enhancement of the PLQY.

Keywords: copper(I); bisphosphane; 2,2′-bipyridine; X-ray crystallography; photoluminescence;
heteroleptic coordination compounds

1. Introduction

The development of solid-state lighting technologies has revolutionized modern domestic and
commercial lighting, primarily through the development of devices which are cheaper to manufacture
and operate [1]. Although light-emitting diodes (LEDs) and organic light-emitting diodes (OLEDs) lead
the market, light-emitting electrochemical cells (LECs) offer a promising alternative [2,3]. LECs employ
ionic transition metal compounds (iTMCs) as the light-emitting materials, the most commonly
encountered of which are cyclometallated iridium(III) complexes [2,4] and heteroleptic [Cu(PˆP)(NˆN)]+

complexes [5] in which PˆP is a wide bite-angle bisphosphane [6], such as xantphos and POP (Scheme 1),
and NˆN is typically a 2,2′-bipyridine (bpy) or 1,10-phenanthroline (phen) chelating ligand. This last
class of compound follows from the seminal work of McMillin and coworkers, who observed
that [Cu(PˆP)(NˆN)]+ complexes exhibit low-lying metal-to-ligand charge transfer (MLCT) excited
states [7,8]. More recently, it has been demonstrated that many [Cu(PˆP)(NˆN)]+ complexes exhibit
thermally activated delayed fluorescence (TADF) [9,10], and this has increased interest in this family of
copper(I) emitters. Triplet and singlet excited states are statistically present in a 3:1 ratio, and, in TADF,
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there is a fast intersystem crossing from the lowest-lying singlet excited state (S1) to the triplet excited
state (T1). The T1 state is long-lived, with a relatively slow phosphorescence. If the energy gap between
the S1 and T1 states is small, thermal repopulation of the S1 state via a reverse intersystem crossing
can occur, leading to enhanced fluorescence from the S1 state and an increased photoluminescence
quantum yield (PLQY).
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electroluminescence (EL) performances have been achieved using bpy ligands containing simple 
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lead to high PLQY values [13,14] and LEC performances. For example, a maximum luminance of 53 
cd m−2 was observed in a LEC containing [Cu(POP)(6,6′-Me2bpy)][PF6] in the emissive layer [13]. 
Considering photoluminescence data for powdered samples, there is a significant improvement in 
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6-methyl-2,2'-bipyridine, 6,6'-Me2bpy = 6,6'-dimethyl-2,2'-bipyridine). These data indicate that the 
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emission. In the case of the POP complex, there is a further enhancement when a second methyl group 
is introduced, but this is less pronounced in the case of the xantphos-containing analogue. Much of 
the effort in ligand design has emphasized electronic tuning through substituents attached at the 4- 
and 6-positions of the pyridine rings. In contrast, substitution at the 5-position has a similar inductive 
but a slightly different resonance electronic effect (6-Me, σ –0.17, σI –0.04, σR –0.04; 5-Me, σ –0.07, σI –
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Scheme 1. The structures of xantphos (4,5-bis(diphenylphosphanyl)-9,9-dimethyl-9H-xanthene,
IUPAC PIN (9,9-dimethyl-9H-xanthene-4,5-diyl)bis(diphenylphosphane)) and POP
(bis(2-(diphenylphosphanyl)phenyl)ether, IUPAC PIN oxydi(2,1-phenylene)]bis(diphenylphosphane)).
The labelling scheme is used for the NMR spectroscopic assignments; the PPh2 phenyl rings are
labelled D.

Since the potential for copper(I) iTMCs as light-emitting components in LECs was first
demonstrated [11,12], xantphos and POP have been combined with many structurally and electronically
diverse diimine ligands [5]. Some of the highest PLQY values and the best device electroluminescence
(EL) performances have been achieved using bpy ligands containing simple substituents, including
6-alkyl and 6,6′-dialkyl groups [13,14], 6-alkyloxy and 6-alkylthio substituents [15], 6,6′-bis(alkyloxy)
groups [16] and 6,6′-dihalo substituents [17]. Methyl substituents, in particular, lead to high
PLQY values [13,14] and LEC performances. For example, a maximum luminance of 53 cd
m−2 was observed in a LEC containing [Cu(POP)(6,6′-Me2bpy)][PF6] in the emissive layer [13].
Considering photoluminescence data for powdered samples, there is a significant improvement
in quantum yield on going from [Cu(POP)(bpy)][PF6] (3% [17]), to [Cu(POP)(6-Mebpy)][PF6]
(9.5% [13]) or [Cu(POP)(6,6′-Me2bpy)][PF6] (43.2% [13]), and from [Cu(xantphos)(bpy)][PF6]
(1.7% [17]) to [Cu(xantphos)(6-Mebpy)][PF6] (34% [14]) or [Cu(xantphos)(6,6′-Me2bpy)][PF6] (37% [14])
(6-Mebpy = 6-methyl-2,2′-bipyridine, 6,6′-Me2bpy = 6,6′-dimethyl-2,2′-bipyridine). These data indicate
that the introduction of at least one methyl group into the 6-position of bpy is beneficial for enhanced
emission. In the case of the POP complex, there is a further enhancement when a second methyl
group is introduced, but this is less pronounced in the case of the xantphos-containing analogue.
Much of the effort in ligand design has emphasized electronic tuning through substituents attached
at the 4- and 6-positions of the pyridine rings. In contrast, substitution at the 5-position has a
similar inductive but a slightly different resonance electronic effect (6-Me, σ –0.17, σI –0.04, σR –0.04;
5-Me, σ –0.07, σI –0.04, σR –0.14) [18,19] but significantly changes the steric demands of the ligand.
We were interested in comparing complexes containing the NˆN ligand 5,6′-dimethyl-2,2′-bipyridine
(5,6′-Me2bpy) with those containing 6-Mebpy or (isomeric) 6,6′-Me2bpy. Here we describe the synthesis,
characterization, and photophysical and electrochemical properties of [Cu(POP)(5,6′-Me2bpy)][PF6]
and [Cu(xantphos)(5,6′-Me2bpy)][PF6] and assess the effects of introducing the second methyl group
into the 5- rather than the 6-position.

