
molecules

Review

Industrial Hemp (Cannabis sativa subsp. sativa) as
an Emerging Source for Value-Added Functional Food
Ingredients and Nutraceuticals

H. P. Vasantha Rupasinghe 1,* , Amy Davis 1, Shanthanu K. Kumar 2, Beth Murray 1 and
Valtcho D. Zheljazkov 3

1 Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University,
Truro, NS B2N 5E3, Canada; A.Unicomb@dal.ca (A.D.); bt673844@dal.ca (B.M.)

2 Section of Horticulture, School of Integrative Plant Science, College of Agriculture and Life Sciences,
Cornell University, Ithaca, NY 14850, USA; sk3256@cornell.edu

3 Department of Crop and Soil Science, 431A Crop Science Building, 3050 SW Campus Way,
Oregon State University, Corvallis, OR 97331, USA; Valtcho.jeliazkov@oregonstate.edu

* Correspondence: vrupasinghe@dal.ca

Academic Editor: Severina Pacifico
Received: 5 August 2020; Accepted: 2 September 2020; Published: 7 September 2020

����������
�������

Abstract: Industrial hemp (Cannabis sativa L., Cannabaceae) is an ancient cultivated plant originating
from Central Asia and historically has been a multi-use crop valued for its fiber, food, and medicinal
uses. Various oriental and Asian cultures kept records of its production and numerous uses. Due to
the similarities between industrial hemp (fiber and grain) and the narcotic/medical type of Cannabis,
the production of industrial hemp was prohibited in most countries, wiping out centuries of learning
and genetic resources. In the past two decades, most countries have legalized industrial hemp
production, prompting a significant amount of research on the health benefits of hemp and hemp
products. Current research is yet to verify the various health claims of the numerous commercially
available hemp products. Hence, this review aims to compile recent advances in the science of
industrial hemp, with respect to its use as value-added functional food ingredients/nutraceuticals
and health benefits, while also highlighting gaps in our current knowledge and avenues of future
research on this high-value multi-use plant for the global food chain.
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1. Introduction

Industrial hemp (Cannabis sativa L., Cannabaceae) is a versatile herbaceous crop that has been
used for fiber, food, and medicinal purposes [1,2]. The cultivation of hemp dates back to China around
2700 BC and is believed to have then expanded across Asia, making its way to Europe 2000–2200 years
ago [3,4]. Historically, a multitude of products has been derived from the seeds, fiber, and wooden
core of the hemp plant [5]. As a traditional fiber crop, hemp is said to have lined the spine of the first
copy of the Bible and set Columbus’s sails with canvas and rope [3–5]. As a multi-use crop, hemp
is considered one of the oldest plants cultivated to provide nutritional and medicinal benefits [2,6].
The hemp seed, be it raw, cooked, or pressed into oil, has been well documented as a primitive source
of fiber, protein, and fat, with high nutritional value [3,6]. Furthermore, properties of hemp have
been used to aid in treating and preventing ailments for thousands of years in traditional oriental
medicine [3,4]. In recent years, the interest in investigating the potential use of industrial hemp in food
and nutraceuticals has been growing (Figure 1).
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1.1. Botany

Most researchers consider that Cannabis has only one species, C. sativa L. In the 1970s, Small
and Cronquist [7] separated it into two subspecies: subsp. indica, with relatively high amounts of the
psychoactive constituent delta-9-tetra-hydrocannabinol (THC), and subsp. sativa, with low amounts of
THC. The two subspecies can be further broken down into wild and domesticated varieties; under
subsp. sativa, var. sativa is domesticated and var. spontanea is wild, and under subsp. indica, var.
indica is domesticated and var. kafiristanica is wild [7]. According to these systematics, the modern
industrial hemp varieties would belong to subsp. sativa, and most medical Cannabis (also called
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“marijuana”) varieties would belong to subsp. indica. However, there are numerous hybrids blurring
the line. A contradiction to the above observation has also been reported [8]. Hemp and medical
Cannabis strains with 100% C. indica ancestry possessed higher genetic variance than strains with 100%
C. sativa ancestry. Another study using Random Amplified Polymorphic DNA markers of hemp and
medical Cannabis also indicated that hemp aligns more with C. indica than C. sativa [9]. Hillig [10] also
strongly opposed the C. sativa classification of hemp due to many Asian hemp accessions exhibiting
more commonalities with C. indica. Apart from indicating a high admixture between the C. sativa and
C. indica genetic pools, these results also suggest that the genetic lineage analysis did not conform to
the currently recognized classification, and we may have to revisit the taxonomy of these species to
better reflect new genetic information coming to light.

1.2. Sex Expression

Hemp is typically a dioecious, obligate cross-pollinated species with a diploid genome (2n = 20),
although monoecious types have been bred. It is genetically complex and therefore has significant
variability in phenotype and sex expression [11,12]. Also, research has shown significant intra- and
inter-cultivar karyotype variation among eight monoecious and two dioecious cultivars [13]. Plants may
be entirely female, entirely male, or a gradient of intermediate [14].

