Hydrogen bond-mediated conjugates involving lanthanide diphthalocyanines and trifluoroacetic acid (LnPc₂@TFA): structure, photoactivity and stability

G Dyrda, M. Zakrzyk, M.A. Broda, T. Pędziński, G. Mele, Rudolf Słota

Table of Contents for Supplementary Information data

Page

1. UV-Vis spectra of LnPc ₂ in benzene	2
2. UV-Vis spectra of LnPc ₂ @TFA conjugates in benzene	2
3. The protonation process of LnPc ₂ complexes	3
4. Chemical stability of the LnPc ₂ @TFA conjugates	4
5. Structural considerations based on the DFT-created model	5
6. Fluorescence spectra of LnPc ₂ and LnPc ₂ @TFA in benzene	6
7. Singlet molecular oxygen related NIR emission spectra	8
8. The photodegradation process (UV-Vis spectra)	9
9. The photodegradation process (kinetic curves)	11
10. Quantum yield	12
11. The photodegradation product	12

1. UV-Vis spectra of LnPc2 in benzene

Figure S-1. UV-Vis spectra in benzene of (a) NdPc₂, (b) SmPc₂, (c)EuPc₂, (d) GdPc₂, (e) YbPc₂, (f) LuPc₂.

2. UV-Vis spectra of LnPc2@TFA conjugates in benzene

Figure S-2. UV-Vis spectra of the $LnPc_2@TFA$ conjugates in benzene, where Ln is for (a) Nd, (b) Sm, (c) Eu, (d) Gd, (e) Yb, (f) Lu.

3. The protonation process of LnPc₂ complexes

Figure S-3. Progress in protonation of LnPc₂ by TFA in benzene monitored by UV-Vis spectra; (a) NdPc₂, (b) SmPc₂, (c) EuPc₂, (d) GdPc₂, (e) YbPc₂, (f) LuPc₂

4. Chemical stability of the LnPc2@TFA conjugates

Figure S-4. The effect of TFA-protonation upon the chemical stability of $LnPc_2$ complexes manifested in the reaction of $LnPc_2@TFA$ conjugates with triethylamine (TEA). The electronic absorption spectra refer to the process of recovering of the initial $LnPc_2$ compounds

from their conjugates; (1) initial form $LnPc_2$ (green line), (2) the conjugate $LnPc_2@TFA$ (orange line), (3) recovery of the initial form after adding TEA to the (b) solution (black line). Note, that NdPc₂ completely decomposed during the reaction with TEA (hence no spectra have been shown).

5. Structural considerations based on the DFT-created model

Figure S-5. Calculated molecular structures based on the LuPc₂ model; (a) upper row from the left, featuring the macrocycles' virtual planes : $4N_p$, $4N_\mu$ and $8C_b$ (ref. Table 3, main text); (b) below, featuring the α , β and γ angles (ref. Table 3, main text).

6. Fluorescence spectra of LnPc2 and LnPc2@TFA in benzene

Figure S-6. Raw fluorescence emission spectra of the base $LnPc_2$ compounds and the $LnPc_2@TFA$ conjugates, measured in benzene.

7. Singlet molecular oxygen related NIR emission spectra

Figure S-7. Raw NIR phosphorescence emission spectra of ${}^{1}O_{2}$ (${}^{1}\Delta_{g}$) of the LnPc₂@TFA conjugates and LuPc₂, directly measured in benzene.

8. The photodegradation process (UV-Vis spectra)

Figure S-8a. Photodegradation of NdPc₂ and its TFA conjugate; I stage t = 0-280 min; II stage t = 280-780 min; (right) photolysis of NdPc₂@TFA, t = 30 min.

Figure S-8b. Photodegradation of SmPc₂ and its TFA conjugate; I stage t = 0.400 min; II stage t = 400-1200 min; (right) photolysis of SmPc₂@TFA, t = 100 min.

Figure S-8c. Photodegradation of $EuPc_2$ and its TFA conjugate; I stage t = 0-280 min; II stage t = 280-800 min; (right) photolysis of $EuPc_2@TFA$, t = 100 min.

Figure S-8d. Photodegradation of GdPc₂ and its TFA conjugate; I stage t = 0-300 min; II stage t = 300-700 min; (right) photolysis of EuPc₂@TFA, t = 100 min.

Figure S-8e. Photodegradation of YbPc₂ and its TFA conjugate; I stage t = 0-400 min; II stage t = 400-800 min; (right) photolysis of YbPc₂@TFA, t = 300 min.

Figure S-8f. Photodegradation of LuPc₂ and its TFA conjugate; I stage t = 0-400 min; II stage t = 400-850 min; (right) photolysis of LuPc₂@TFA, t = 300 min.

9. The photodegradation process (kinetic curves)

Figure S-9a. Photodegradation kinetic curves of $LnPc_2$ in benzene (ref. Table 5, main text); I stage, t = 0.140 min of UV-irradiation (left) and II stage, (degradation of the intermediate product), t = 140-600 min of UV-irradiation (right).

Figure S-9b. Photodegradation kinetic curves of LnPc₂@TFA conjugates in benzene (ref. Table 5, main text). Note the extremely fast decay of the Nd derivative.

10. Quantum yield

				/				
Ln	Nd	Sm	Eu	Gd	Yb	Lu		
LnPc ₂								
<i>t</i> , s	16800	24000	16800	18000	24000	24000		
$\Phi \times 10^3$	5.1	3.6	5.1	4.8	3.6	3.6		
LnPc ₂ @TFA								
<i>t</i> , s	1800	6000	6000	6000	18000	18000		
$\Phi \times 10^3$	45	14	14	14	4.8	4.8		

Table S-1. Photodegradation quantum yield (Φ) estimates. For LnPc₂ only the I stage was considered. $\Phi = \#$ molecules decomposed / # photons absorbed; *t* – irradiation time (s)

 $\Phi = \frac{\Delta S \cdot N_A \cdot c \cdot h}{I_{UV} \cdot A \cdot t \cdot \lambda}$

 ΔS – number of substrate moles decomposed (approximately 4·10⁻⁸ mol in each case) I_{UV} – irradiance (5·10⁻⁴ W/cm²)

A – surface area irradiated (2 cm²)

t – irradiation time (s)

 N_A – Avogadro constant 6.022 · 10²³ (mol⁻¹)

c – speed of light in vacuum 3·10⁸ (m/s)

h – Planck's constant 6.62·10⁻³⁴ (J · mol)

 λ – photon vavelength (313 nm and 366 nm photons were effectively absorbed)

Comment : the quantum yields reported in Table S-1 should be considered at rough estimate only, however the calculated values seem quite reliable and are in agreement with the kinetic parameters (effective photolysis rate constants, k) showed in Table 5 of the main text. In other words, they do confirm the investigated compounds represent relative stable molecular systems (in particular those including the Yb³⁺ and Lu³⁺ ions).

11. The photodegradation product

Figure S-10a. UV-Vis spectrum of the residue after photodegradation of SmPc₂ (a); reference spectrum of phthalimide (b); spectra were measured in benzene.

Figure S-10b. FTIR spectrum of the solid residue after photodegradation of SmPc₂ (a); reference spectrum of phthalimide (b); spectra were measured in a KBr pellet.