2. Results and Discussion

2.1. Synthesis and Structural Characterization of 5,6′-Me2bpy

The ligand 5,6′-Me2bpy has previously been prepared in 66% overall yield using a Stille
coupling [20,21] but we preferred to develop a tin-free approach. The palladium-catalyzed
cross-coupling shown in Scheme 2 (in which the intermediate is made in situ and was not isolated)
yielded 5,6′-Me2bpy, after work up, in 48% yield. Although the yield is lower than those reported
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for the Stille route [20,21], we consider that the procedure described here is advantageous in that no
intermediate organometal reagent needs to be isolated. The 1H NMR spectrum (assigned using COSY
and NOESY methods) agreed with that published [20], and the 13C{1H} NMR spectrum (not previously
reported) was assigned using HMQC and HMBC methods.
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distances are 3.68 and 3.69 Å, which are similar to the sum of the van der Waals radii for CMe and Csp2 
(3.70 Å) [22]. We consider the CMe…Cpy rather than the HMe…Cpy distances because the H atoms of the 
methyl group are in calculated positions. When the lattice is viewed along the a-axis, we observe an 
assembly into zigzag chains (Figure 2b). The latter features a close interaction between the 5-methyl 
substituent and the 6-substituted pyridine (py) ring of an adjacent molecule. The closest CMe…Cpy 
separation is 3.79 Å, which is slightly longer than the sum of the CMe and Csp2 van der Waals radii 
[22]. The relationship between the zigzag chains and the centrosymmetric pairs of molecules can be 
appreciated by comparing Figure 2a,b. 

 
Figure 1. ORTEP representation of the structure of 5,6'-Me2bpy with ellipsoids plotted at a 40% 
probability level. Selected bond lengths: N1–C1 = 1.343(2), N1–C6 = 1.347(2), N2–C7 = 1.341(2), N2–
C12 = 1.338(2), C1–C2 = 1.503(2), C10–C11 = 1.504(2) Å. 

Scheme 2. Synthesis of 5,6′-Me2bpy. Conditions: (i) nBuLi followed by ZnBr2, THF, −78 ◦C, 2 h;
(ii) 2-bromo-5-methyl-2,2′-bipyridine, 5 mol% [Pd(PPh3)4], THF, 80 ◦C, 60 h. Ring labelling is for NMR
spectroscopic assignments.

Single crystals of 5,6′-Me2bpy were obtained by diffusion of cyclohexane into an ethyl acetate
solution of the compound. 5,6′-Me2bpy crystallizes in the monoclinic space group P21/n and the
structure is shown in Figure 1. The compound adopts the expected trans-conformation and the angle
between the least-squares planes through the two pyridine rings is 16.5◦. Bond lengths and angles are
unexceptional, and selected bond lengths are listed in the caption to Figure 1. The molecules pack
in centrosymmetric pairs (Figure 2a, pairs of molecules A/B, B/A’, and A’/B’). The first interaction
involves face-to-face π-stacking of pyridine rings between molecules A/B and A’/B’. The distance
between the planes of the pyridine rings containing N2 and N2i (symmetry code i = 1 – x, 1 – y,
1 – z) is 3.46 Å, and the intercentroid distance is 3.73 Å. For the second pairing (B/A’ in Figure 2a),
a CMe–H . . . π interaction is important with a CMe . . . centroid distance of 3.51 Å. The shortest
CMe . . . Cpy distances are 3.68 and 3.69 Å, which are similar to the sum of the van der Waals radii
for CMe and Csp2 (3.70 Å) [22]. We consider the CMe . . . Cpy rather than the HMe . . . Cpy distances
because the H atoms of the methyl group are in calculated positions. When the lattice is viewed along
the a-axis, we observe an assembly into zigzag chains (Figure 2b). The latter features a close interaction
between the 5-methyl substituent and the 6-substituted pyridine (py) ring of an adjacent molecule.
The closest CMe . . . Cpy separation is 3.79 Å, which is slightly longer than the sum of the CMe and Csp2

van der Waals radii [22]. The relationship between the zigzag chains and the centrosymmetric pairs of
molecules can be appreciated by comparing Figure 2a,b.
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Figure 1. ORTEP representation of the structure of 5,6′-Me2bpy with ellipsoids plotted at a 40%
probability level. Selected bond lengths: N1–C1 = 1.343(2), N1–C6 = 1.347(2), N2–C7 = 1.341(2),
N2–C12 = 1.338(2), C1–C2 = 1.503(2), C10–C11 = 1.504(2) Å.
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Figure 2. (a) Centrosymmetric pairs of 5,6′-Me2bpy molecules, colored by symmetry operation; see text
for reference to the labels A, B, A′ and B′. (b) View down the a-axis showing zigzag chain arrangements
of 5,6′-Me2bpy.

2.2. Synthesis and Characterization of [Cu(POP)(5,6′-Me2bpy)][PF6] and [Cu(xantphos)(5,6′-Me2bpy)][PF6]

The syntheses of [Cu(POP)(5,6′-Me2bpy)][PF6] and [Cu(xantphos)(5,6′-Me2bpy)][PF6] were
carried out by either sequential (for POP) or simultaneous (for xantphos) addition of the bisphosphane
and 5,6′-Me2bpy ligands to [Cu(MeCN)4][PF6]. This is a standard procedure for the different
PˆP ligands, and the reasons for the different strategies have previously been detailed [14,15].
The POP and xantphos-containing complexes were isolated in yields of 74.4% and 89.6%, respectively.
The electrospray mass spectrum of each compound exhibited a base peak corresponding to the
[M–PF6]+ ion (m/z 785.2 for [Cu(POP)(5,6′-Me2bpy)]+ and m/z 825.3 for [Cu(xantphos)(5,6′-Me2bpy)]
(Figures S1 and S2; see the Supplementary Materials).