1.3. The Genetic Basis of the Difference between Hemp and Medical Cannabis

Industrial hemp and medical Cannabis have primarily been differentiated by their levels of THC
production. The cannabinoids (THC and cannabidiol [CBD, Figure 2]) profile and the morphology of the
plant are determined by the interaction of genetics and the environment. Genetically, medical Cannabis
possesses the BT allele that encodes for tetra-hydrocannabinolic acid synthase, while hemp produces
the BD allele encoding for canabidiolic acid (CBDA) synthase [15]. Furthermore, van Bakel et al. [16]
studied the transcriptome of female flowers from hemp and medical Cannabis, concluding that
there was an up-regulation in the entire THC production pathway in medical Cannabis compared
to hemp. This difference translates to producing upwards of 10% THC in many medical Cannabis
samples, whereas most hemp samples have a total THC level of 0.3% or less [17]. Some preliminary
studies indicated 27% genetic variation between hemp and medical Cannabis samples using Amplified
Fragment Length Polymorphisms and genetic variance in certain genomic regions [18,19].

Recent research indicates genome-wide differences that are not confined to the THC biosynthetic
pathway [8]. A principal component analysis plot of 81 medical Cannabis and 43 hemp samples
obtained from 14,301 single-nucleotide polymorphisms indicated a clear genetic structural difference
between hemp and medical Cannabis samples. The hemp samples were more heterogenous than
medical Cannabis, indicating the hemp samples came from a wide genome pool, whereas the medical
Cannabis samples had a relatively narrow genetic base [8]. Though there are known genetic structural
differences, a detailed examination of the genes involved in differentiation, and their corresponding
phenotype changes, will provide more input into the genetic basis of the differences between hemp
and medical Cannabis. Hemp is resurging in cultivation and production, so care must be taken to
conserve the genetic diversity to ensure the long-term survival of the crop.

This review surveys the composition of hemp (both the major nutritive components and the
bioactive phytochemicals), as well as their collective health benefits. The aim of this paper is to provide
a comprehensive review of hemp seed as a source of value-added or functional food ingredients that
is inclusive of its constituents and the role they play in the prevention and treatment of disorders
and diseases.



Molecules 2020, 25, 4078 4 of 24

Molecules 2020, 25, x FOR PEER REVIEW 4 of 26 

 

Figure 2. Chemical structures of selected biologically active compounds of industrial hemp. (A) 

Linoleic acid (omega-6 polyunsaturated fatty acid [PUFA]), (B) alpha-Linolenic acid (omega-3 PUFA), 

(C) Tocopherol, (D) Cannabidiol (CBD), (E) Cannabisin A, and (F) Caffeoyltyramine. 

Recent research indicates genome-wide differences that are not confined to the THC biosynthetic 

pathway [8]. A principal component analysis plot of 81 medical Cannabis and 43 hemp samples 

obtained from 14,301 single-nucleotide polymorphisms indicated a clear genetic structural difference 

between hemp and medical Cannabis samples. The hemp samples were more heterogenous than 

medical Cannabis, indicating the hemp samples came from a wide genome pool, whereas the medical 

Cannabis samples had a relatively narrow genetic base [8]. Though there are known genetic structural 

differences, a detailed examination of the genes involved in differentiation, and their corresponding 

phenotype changes, will provide more input into the genetic basis of the differences between hemp 

and medical Cannabis. Hemp is resurging in cultivation and production, so care must be taken to 

conserve the genetic diversity to ensure the long-term survival of the crop. 

This review surveys the composition of hemp (both the major nutritive components and the 

bioactive phytochemicals), as well as their collective health benefits. The aim of this paper is to 

provide a comprehensive review of hemp seed as a source of value-added or functional food 

ingredients that is inclusive of its constituents and the role they play in the prevention and treatment 

of disorders and diseases. 

2. Hemp Industrial Products 

There are various industrial or economic products of hemp. Industrial hemp comprises fiber and 

oilseed hemp. Fiber hemp is currently considered a niche crop and is grown in temperate regions. 

Hemp seed (grain) and its derivatives have also gained popularity among consumers and have 

multiple uses. 

Figure 2. Chemical structures of selected biologically active compounds of industrial hemp.
(A) Linoleic acid (omega-6 polyunsaturated fatty acid [PUFA]), (B) alpha-Linolenic acid (omega-3
PUFA), (C) Tocopherol, (D) Cannabidiol (CBD), (E) Cannabisin A, and (F) Caffeoyltyramine.

2. Hemp Industrial Products

There are various industrial or economic products of hemp. Industrial hemp comprises fiber and
oilseed hemp. Fiber hemp is currently considered a niche crop and is grown in temperate regions. Hemp
seed (grain) and its derivatives have also gained popularity among consumers and have multiple uses.

It is estimated that the hemp market entails more than 25,000 products, ranging from textiles,
clothing, rope, home furnishings, industrial oils, cosmetics, to food and pharmaceuticals [4,20,21].
The durability and high strength properties of the cellulose-rich fiber from the stalk make it a valuable
product for rope, paper, construction, and reinforcement materials [1,3,4,22]. Hemp seeds have high
nutritional value and pharmacological properties [2,22]. Within the last decade, hemp seed products
have expanded to include a range of food and beverages, nutritional supplements, alternative protein
sources, and pharmaceuticals [2,20]. In fact, hemp seed’s utility as a functional food ingredient is
currently witnessing a revival of old medicinal applications, as its metabolites have shown potent
biological activities [1].