Single crystals of [Cu(POP)(5,6′-Me2bpy)][PF6]·Me2CO and Cu(xantphos)(5,6′-
Me2bpy)][PF6]·0.5CH2Cl2 0.75Et2O were grown by diffusion of Et2O into an acetone or dichloromethane
solution of the POP- and xantphos-containing compounds, respectively. The compounds crystallize
in the monoclinic space groups P21/c and P21/n, respectively, and the structures of the cations are
presented in Figure 3. Bond parameters for the copper(I) coordination spheres are listed in Table 1 along
with Houser’s τ4 parameter [23]. The latter may be used to assess the distortion of the copper(I) centre
away from Td symmetry (τ4 = 1.00) towards C3v (τ4 = 0.85), C2v see-saw geometries (τ4 ≤ 0.64) and
finally square-planar (τ4 = 0.00). The large P–Cu–N angles of 131.84(6)◦ in [Cu(POP)(5,6′-Me2bpy)]+

and 120.61(7)◦ and 116.05(7)◦ in [Cu(xantphos)(5,6′-Me2bpy)]+ contribute to values of τ4 (Table 1) that
are close to τ4 = 0.85, calculated for a C3v (trigonal pyramidal) geometry. In both complex cations,
the 5,6′-Me2bpy ligand is positioned with the 5-methylpyridine ring facing the backbone of the
bisphosphane ligand, and, in [Cu(xantphos)(5,6′-Me2bpy)]+, this results in the C51–H51 unit being
accommodated within the bowl-shaped cavity of the xanthene unit (Figure 4a). Considering the
centroids of the two outer rings of the xanthene unit, the C51–H51 . . . centroid distances are 3.01 and
3.22 Å, consistent with C–H . . . π interactions [24]. We note that, in many of the crystal structures
of [Cu(xantphos)(6-Xbpy)][PF6], in which 6-Xbpy is a 6-substituted-2,2′-bipyridine, the asymmetric
6-Xbpy ligand is oriented with the X group (X = Me, Et, OMe, OEt, OPh, SMe, SEt, SPh, Br [14,17,25,26])
lying over the xanthene bowl, rather than being remote from it. Examples of this alternative
configuration are less commonly encountered in the solid state [14,27,28], and, in several structures,
disordering indicates little energy difference between the two possible orientations [25,29]. Thus, it is
noteworthy that the 5,6′-Me2bpy ligand exhibits a preference for an orientation with the 6-methyl
group remote from the xanthene unit. A possible explanation is the combined effects of the C–H . . . π

interactions described above and weak interactions between the 5-methyl substituent and the arene
rings of the xanthene unit. The closest CMe . . . Carene distance is 4.12 Å which, although greater than
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the sum of the CMe and Csp2 van der Waals radii [22], may indicate a stabilizing influence. As in the
earlier discussion of the structure of the free ligand, we choose to use the CMe . . . Carene distance rather
than the HMe . . . Carene separation because the H atoms of the methyl group are in calculated positions.
Intramolecular π-stacking interactions are considered to be important in [Cu(PˆP)(NˆN)]+ complexes
in terms of contributing towards enhanced PLQY values [30], and, in [Cu(xantphos)(NˆN)]+ cations,
face-to-face π-stacking interactions are commonly observed between two phenyl rings of different
PPh2 units [15]. However, in [Cu(xantphos)(5,6′-Me2bpy)]+, the angle between the planes of the
phenyl rings containing atoms C7 and C34 (Figure 3b) is too large (39.5◦) for a meaningful interaction.
In contrast, in [Cu(POP)(NˆN)]+ cations, π-stacking between a phenyl ring and one arene ring of the
O(C6H4)2-unit in the POP ligand is often a feature in the solid state, and [Cu(POP)(5,6′-Me2bpy)]+

is no exception. Figure 4b shows the stacking of the rings containing atoms C3 and C9; the angle
between the ring-planes is 14.7◦, and the distance between the ring-centroids is 3.80 Å.
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Figure 3. The structures of (a) the [Cu(POP)(5,6′-Me2bpy)]+ cation in [Cu(POP)(5,6′-
Me2bpy)][PF6]·Me2CO and (b) the [Cu(xantphos)(5,6′-Me2bpy)]+ cation in [Cu(xantphos)(5,6′-
Me2bpy)][PF6]·0.5CH2Cl2·0.75Et2O. Ellipsoids are plotted at a 40% probability level, and H atoms are
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Figure 4. Space-filling representations are used to highlight (a) the accommodation of the C51–H51
unit (next to the 5-methyl substituent) within the bowl-shaped cavity of the xanthene unit in
[Cu(xantphos)(5,6′-Me2bpy)]+, and (b) face-to-face π-stacking of the arene rings containing C3 and C9
in [Cu(POP)(5,6′-Me2bpy)]+.
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Table 1. Bond lengths and angles in the coordination sphere of each [Cu(PˆP)(5,6′-Me2bpy)]+ cation,
and values of the τ4 parameter.

Parameter [Cu(POP)(5,6′-Me2bpy)]+ [Cu(xantphos)(5,6′-Me2bpy)]+

Cu–N/Å 2.075(2), 2.089(2) 2.053(2), 2.105(2)
Cu–P/Å 2.2967(7), 2.2517(7) 2.2488(8), 2.2555(8)

P–Cu–P/o 113.48(3) 117.36(3)
N–Cu–N/o 79.90(8) 80.02(9)
N–Cu–P/o 131.84(6), 108.61(6), 110.64(6), 103.82(6) 120.61(7), 116.05(7), 103.55(7), 110.47(7)

τ4
1 0.83 0.87

1 τ4 parameter, see reference [23].

The solid-state structures discussed above assist in an interpretation of the solution NMR
spectroscopic properties of the copper(I) compounds. 1H, 13C{1H}, COSY, NOESY, HMBC and
HMQC-NMR spectra were recorded, allowing full assignment of the 1H and 13C{1H} NMR resonances in
the complexes. 1D and 2D spectra of the compounds are shown in Figures 5 and 6, and in Figures S3–S10
in the Supplementary Materials. Figure 5 displays the aromatic regions of the 1H NMR spectra of the
two compounds. Figure 5 reveals a substantial shift to lower frequency for the signal for proton A6
on going from [Cu(POP)(5,6′-Me2bpy)][PF6] to [Cu(xantphos)(5,6′-Me2bpy)][PF6]. This is consistent
with the 5,6′-Me2bpy ligand adopting the same configuration in solution as in the solid state, such that
proton A6 is affected by the ring currents of the two arene rings of the xanthene unit. The appearance
of two sets of signals for the PPh2 phenyl D-rings (labelled D and D’ in Figure 5 and Figure S5)
is consistent with 1H and 13C-NMR spectroscopic data for related POP and xantphos-containing
copper(I) complexes; see, for example, [14,15,28,31,32]. In [Cu(POP)(5,6′-Me2bpy)][PF6], exchange
(EXSY) peaks are observed between pairs of protons D2/D2’ and D3/D3’ (Figure 6). Corresponding
peaks are not observed in the xantphos-containing complex (Figure S10). NOESY crosspeaks are
observed in [Cu(POP)(5,6′-Me2bpy)][PF6] between protons D2/A6 and D2’/A6, and between D2/Me-B6
and D2’/Me-B6, indicating that the flexible POP backbone undergoes dynamic behavior on the NMR
timescale at 298 K, which exchanges the axial and equatorial phenyl rings of each PPh2 unit [14,28].Molecules 2020, 25, x FOR PEER REVIEW 7 of 15 
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exhibits an irreversible copper-centered oxidation with Epc values of +0.81 and 0.89 V, respectively, 
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compared with oxidation potentials for closely related compounds. Note that a common solvent was 
not used for all the compounds in Table 2. Nonetheless, the data for the xantphos-containing 
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(a) [Cu(POP)(5,6′-Me2bpy)][PF6] and (b) [Cu(xantphos)(5,6′-Me2bpy)][PF6]. See Schemes 1 and 2 for
the atom labelling. Scale: δ/ppm.
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Figure 6. Part of the NOESY spectrum (500 MHz, acetone-d6, 298 K) of [Cu(POP)(5,6′-Me2bpy)][PF6]
showing exchange (EXSY) peaks between pairs of phenyl rings D2/D2’ and D3/D3’.

2.3. Electrochemical and Photophysical Properties

Both [Cu(POP)(5,6′-Me2bpy)][PF6] and [Cu(xantphos)(5,6′-Me2bpy)][PF6] are redox active
and their electrochemical behavior was investigated in propylene carbonate solution using cyclic
voltammetry (Figure 7). Each of [Cu(POP)(5,6′-Me2bpy)][PF6] and [Cu(xantphos)(5,6′-Me2bpy)][PF6]
exhibits an irreversible copper-centered oxidation with Epc values of +0.81 and 0.89 V, respectively,
and a reversible bpy-centered reductive process with E1/2 values of −2.12 V and −2.10 V, respectively
(Epa − Epc = 100 V in each case). Data for the oxidative process are presented in Table 2 and are
compared with oxidation potentials for closely related compounds. Note that a common solvent
was not used for all the compounds in Table 2. Nonetheless, the data for the xantphos-containing
complexes are consistent with a trend of copper(I) oxidation occurring at the highest potential for
[Cu(xantphos)(6,6′-Me2bpy)]+ and following a sequence according to the NˆN ligand of 6,6′-Me2bpy >

5,6′-Me2bpy > 6-Mebpy > bpy. Copper(I)-to-copper(II) oxidation is accompanied by a geometrical
change from tetrahedral to square-planar, and the trend in the oxidation potentials is consistent with
decreasing steric hindrance in the coordination sphere of the copper center along the series from
6,6′-Me2bpy to 5,6′-Me2bpy to 6-Mebpy to bpy. The 5,6′-Me2bpy also fits into this pattern for the
POP-containing compounds, although (from the literature data) the trend from 6-Mebpy to bpy is less
well defined than for the xantphos family of compounds (Table 2).
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Me2bpy)][PF6] in propylene carbonate at a scan rate of 0.1 V s−1 referenced to internal Fc/Fc+ = 0 V.
The second of three reproducible cycles is shown.
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Table 2. Copper(I)/(II) oxidation potentials in [Cu(POP)(5,6′-Me2bpy)][PF6] and [Cu(xantphos)(5,6′-
Me2bpy)][PF6] in propylene carbonate solutions (ca. 10−4 mol dm–3); values are referenced to internal
Fc/Fc+ = 0.0 V; [nBu4N][PF6] as supporting electrolyte and a scan rate of 0.1 V s–1. Values are compared
to literature data (versus Fc/Fc+) for related compounds; see footnotes for solvents.