2.1. Crop Production

The cultivation of industrial hemp is more efficient and less environmentally degrading than
that of many other crops [5]. Hemp can be grown under a variety of agro-ecological conditions and
has a capacity to grow quickly, especially after the first 4–5 weeks after emergence, making it an
excellent candidate for carbon sequestration [4,5,23]. Hemp grows best in sandy loam with good water
retention and drainage at temperatures between 16–27 ◦C, in nutrient balanced soil (especially nitrogen,
phosphorus, potassium, magnesium, copper, and others). The planting density depends on the type of
crop. Fiber hemp does well in high density to encourage stalk growth, but oilseed and CBD hemp
should be planted farther apart to encourage greater branching and flower yields [23]. Densely seeded
fiber varieties may reach 5–6 m tall, while some recent grain varieties may only reach 1–1.2 m tall.
Many multiple-use or resin cultivars are intermediate in height. Industrial hemp is either harvested for
the stalk or seeds, whereas the flowering buds are collected from the narcotic type cultivars [18,23–25].
Selection for a specific final product (fiber, seeds, or products from the inflorescences) is reflected in the
plant architecture of available varieties and clones [14]. However, architecture also strongly depends
on plant density, day length, and nutrients and moisture available in the soil [26].
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As a fiber crop, hemp provides a high yield; it produces 250% more fiber than cotton and 600%
more fiber than flax, from the same acreage [5,21]. Due to the fast-growing, dense canopy, fiber hemp is
a natural weed suppressor and could be grown without herbicides; it also suppresses levels of fungi and
nematodes in the soil and can be grown without fungicides or pesticides [5,21,23,24]. Hemp contributes
to the maintenance of soil quality by its anchored roots, which prevent soil erosion and nutrient
leaching, may extract nutrients from deeper soil layers, and are effective for phytoremediation by
absorbing heavy metal contaminants from the soil and storing them within the plant. The continual
shedding of leaves through the growing season adds moist organic matter to the soil [1,4,21]. Because of
the functions in improving the soil quality, hemp is a prime candidate to be used for crop rotation
programs to improve the yield of the main crop [23]. Despite the historical functionality of this
multi-purpose crop, global hemp production declined in the 19th century, and still only comprises
about 0.5% of the total production of natural fibers [27].

2.2. History of Hemp Production

Industrial hemp has been grown as a commodity fiber crop in North America since the mid-18th
century until the 1930s. Hemp fell under the umbrella of “marijuana” in the 1930s, and its production
was prohibited in Canada under the Narcotics Control Act [3,22,24]. Industrial hemp production
acreage and industry rapidly declined in the USA following the Marihuana (SIC) Tax Act of 1937 [28].
However, with the onset of WWII, prohibition was lifted temporarily, when imports of other sources of
fiber were unavailable [3]. As an important historical note, hemp was of such necessity to the war effort
that the United States Department of Agriculture (USDA) produced an educational video “Hemp for
Victory” to encourage farmers to grow hemp [29]. The prohibition was then renewed after the war, and
investments in the industry dwindled and were deferred to other crops [3,21,27]. Hemp production
generally ceased in North America but continued to a limited extent in Eastern Europe, China, Soviet
Union, France, and Spain, where industrial hemp was not prohibited [28]. Hemp production decreased
in Europe and the Americas in the late 19th century due to several factors including the replacement of
sail ships with steamships, the availability of abaca fiber and rope, and the availability of other less
expensive and softer fibers such as cotton. In addition, synthetic fibers such as polyester, nylon, and
acrylic were invented in the 1930s and 1940s, and became major fiber competitors after WWII [28].
In 1998, the 60-year hemp production ban was revoked, and under a closely monitored Industrial
Hemp Regulation Program, hemp cultivation commenced in Canada [24].

In terms of prohibition, industrial hemp was guilty by its association with medical Cannabis [22].
As mentioned above, both hemp and medical Cannabis belong to the same plant species
Cannabis sativa L. but are cultivated differently and vary in their phytochemical constituents [20].
In North America and most of Europe, the industrial hemp must not contain more than 0.3% THC in
dried herbage [2,17,20,24]. In some countries such as France, this limit was set at 0.2% THC. In the
USA, the 2014 Farm Bill permitted “Institutions of higher education” and state agriculture departments
to grow hemp under a pilot program if state law permitted it; however, some production aspects were
still subject to Drug Enforcement Administration oversight [30]. Before this, all hemp subspecies and
varieties were considered Schedule I controlled substances. The 2018 Farm Bill legalized the production
of hemp as an agricultural commodity, removed hemp from the list of controlled substances, and listed
it as a covered commodity crop under crop insurance [31].

Currently, fiber and grain hemp are minor crops around the world. However, in the last few years,
the production of CBD has made hemp one of the most high-value crops. CBD hemp is becoming
a major commodity crop in some states in the USA. Moreover, the increased use of Cannabis in the
western world as a psychoactive modulatory drug has changed the public perception of hemp.

2.3. Industrial Hemp Market

Globally, the industrial hemp market remains in China, where approximately half of the world’s
fiber hemp supply is produced [20]. The resurgence of interest in hemp crop can be attributed to the
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demand for sustainable agricultural practices, along with the recognition of hemp’s superior fiber
content and nutritional profile. Primarily in central and western Canada, 340 cultivation licenses were
issued to farmers who grew more than 39,000 acres of industrial hemp in 2011 [24,32]. In 2018, there
were over 77,000 acres used for hemp production [33]. Since the beginning of state pilot programs
to produce industrial hemp in the USA in 2014, the total acreage has increased from 0 to over 90,000,
and the number of license holders increased from 292 to 3852 by 2018 [34]. Since the implementation
of the 2018 Farm Bill, the acreage has increased even further, to over 146,000 by the end of 2019.
Future economic prospects for the crop are unclear; there is competition for land with other crops as
well as with medical Cannabis, which can pose an issue due to its ability to crossbreed with hemp,
causing issues with the THC content in both crops. There is also global competition; production is
increasing rapidly in many places and may exceed demand, driving down profits for hemp [34].

3. Hemp Seed Composition

When hemp cultivars are grown primarily for fiber, harvesting is done at the flowering stage, and
seeds are not collected. Recently, the production of industrial hemp for the seed has gained interest
due to the macronutrients and phytochemicals. Hemp seed is a balanced health product with bioactive
components that have the capacity to aid health beyond that of basic nutrition [2,3].

3.1. Nutrients

The major constituents of hemp seed include easily digestible protein (20–25%), polyunsaturated
fatty acid (PUFA), abundant lipids (25–35%), and carbohydrates (20–30%) high in insoluble fiber
(Table 1) [2,3,6,22,35–37]. Hemp seed protein is well-suited for human and animal consumption,
consisting mainly of high-quality, easily digestible proteins edestin, and albumin, which are abundant
with essential amino acids [2,3,6,22]. The rich source of PUFA, linoleic acid (LA; omega-6) and
alpha-linolenic acid (ALA; omega-3), is favorable and regarded as balanced for human nutrition at a
ratio of 3:1 [2,22,38,39]. LA concentrations range from 64 to 72% of the total fatty-acid composition.
This range can be a result of the variation of different hemp cultivars, cultivation techniques, as
well as processing and storage conditions. These fatty acids must be acquired from the diet, as they
are needed for proper nutrition but cannot be synthesized endogenously [2,22,35,40,41]. Nutritional
recommendations indicate that 15–20% of daily caloric intake should come from fats, and approximately
one-third of these fats should be essential fatty acids in a 3:1 ratio. It is estimated that this dietary goal
can be met with three tablespoons of hemp seed oil [42,43].

Table 1. Important major and minor constituents of hemp seed and hemp seed oil.

Product Compound Content References

Hemp seed

Carbohydrate 20–30 †; 27.6 † [3,35]

Crude fat 25–35 †; 33.2 †; 30.4 †; 31.1 † [2,35–37]

Crude protein 20–25 †; 24.8 †; 24.9 †; 24.0 †; 27.3 † [2,3,35–37]

Neutral detergent fiber 37.2 †; 32.1 †; 38.1 † [2,36,37]

Acid detergent fiber 23.5 †; 29.6 † [2,36]

Ash 5.6 †; 5.8 †; 4.8 †; 5.9 † [2,3,36,37]

Hemp seed oil

Cannabidiol (CBD) 10 ‡; 4.18–243.68 ‡ [43,44]

Linoleic acid (omega-6 PUFA) 52–62 §; 53.4 §; 16.84 †; 56.2 ¶; 56.07 § [2,41,43–45]

Alpha-linolenic acid (omega-3 PUFA) 12–23 §; 15.1 §; 6.8 †; 17.2 ¶; 15.98 § [2,41,43–45]

Beta-tocopherol 6 ‡; 1.6 ‡; 0.64 ‡ [41,45,46]

Gamma-tocopherol 733 ‡; 216.8 ‡; 91.57 ‡ [41,45,46]

Alpha-tocopherol 34 ‡; 18.2 ‡; 19.74 ‡ [41,45,46]

Delta-tocopherol 25 ‡; 12.0 ‡; 2.09 ‡ [41,45,46]
†, % Hemp seed fresh weight; ‡, mg/kg Hemp seed oil; §, % Total fatty acids; ¶, % Hemp seed oil. PUFA,
polyunsaturated fatty acid.
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3.2. Phytocannabinoids and Endocannabinoid System

Hemp flowers and herbage contain valuable phytocannabinoids, which are naturally occurring
cannabinoids that are unique to the Cannabis plant [17]. All industrial hemp varieties contain
THC, CBD, and other cannabinoids, although the concentrations in some varieties are very low to
non-detectable. In northern latitudes, industrial hemp has a particularly high content of CBD and low
content of THC [43,47]. CBD content is higher than THC, and CBD can be detected at relatively low
levels in hemp seed oil (Table 1). This is because the production and storage of CBD and THC are in
the glandular structures of the plant. The wide range of CBD content detected (Table 1) is primarily
due to the amount of resin retained by the seed coat during processing, as well as the varying hemp
varieties and their associated cultivation conditions [1,25,43,44]. However, the presence of CBD, even
in trace amounts, is speculated to provide certain health benefits [1,3,43,44].