Compound E1/2 /V Epc–Epa/mV Epc
a/V Reference

[Cu(POP)(5,6′-Me2bpy)][PF6] +0.81 This work
[Cu(xantphos)(5,6′-Me2bpy)][PF6] +0.89 This work

[Cu(POP)(6,6′-Me2bpy)][BF4] +0.82 b – d [33]
[Cu(xantphos)(6,6′-Me2bpy)][PF6] +0.90 150 [29]

[Cu(POP)(6-Mebpy)][PF6] +0.69 – d [13]
[Cu(xantphos)(6-Mebpy)][PF6] +0.85 c 100 [34]

[Cu(POP)(bpy)][PF6] +0.72 110 [29]
[Cu(POP)(bpy)][BF4] +0.72 b – d [33]

[Cu(xantphos)(bpy)][PF6] +0.76 110 [29]
[Cu(xantphos)(bpy)][BF4] +0.67 b – d [33]

a The value of Epc is stated when the process is irreversible. b Recorded in MeCN. c Recorded in CH2Cl2.
d No Epc − Epa value reported.

The solution absorption spectra of the heteroleptic copper(I) compounds (Figure 8) show intense
absorptions below 330 nm arising from ligand-based π*←π transitions. The broad absorption band with
λmax at 376 nm in [Cu(POP)(5,6′-Me2bpy)][PF6] and at 374 nm in [Cu(xantphos)(5,6′-Me2bpy)][PF6]
arises from MLCT transitions. The MLCTλmax values for the 5,6′-Me2bpy complexes are similar to those
for [PF6]− or [BF4]– salts of [Cu(POP)(6,6′-Me2bpy)]+ (372 nm [33]) and [Cu(xantphos)(6,6′-Me2bpy)]+

(375 nm [33], 378 nm [14]), but are blue-shifted with respect to those of salts of [Cu(POP)(bpy)]+

(389 nm [12], 385 nm [33]), [Cu(xantphos)(bpy)]+ (383 nm [29], 382 nm [33]), [Cu(POP)(6-Mebpy)]+

(380 nm [13]) and [Cu(xantphos)(6-Mebpy)]+ (379 nm [14]). Since the LUMO of a [Cu(PˆP)(NˆN)]+

complex is localized on the NˆN ligand [14], the general trends in λmax are consistent with a
destabilization of the LUMO upon introducing electron-donating methyl substituents into the
bpy domain.
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Me2bpy)][PF6] in CH2Cl2 (2.5 × 10–5 mol dm–3) (solid lines) and solid-state emission spectra
(dotted lines).

Both aerated and deaerated solutions of [Cu(POP)(5,6′-Me2bpy)][PF6] and [Cu(xantphos)(5,6′-
Me2bpy)][PF6] are weakly emissive when excited into the MLCT band at 375 and 374 nm, respectively.
Values of λem

max were 626 and 622 nm (yellow emitters), respectively, PLQY values were around
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1%, and excited state lifetimes (τ) ≤ 1 µs. Low PLQYs in solution, even in non-coordinating
solvents, have been attributed to the copper(I) complex undergoing exciplex formation, which favors
non-radiative decay [35]. Excitation of powdered samples of the compounds (λexc = 365 nm) leads to
emission maxima at higher energies than the solution samples while maintaining a yellow emission
color. Such a blue-shift is typical of [Cu(PˆP)(NˆN)]+ complexes [36,37]. Table 3 summarizes the
solid-state emission data, and the emission spectra are shown in Figure 8. Values of PLQY and
τ for [Cu(POP)(5,6′-Me2bpy)][PF6] and [Cu(xantphos)(5,6′-Me2bpy)][PF6] are lower than for their
6,6′-Me2bpy-containing analogues (Table 3). The blue-shift in the emission maximum on going from
the heteroleptic complexes containing bpy to those with 6-Mebpy, 5,6′-Me2bpy or 6,6′-Me2bpy is
consistent with the electron-donating character of the methyl substituents. However, comparing values
of λem

max for [Cu(PˆP)(5,6′-Me2bpy)][PF6] and [Cu(PˆP)(6,6′-Me2bpy)][PF6] indicates that a red-shift in
the emission accompanies a change from 6,6′-Me2bpy to 5,6′-Me2bpy, and this in turn is consistent with
the introduction of an electron-donating methyl group in a position meta to the N-donor stabilizing
the LUMO of the complex. The PLQY values in Table 3 underline the importance of a second methyl
group adjacent to the coordination site of the bpy ligand.

Table 3. Solid-state emission data (298 K) for the copper(I) compounds (λexc = 365 nm) compared to
data for related compounds.

Compound λem
max/nm PLQY/% a τ/µs a Reference

[Cu(POP)(5,6′-Me2bpy)][PF6] 553 12 6 b This work

[Cu(xantphos)(5,6′-Me2bpy)][PF6] 555 11 5 b This work

[Cu(POP)(6,6′-Me2bpy)][PF6] 535 43.2 10.5 c [13]

[Cu(xantphos)(6,6′-Me2bpy)][PF6] 539 37 11 c [14]

[Cu(POP)(6-Mebpy)][PF6] 567 9.5 2.6 b [13]

[Cu(xantphos)(6-Mebpy)][PF6] 547 34 9.6 b [14]

[Cu(POP)(bpy)][PF6] 580 3.0 1.5 c [17]

[Cu(xantphos)(bpy)][PF6] 587 1.7 1.5 c [17]
a Values from the literature are quoted as reported, hence the inconsistency in the number of significant figures.
b A biexponential fit to the decay was used, using the equation: τ = ΣAiτi/ΣAi where Ai is the pre-exponential factor
for the lifetime. Values of A1, A2, τ1 and τ2 are given in Table S1. c A monoexponential fit to the decay was used.