The biosynthesis of CBD begins with the polyketide pathway and the plastidal
2-C-methyl-D-erythritol 4-phosphate pathway, which lead to the synthesis of olivetolic acid and
geranyl diphosphate, respectively. These precursors undergo condensation to form cannabigerolic
acid (CBGA), which is then converted to cannabidiolic acid (CBDA). Decarboxylation of CBDA
occurs spontaneously or with the addition of heat to form CBD [1,43,47]. The health benefits of
hemp are primarily focused around CBD; however, over 100 cannabinoids are reported to present
in Cannabis species [48]. These phytocannabinoids can be classified into 11 different classes, namely:
(−)-delta-9-trans-tetrahydrocannabinol (∆9-THC), (−)-delta-8-trans-tetrahydrocannabinol (∆8-THC),
cannabigerol (CBG), cannabichromene (CBC), CBD, cannabinodiol (CBND), cannabielsoin (CBE),
cannabicyclol (CBL), cannabinol (CBN), cannabitriol (CBT) and miscellaneous-type cannabinoids.
Recently, besides THC and CBD, 30 other cannabinoids from commercial hemp seed oil have been
identified using high-resolution mass spectrometry [49].

The endocannabinoid system of humans is an endogenous signaling system consists of
endocannabinoids, enzymes involved in their synthesis and degradation, cannabinoid receptors, and
other associated elements [50,51]. The system is modulated by diet, sleep, exercise, stress, among many
others. The endocannabinoids are fatty-acid-derived neurotransmitters that act as signal molecules
of coordinating intercellular communication across all physiological systems. One of the primary
functions of the system is to restore homeostasis following cellular stressors. The two most studied
endocannabinoids are anandamide-N-arachidonylethanolamine (AEA) and 2-arachidonylglycerol
(2-AG). Phytocannabinoids are recognized as pharmacologically active compounds, which function
by interacting with the endocannabinoid system in humans [1,52]. Cannabinoid receptors are
7-transmembrane-domain G-protein-coupled receptors. Two cannabinoid receptors have been
identified: the central CB1 receptor and the peripheral CB2 receptor [53]. The CB1 receptor is
primarily present in the brain and spinal cord but also found on certain cells of the immune system,
adipose tissues, liver, muscle, reproductive cells, kidney, and lungs. CB1 mediates the release of
neurotransmitters such as acetylcholine, noradrenaline, dopamine, gamma-aminobutyric acid (GABA),
and glutamate. The CB2 receptor is expressed mainly in the cells in the periphery, in the organs of
the immune system and have a role in the release of cytokines and the modulation of immune cell
migration [53–55] but not psychoactivity [54]. The diversified physiological effects of endocannabinoids
take place when they bind to and activate these receptors.

The pharmacology or interaction of THC and CBD with the endocannabinoid system is not yet
fully understood and seems complicated. THC has been shown to provide most of the psychoactive
effects through the CB1 receptor as an agonist; however, under certain conditions, THC act as an
antagonist of the CB1 receptor and also shown to interact with CB2 receptor [54,55]. Interaction of
THC with CB1 receptor inhibits ongoing neurotransmitter release; however, repeated administration
of THC may nullify its effect as well as the action of endocannabinoids [55]. In contrast, CBD
has minimal direct activity at CB1 and CB2 receptors; therefore, no psychoactive activity similar
to THC. Though CBD has a very low affinity for CB1 and CB2 receptors, CBD can bind these
receptors [56]. CBD antagonizes synthetic agonists of CB1 and CB2 receptors and can be considered
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to be a negative allosteric modulator of CB1 and CB2 receptors. Moreover, recent findings also
indicate that CBD exhibits various dose-dependent physiological responses. Though the low doses
(30 mg oral) has no intoxicating effects, high doses (300 mg oral) increased somnolence and reduced
anxiety [55]. Moreover, the biological activity of CBD seems to be complex due to its complex
pharmacological actions, such as inhibition of endocannabinoid reuptake and increasing the activity of
serotonin 5-HT1A receptors, binding to non-cannabinoid receptors such as transient receptor potential
vanilloid 1 (TRPV1), peroxisome proliferator-activated receptor-γ (PPARγ), and the orphan receptor
G protein-coupled receptor 55 (GPR55) [51,55,57]. CBD has recently received increasing interest
since chronic administration of CBD has shown potential therapeutic properties such as antiepileptic,
anxiolytic, antipsychotic, neuroprotective activities, and benefits against disorders of motility and
epilepsy [55,56,58].

3.3. Hemp Seed Oil

Hemp seed oil contains tocopherol isomers beta-tocopherol, gamma-tocopherol, alpha-tocopherol,
and delta-tocopherol, with the gamma-tocopherol derivative present in the highest quantity
(Table 1) [2,41,45]. Tocopherols are natural antioxidants that can reduce the risk of oxidative
degeneration related disorders [2,41]. In addition, terpenes and polyphenols have been detected, which
contribute to the odor/flavor and intrinsic antioxidant activity, respectively [1,2]. Among phenolic
compounds, flavonoids, such as flavanones, flavonols, flavanols, and isoflavones were the most
abundant [46]. The reported phytochemical contents of hemp seed oil vary due to a broad range of
existing hemp cultivars, which are grown and processed under diverse conditions.

4. Potential Health Benefits

Numerous health benefits and potential therapies are reported for hemp seed. Hemp seed
delivers a desirable ratio of omega-6 to omega-3 PUFA (Figure 2), which can improve cardiovascular
health, reduce osteoporosis symptoms, and diminish eczema conditions. CBD exerts pharmacological
properties that make it a potential therapeutic agent for central nervous system diseases, such as
epilepsy, neurodegenerative diseases, and multiple sclerosis (MS) [1,59].

4.1. Cardiovascular Health

The dietary intervention of hemp seed for cardiovascular health has been examined. Schwab et al. [60]
supplemented the human diet with 30 mL of hemp seed oil daily for four weeks and detected positive
changes in the serum lipid profile. Another study also noted that rats fed a 5% or 10% hemp
seed-supplemented diet for 12 weeks experienced an elevation in plasma LA and ALA levels [61].
After the diet, post-ischemic heart performance was assessed; the heart’s ability to recover from
ischemia-reperfusion insult appeared to be directly related to the hemp seed’s PUFA. Richard, Ganguly,
Steigerwald, Al-Khalifa, and Pierce [62] also found that the integration of hemp seed into the rat diet
significantly increased plasma LA and ALA levels. As a result, platelet aggregation was inhibited and
slowed to a lower rate. The diminished likelihood of clot formation has implications for reducing
the incidences of myocardial infarctions and strokes [62]. Prociuk et al. [63] reported similar findings
after examining the effect of dietary hemp seed for eight weeks in rabbits. Elevated plasma levels of
PUFAs indirectly decreased the risk of platelet aggregation and myocardial infarction and provided
better defense against hypercholesterolemia [63]. Other issues caused by hypercholesteremia that were
improved by supplementing hemp seed, including decreased cholesterol, low-density lipoprotein, and
triglyceride levels, increased high-density lipoprotein levels, lower plaque, and fat deposition, and
lower arterial wall damage [64].

4.2. Cancers

Since the first study exhibiting the anti-cancer effects of Cannabis phytochemicals by Munson,
Harris, Friedman, Dewey, and Carchman [65], there have been major advances in understanding the
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mechanisms and targeting action of cannabinoids. Evidence suggests that phyto-, endo-, and synthetic
cannabinoids contain properties that aid in the treatment of the brain, prostate, breast, skin, pancreas,
and colon cancer. Both in vitro and in vivo models suggest cannabinoids play a role in regulating
cellular mechanisms causing anti-proliferative, anti-metastatic, anti-angiogenic, and pro-apoptotic
responses [66,67]. These findings have major implications in oncology, as it has been well established
that most cancers originate from uncontrolled or improperly managed cellular growth [67].

Phytocannabinoids demonstrate the potential to inhibit cell growth and induce apoptosis in
gliomas. Massi et al. [53] tested the effect of introducing CBD to U87 and U373 human glioma cell
lines. In vitro treatment resulted in a reduction in mitochondrial oxidative metabolism and glioma
cell viability. It was also confirmed that CBD induced apoptosis. When a CB2 receptor antagonist
was introduced to the glioma cell lines, the antiproliferative effect of CBD was hindered, revealing
its mechanism of action [53]. Vaccani, Massi, Colombo, Rubino, and Parolaro [68] also looked at the
implications of CBD on the U87 glioma cell line, where an anti-metastatic result was observed due
to the inhibition of cell migration. Cannabinoids have also been found to prevent the differentiation
and proliferation of glioma stem-like cells, which may help treat the difficult-to-eliminate nature of
gliomas [69].

The treatment of prostate and breast cancers with CBD have also been explored. Sarfaraz et al. [67]
found that androgen-responsive human prostate carcinoma cells treated with CBD exhibited a
pro-apoptotic response, inhibited cell growth, and a lowered secretion of prostate-specific antigen,
which is typically elevated in cancerous cells [67]. Of several natural cannabinoids tested, a CBD
extract provided the most potent cytotoxic effects against breast cancer cells, with significantly lower
damage to healthy cells [70]. CBD induced apoptosis in a breast cancer cell line via the activation of
the overexpressed CB2 receptor [70,71].

Other studies have explored cannabinoid therapy in skin, pancreas, and colon cancers.
Blázquez et al. [72] evaluated cannabinoid receptor agonists in mice and found that the activation
of these receptors decreased the growth, proliferation, angiogenesis, and metastasis of melanomas.
Through similar actions, cannabinoids induced apoptosis in pancreatic tumor cell lines, and the effects
were lessened when the CB2 receptors were blocked [73]. Promising results were found in vivo by
Ferro et al. [74], where mice with pancreatic ductal adenocarcinoma treated with gemcitabine and CBD
survived nearly three times as long as mice treated only with gemcitabine or with a vehicle. This was
achieved through interference with the G-coupled protein receptor GPR55, resulting in the prevention
of growth and cell cycle arrest [74]. Cianchi et al. [75] investigated the activation of the cannabinoid
receptors in colorectal cancer and demonstrated similar apoptotic mechanisms to pancreatic and
melanoma cancers.