3. Materials and Methods

3.1. General

1H, 13C{1H} and 31P{1H} NMR spectra were recorded at 298 K on a Bruker Avance III-500 NMR
spectrometer (Bruker BioSpin AG, Fällanden, Switzerland). 1H and 13C-NMR chemical shifts were
referenced to residual solvent peaks with respect to δ(TMS) = 0 ppm and 31P NMR chemical shifts
with respect to δ(85% aqueous H3PO4) = 0 ppm. A Shimadzu LCMS-2020 (Shimadzu Schweiz GmbH,
4153 Reinach, Switzerland) was used to record electrospray ionization (ESI) mass spectra. Solution
absorption and emission spectra were recorded using Shimadzu UV-2600 and Shimadzu RF-6000
instruments (Shimadzu Schweiz GmbH, 4153 Reinach, Switzerland), respectively. A Hamamatsu
absolute photoluminescence quantum yield spectrometer C11347 Quantaurus-QY was used to measure
PLQYs, and emission lifetimes and powder emission spectra were measured using a Hamamatsu
Compact Fluorescence Lifetime Spectrometer C11367 Quantaurus-Tau with an LED light source
(λexc = 365 nm).

Electrochemical measurements were carried out using a CH Instruments 900B potentiostat
(CH Instruments, Texas 78738, USA) with [nBu4N][PF6] (0.1 M) as supporting electrolyte and at a scan
rate of 0.1 V s–1. The working electrode was glassy carbon, the reference electrode was a leakless
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Ag+/AgCl (eDAQ ET069-1) (eDAQ Europe, 01-471 Warszawa, Poland), and the counter-electrode was
a platinum wire. Final potentials were internally referenced with respect to the Fc/Fc+ couple.

POP and xantphos were purchased from Acros (Fisher Scientific AG, 4153 Reinach Switzerland)
and Fluorochem (Chemie Brunschwig AG, 4052 Basel, Switzerland), respectively. [Cu(MeCN)4][PF6]
was prepared by the literature route [38].

3.2. Synthesis of 5,6′-Me2bpy

nBuLi (4.66 mL, 11.7 mmol, 2.5 M in n-hexane, 1.1 eq.) was added to a degassed solution of
2-bromo-6-methylpyridine (2.01 g, 11.7 mmol, 1.1 eq.) in dry THF (10 mL) at −78 ◦C under a nitrogen
atmosphere. The mixture was stirred for 30 min during which time it turned deep red. Then, a solution
of ZnCl2 in Et2O (10.6 mL, 10.6 mmol, 1.0 M in Et2O, 1.0 eq.) was added dropwise and the reaction
mixture was stirred for 1.5 h. It was then allowed to warm to ambient temperature (ca. 22 ◦C)
and was added dropwise to a solution of 2-bromo-5-methylpyridine (20.1 g, 11.7 mmol, 1.1 eq.) in
dry THF (30 mL) containing [Pd(PPh3)4] (612 mg, 0.53 mmol, 0.05 eq.). This reaction mixture was
heated to 80 ◦C and this temperature was maintained with stirring for 60 h. After cooling to ambient
temperature, an aqueous solution of NaOH (ca. 100 mL, 3 M) was added until most of the precipitate
had dissolved. The mixture was extracted with CH2Cl2 (3 × 50 mL) and the combined organic fractions
were washed with aqueous NaOH, and then dried over MgSO4. The solvent was then removed under
reduced pressure. The crude material was purified by column chromatography (neutral alumina,
cyclohexane:ethyl acetate 40:1, followed by a second column with silica, cyclohexane:ethyl acetate 20:1)
to give 5,6′-Me2bpy (937 mg, 5.08 mmol, 48%) as a white solid. 1H NMR (500 MHz, CDCl3) δ/ppm:
8.52–8.48 (m, 1H, HA6), 8.29 (d, J = 8.1 Hz, 1H, HA3), 8.13 (d, J = 7.9 Hz, 1H, HB3), 7.68 (t, J = 7.7 Hz,
1H, HB4), 7.61 (ddd, J = 8.1, 2.2, 0.7 Hz, 1H, HA4), 7.14 (d, J = 7.6 Hz, 1H, HB5), 2.63 (s, 3H, HMe-B6),
2.39 (s, 3H, HMe-A5). 13C{1H} NMR (126 MHz, CDCl3) δ/ppm: 158.0 (CB6), 155.8 (CB2), 154.0 (CA2),
149.7 (CA6), 137.6 (CA4), 137.2 (CB4), 133.3 (CA5), 123.1 (CB5), 120.9 (CA3), 118.0 (CB3), 24.8 (CMeB6),
18.5 (CMeA5). ESI MS: m/z 184.1 [M + H]+ (base peak, calc. 184.1). Found: C 78.01, H 6.75, N 15.40;
C12H12N2 requires C 78.23, H 6.57, N 15.21%.

3.3. [Cu(POP)(5,6′-Me2bpy)][PF6]