The strategic elimination of these cancer cells, while inflicting limited harm to normal cells, shows
potential for CBD mediation. Although the range of cancers therapeutically affected by cannabinoids
is promising, further investigations are required to interpret the growth-inhibitory action of CBD.
The results presented here reinforce that much of the CBD effect is mediated through the activation of
CB2 receptors and that the possible application of CBD in cancer cytotoxicity is vast.

4.3. Diseases of the Central Nervous System

Several phytocannabinoids have exhibited the ability to mediate symptoms of neurodegenerative
diseases and reduce compromising damage. Hypoxic-ischemic (HI) brain injury results when the
brain is deprived of oxygen and can lead to neurological impairments such as epilepsy, developmental
delay, as well as reduced motor and cognitive function. Castillo, Tolón, Fernández-Ruiz, Romero, and
Martinez-Orgado [76] found that CBD enhanced neuroprotection in mice that experienced induced
HI by oxygen and glucose withdrawal. Pazos et al. [77] tested rats that underwent HI injury and
subsequently received CBD treatment; the common measures of HI damage, infarct volume, and
histological evaluation indicated CBD provided neuroprotection. Later, Pazos et al. [78] studied
HI in a pig model by reducing carotid blood flow and then administering CBD treatment [78].
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The neuroprotective action was attributed to the prevention of an increase in excitotoxicity, oxidative
stress, and inflammation, and CB2 receptors were associated with these effects [77,78]. Treatment
with CBD prevents emotional and cognitive impairments, injury to white matter, degeneration of
hippocampus tissue, and glial cell response decrease that result from brain ischemia, as well as
promotes recovery through hippocampus dendritic cell reconstruction and neurogenesis in mice that
already have brain ischemia [79].

The most prevalent neurological disease, epilepsy, has also benefited from CBD. Jones et al. [80]
examined seizure activity and found that CBD exerted anticonvulsant properties. Jones et al. [81]
reconfirmed these findings using an acute pilocarpine model of temporal lobe seizure and the penicillin
model of the partial seizure. Both studies found a decrease in both the severity and mortality of the
seizures [80,81]. Intervention with CBD is even beneficial to people who have treatment-resistant
epilepsy; adverse events, severity, and frequency of seizures were significantly and sustainably reduced
with long-term treatment [82].

Several clinical studies have outlined the cannabinoid treatment of spasticity, pain, and hindered
bladder control symptoms associated with MS patients. A novel cannabinoid therapy, THC/CBD
oromucosal spray (Sativex™), has been introduced to patients suffering from neuropathic pain that can
be difficult to manage with normal pharmaceuticals. A placebo-controlled study found that the spray
was able to lessen MS-induced neuropathic pain [83]. The same spray was evaluated for symptomatic
relief and was found to cause a decline in spasticity occurrence and severity, and had limited adverse side
effects on cognition [84]. This could be due to the critical part CBD plays in diminishing the psychoactive
effects of THC. A similar spray provided to MS patients effectively reduced pain and sleep disturbance [85].
When MS patients were provided with THC/CBD extract capsules, daily self-reports of spasm frequency,
mobility, and ability to fall asleep were favorably impacted in the active treatment group [86].

Limited research has been done on CBDs effect on Parkinson’s disease symptoms, though the
current evidence suggests it can improve the non-mobility related symptoms, there is contradicting
evidence on its effects on mobility and cognition symptoms [87]. Further studies need to be conducted
to determine the true extent of CBD treatment on Parkinson’s disease.

The mechanisms by which CBD exerts its neuroprotective effects are not entirely understood;
however, CBD is noted for its antioxidant and anti-inflammatory properties [76,80]. Since the
activation of CB1 receptors is consequently associated with psychoactive ramifications and
potentially neurodegenerative symptoms upon long-term activation, the investigation of CBD is
increasingly important for neurological disorders. At present, CBD used therapeutically, either
alone or in combination with THC, aids in the treatment and symptomatic relief of several
neurodegenerative disorders.

4.4. Rheumatoid Arthritis

In traditional Chinese folk medicine, hemp seed oil has been used to relieve chronic knee pain in
patients with rheumatoid arthritis (RA) and improve blood circulation [88]. RA is an autoimmune
inflammatory disease primarily characterized by synovial tissue inflammation and hyperplasia [89].
Jeong et al. [90] concluded that hemp seed oil promotes the production of reactive oxygen species (ROS),
storage of lipids, production of endoplasmic reticulum stress markers, which act as anti-rheumatoid
factors in downstream processes, and improved blood circulation, providing additional relief to RA
patients. Hammell et al. [91] found that CBD can positively impact pain caused by arthritis. A rat
model was used to examine topical application of CBD: joint swelling, pain scores, synovial membrane
thickness, infiltration of immune cells, and inflammation biomarkers were all significantly reduced in a
dose-dependent manner [91]. A CBD-based oil was used to treat another kind of arthritis: osteoarthritis
in dogs [92]. Dogs receiving treatment exhibited significantly less pain compared to those without
treatment, allowing these dogs to be more comfortable and active [92]. Clinical studies on RA patients
will provide clarity on the mechanism and biochemistry behind the benefits of hemp seed oil in
reducing and ameliorating the symptoms of RA.
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4.5. Dermatitis and Skin Diseases

Hemp seed oil can be an effective cure to eczema, as well as a host of other skin related
ailments [93]. Hemp seed oil is composed of more than 80% PUFA, and is rich in tocopherols [3,41].
These constituents point to hemp seed oil’s beneficial effects in reducing and eradicating skin diseases,
including eczema [94]. A clinical study by Callaway et al. [93] found participants who had a regular
dietary intake of hemp seed oil had significantly fewer symptoms of eczema, including skin dryness
and itchiness, and they used dermatitis medicine less often. Allergic contact dermatitis has shown
preliminary evidence to be mediated through intervention with the endocannabinoid system, making
treatment with CBD a promising solution [95]. The presence of high levels of essential PUFAs improves
the atopic symptoms of dermatitis [93,96].