[Cu(MeCN)4][PF6] (93.2 mg, 0.250 mmol, 1.0 eq.) and POP (148 mg, 0.275 mmol, 1.1 eq.) were
dissolved in CH2Cl2 (30 mL) and the reaction mixture was stirred for 1.5 h at room temperature
(ca. 22 ◦C). 5,6′-Me2bpy (46.1 mg, 0.250 mmol, 1.0 eq.) was then added, and stirring was continued
for another 1.5 h. The yellow solution was filtered, and the solvent volume of the filtrate was
reduced (under reduced pressure) and added to n-hexane (ca. 40 mL) to precipitate the product.
The precipitate was separated and was washed with n-hexane (4 × 10 mL) using sonication and dried
under vacuum. [Cu(POP)(5,6′-Me2bpy)][PF6] was isolated as a yellow solid (173 mg, 0.186 mmol,
74.4%). 1H NMR (500 MHz, acetone-d6) δ/ppm: 8.39 (d, J = 8.4 Hz, 1H, HA3), 8.36 (d, J = 8.3 Hz, 1H, HB3),
8.21 (s, 1H, HA6), 8.06 (t, J = 7.8 Hz, 1H, HB4), 7.86 (dd, J = 8.4, 2.1 Hz, 1H, HA4), 7.48–7.42 (m, 3H, HB5+C5),
7.42–7.33 (m, 4H, HD4+D4’), 7.31 (t, J = 7.5 Hz, 4H, HD3), 7.28–7.18 (m, 10H, HC6+D2+D3’), 7.15 (td, J = 7.5,
1.1 Hz, 2H, HC4), 7.05–6.97 (m, 4H, HD2’), 6.90 (m, 2H, HC3), 2.48 (s, 3H, HMe-B6), 2.11 (s, 3H, HMe-A5).
13C{1H} NMR (126 MHz, acetone-d6) δ/ppm: 159.6 (CB6), 158.9 (t, JPC = 6 Hz, CC1), 152.8 (t, JPC = 2 Hz,
CB2), 150.9 (t, JPC = 2 Hz, CA2), 150.4 (CA6), 140.0 (CB4), 139.9 (CA4), 137.0 (CA5) 135.0 (CC3),
134.2 (t, JPC = 8 Hz, CD2), 133.7 (t, JPC = 8 Hz, CD2’), 133.2 (CC5), 132.1 (overlapping CD1’+A3D1),
131.2 (CD4), 130.8 (CD4’), 129.8 (t, JPC = 4 Hz, CD3), 129.6 (t, JPC = 4 Hz, CD3’), 126.6 (CB5),
126.1 (t, JPC = 2 Hz, CC4), 125.0 (overlapping d, JPC = 14 Hz, CC2), 123.0 (CA3), 121.2 (CC6), 120.5 (CB3),
26.8 (CMe-B6), 18.2 (CMe-A5). 31P{1H} NMR (202 MHz, acetone-d6) δ/ppm: –12.5 (broad, FWHM ≈
450 Hz), –144.2 (septet, JPF = 707 Hz, [PF6]–). ESI-MS: m/z 785.20 [M–PF6]+ (base peak, calc. 785.19),
601.05 [Cu(POP)]+ (calc. 601.09). UV-Vis (CH2Cl2, 2.5 × 10–5 mol dm–3): λ/nm (ε/dm3 mol–1 cm–1)
253 (29,600), 293 (23,000), 316 (16,000), 376 (3,400). Found: C 62.03, H 4.87, N 2.68; C48H40CuF6N2OP3

requires C 61.90, H 4.33, N 3.01%.
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3.4. [Cu(xantphos)(5,6′-Me2bpy)][PF6]

[Cu(MeCN)4][PF6] (93.2 mg, 0.250 mmol, 1.0 eq.) was dissolved in CH2Cl2 (15 mL). A solution
of xantphos (145 mg, 0.250 mmol, 1.0 eq.) and 5,6′-Me2bpy (46.1 mg, 0.250 mmol, 1.0 eq.) was
added and the mixture turned orange then yellow while it was stirred for 1.5 h at room temperature
(ca. 22 ◦C). The yellow solution was filtered, and the solvent volume was reduced under vacuum.
Et2O was then added to precipitate the product, and the solid was collected by filtration, washed
with Et2O (4 × 10 mL) using sonication, and dried under vacuum. [Cu(5,6′-Me2bpy)(xantphos)][PF6]
was isolated as a yellow solid (218 mg, 0.224 mmol, 89.6%). 1H NMR (500 MHz, acetone-d6) δ/ppm:
8.45 (d, J = 8.0 Hz, 1H, HA3), 8.43 (d, J = 7.5 Hz, 1H, HB3), 8.13 (t, J = 7.8 Hz, 1H, HB4), 7.90−7.86
(overlapping m, 3H, HA4+C5), 7.62 (s, 1H, HA6), 7.52 (d, J = 7.7 Hz, 1H, HB5), 7.38 (t, J = 7.6 Hz,
2H, HD4/D4’), 7.35 (t, J = 7.2 Hz, 2H, HD4/D4’), 7.29 (t, J = 7.7 Hz, 2H, HC4), 7.23 (m, 4H, HD3’),
7.20 (m, 4H, HD3), 7.08 (m, 4H, HD2), 7.01 (m, 4H, HD2’), 6.60 (dtd, J = 7.6, 3.8, 1.4 Hz, 2H, HC3),
2.40 (s, 3H, HMe-B6), 2.05 (s, 3H, HMe-A5), 1.87 (s, 3H, HMe-xantphos), 1.77 (s, 3H, HMe-xantphos). 13C{1H}
NMR (126 MHz, acetone-d6) δ/ppm: 159.2 (CB6), 155.9 (t, JPC = 6 Hz, CC1), 152.5 (t, JPC = 2 Hz, CB2),
151.0 (t, JPC = 2 Hz, CA2), 149.6 (CA6), 140.3 (CB4), 140.2 (CA4), 137.1 (CA5), 135.1 (t, JPC = 2 Hz, CC6),
133.8 (t, JPC = 8 Hz, CD2’), 133.6 (t, JPC = 8 Hz, CD2), 132.6 (t, JPC = 17 Hz, CD1’), 132.3 (t, JPC = 17 Hz, CD1),
131.6 (CC3), 131.2 (CD4’), 131.0 (CD4), 129.8 (t, JPC = 5 Hz, CD3’), 129.8 (t, JPC = 5 Hz, CD3), 128.4 (CC5),
126.6 (CB5), 126.4 (t, JPC = 2.4 Hz, CC4), 123.3 (CA3), 121.4 (overlapping d, JPC = 14 Hz, CC2), 120.7 (CB3),
37.0 (CCq-xantphos), 28.7 (CMe-xantphos), 27.8 (CMe-xantphos), 26.9 (CMe-B6), 18.1 (CMe-A5). 31P{1H} NMR
(202 MHz, acetone-d6) δ/ppm: −12.1 (broad, FWHM ≈ 330 Hz), −144.2 (septet, JPF = 707 Hz, [PF6]−).
ESI-MS: m/z 825.25 [M − PF6]+ (base peak, calc. 825.22), 641.10 [Cu(xantphos)]+ (calc. 641.12). UV-Vis
(CH2Cl2, 2.5 × 10–5 mol dm–3): λ/nm (ε/dm3 mol–1 cm–1) 251 (35,000), 287 (29,700), 315 (14,000),
374 (3900). Found: C 62.82, H 4.54, N 2.97; C51H44CuF6N2OP3 requires C 63.06, H 4.57, N 2.88%

3.5. Crystallography

Single-crystal data for the ligand were collected on a STOE StadiVari diffractometer equipped
with a Pilatus300K detector and a Metaljet D2 source (GaKα radiation). Data reduction used STOE
software [39] and the structure was solved using Olex2 [40], ShelXT [41], and ShelXL v. 2014/7 [42].
For the copper(I) compounds, single-crystal data were collected on a Bruker APEX-II diffractometer
(CuKα radiation) with data reduction, solution and refinement using the programs APEX2 [43],
Superflip [44,45] and CRYSTALS [46]. Structure analysis including the ORTEP diagrams employed
the program Mercury CSD v. 4.1.1 [47,48]. For [Cu(xantphos)(5,6′-Me2bpy)][PF6], SQUEEZE [49] was
used to treat part of the solvent region, and an additional 0.75 Et2O was found that sums with the
0.5 CH2Cl2 that could be refined.

3.6. 5,6′-Me2bpy

C12H12N2, Mr = 184.24, colorless plate, monoclinic, space group P21/n, a = 6.4300(2), b = 19.2147(4),
c = 8.0931(2) Å, β = 91.147(2)o, V = 999.71(4) Å3, Dc = 1.224 g cm–3, T = 130 K, Z = 4,
µ(GaKα) = 0.369 mm−1. Total 36,616 reflections, 2030 unique (Rint = 0.0291). Refinement of 1952
reflections (130 parameters) with I > 2σ(I) converged at final R1 = 0.0564 (R1 all data = 0.0574),
wR2 = 0.1686 (wR2 all data = 0.1698), gof = 1.190. CCDC 2005673.

3.7. [Cu(POP)(5,6′-Me2bpy)][PF6].Me2CO

C51H46CuF6N2O2P3, Mr = 989.39, orange needle, monoclinic, space group P21/c, a = 9.5613(9),
b = 14.8515(13), c = 32.472(3) Å, β = 90.338(4)o, V = 4611.0(7) Å3, Dc = 1.425 g cm–3, T = 130 K,
Z = 4, µ(CuKα) = 2.227 mm–1. Total 31,246 reflections, 8211 unique (Rint = 0.029). Refinement of
7611 reflections (586 parameters) with I > 2σ(I) converged at final R1 = 0.0392 (R1 all data = 0.0420),
wR2 = 0.0529 (wR2 all data = 0.0536), gof = 0.9967. CCDC 2005674.
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3.8. [Cu(xantphos)(5,6′-Me2bpy)][PF6] .0.5CH2Cl2.0.75Et2O

C54.50H52.50ClCuF6N2O1.75P3, Mr = 1069.38, yellow block, monoclinic, space group P21/n,
a = 17.6502(15), b = 16.8504(15), c = 18.4582(16) Å, β = 104.685(3)o, V = 5310.4(8) Å3, Dc = 1.338 g cm–3,
T = 130 K, Z = 4, µ(CuKα) = 2.422 mm–1. Total 55,278 reflections, 9603 unique (Rint = 0.0319). Refinement
of 8839 reflections (608 parameters) with I > 2σ(I) converged at final R1 = 0.0544 (R1 all data = 0.0575),
wR2 = 0.1728 (wR2 all data = 0.1768), gof = 1.025. CCDC 2005675.

4. Conclusions

We have reported the synthesis and structural characterization of the 5,6′-Me2bpy
ligand, and the preparations and solution and solid-state characterizations of the heteroleptic
[Cu(POP)(5,6′-Me2bpy)][PF6] and [Cu(xantphos)(5,6′-Me2bpy)][PF6] compounds. Crystallographic
structure determinations of the complexes confirmed distorted tetrahedral copper(I) coordination
environments with the 5,6′-Me2bpy ligand oriented with the 5-methylpyridine ring directed towards
the (C6H4)2O unit of POP or the xanthene unit of xantphos. In the latter, this preference appears
to arise from C–H . . . π interactions involving both the 6-CH unit and the 5-methyl substituent in
the 5-methylpyridine ring and the arene rings of the xanthene unit. 1H NMR spectroscopic data
are consistent with this same orientation being preferred in solution. The electrochemical behavior
of [Cu(POP)(5,6′-Me2bpy)][PF6] and [Cu(xantphos)(5,6′-Me2bpy)][PF6] was investigated and the
copper(I) oxidation occurs at a lower potential than in corresponding complexes with 6,6′-Me2bpy.
[Cu(POP)(5,6′-Me2bpy)][PF6] and [Cu(xantphos)(5,6′-Me2bpy)][PF6] are yellow emitters in both
solution and the solid-state, and, for powdered samples, PLQY values of 12 and 11%, respectively,
and excited-state lifetimes of 5 and 6 µs, respectively, were observed. These values are lower than the
PLQY and τ values for [Cu(POP)(6,6′-Me2bpy)][PF6] and [Cu(xantphos)(6,6′-Me2bpy)][PF6] [13,14].
Our results underline the importance of the 6,6′-dimethyl substitution pattern in the bpy ligand for
enhancement of the PLQY in particular.

Supplementary Materials: The following are available online. Figures S1 and S2: mass spectra. Figures S3–S10:
NMR spectra. Table S1: Parameters for biexponential fit to the lifetime decays.
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