4.6. Mental Health and Sleep Disorders

Concentrated CBD from hemp has been shown in both pre-clinical and clinical studies to possess
anxiolytic or antianxiety characteristics due to its ameliorating effect on limbic and paralimbic areas of
the brain [97,98]. Importantly, the anxiolytic effects of CBD are only induced with low concentrations;
high concentrations may cause anxiogenic or panicogenic effects [99]. Treatment doses need to be
selected carefully to ensure only anxiolytic benefits are felt by the individual. Other anxiety-related
disorders also benefit from treatment with CBD, including post-traumatic stress disorder (PTSD)
and depression, as well as addiction recovery [99–101]. The endocannabinoid system is involved in
learning, emotional responses (including those related to trauma), and regulation of emotional behavior;
therefore, this system is an important target for the treatment of PTSD [100]. Using experimental
animal models, CBD has been effectively used to treat the development of adverse associations at all
steps of the process, including immediately after trauma to prevent the development of PTSD. CBD
has been able to help in the extinction process of adverse memories in humans, as well as treat the
anxiety-related symptoms accompanying PTSD without causing side effects [100]. In male and female
genetically depressive mice, CBD had anti-depressant properties as well as reduced the exhibition of
anhedonia [102]. In patients at high risk of psychosis, CBD was able to partially normalize function
in regions of the brain associated with psychosis [103]. When administered to sober heroin-addicted
individuals, CBD reduced cue-induced cravings and anxiety with short-term 3-day administration, as
well as had prolonged benefits up to 1 week after the final treatment dose [104].

CBD has been shown to have therapeutic effects in favorably modifying REM sleep behaviors
that may be altered due to insomnia [105]. A study conducted on people experiencing anxiety and
sleep issues found that CBD improved sleep quality in the first month, but it did not remain constant
throughout the remainder of the study period [106]. There are contradictions in the literature, where
some studies have found, as discussed, that CBD can improve sleep; however, there are other studies
that find treatment with CBD can improve wakefulness during the day [107]. The mechanisms behind
sleep cycle regulation by CBD need to be more thoroughly explored to determine how it can be used to
improve both sleep and wakefulness.

Comprehensive research on this topic is required to understand the broad-spectrum effects
of hemp-seed-derived CBD-based nutraceuticals on anxiety [108]. Data is especially lacking on
the differences between sexes in response to treatment; most pre-clinical studies used only male
animals, and clinical studies that include females have yet to evaluate sex-differentiated responses [98].
Males and females experience anxiety differently, and they respond to psychotropics differently, so this
is an important knowledge gap to fill with further studies [98]. There is also limited research on CBD
treatment for the other anxiety-related disorders discussed above. There are contradictions within the
literature on the true benefit of CBD on the treatment of addictions, some of the conflicts are due to the
type of drug at the center of the addiction, but there is also lacking consensus within drug types [109].
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4.7. Additional Health Benefits

There are other areas of treatment using hemp products that have been explored less extensively
than those discussed above. The hemp seed oil has been documented to be therapeutic for constipation
problems [110]. Furthermore, mice trials have shown that hemp seed consumption leads to improved
memory and learning-induced by chemical drugs [111,112].

CBD has suppressive effects on the immune system, including inflammatory response reduction,
cellular and humoral immunity suppression, and induction of apoptosis in some lymphocytes; these
effects are beneficial for treating inflammatory diseases [113,114]. Type 1 diabetes is an example of
an inflammatory-based disease that can benefit from CBD preemptive treatment; non-obese diabetic
mice receiving CBD had delayed development of diabetes, and had significantly lower activation of
leukocytes than mice receiving control vehicle [115]. Zhou, Wang, Ji, Lou, and Fan [116] demonstrated
anti-neuroinflammatory properties of hemp seed using an experimental mouse model.

Another area of research on the benefits of hemp is pain management. It has been theorized
that some pain conditions, including fibromyalgia, migraine, and irritable bowel syndrome, are
caused by an endocannabinoid deficiency [117]. Due to this theory, targeting the endocannabinoid
system with CBD is a common treatment for symptomatic relief of these conditions [117]. Cannabis
has also commonly been used to treat other chronic pain that is not suspected to be caused by an
endocannabinoid deficiency; it is the most common reason for medicinal Cannabis usage in the
USA [118,119]. Cannabinoids act in many ways to produce an analgesic effect, including preventing
the release of neurotransmitters from presynaptic neurons, altering the sensitivity of postsynaptic
neurons, activating pain inhibiting pathways, and reducing neural inflammation [119].

The major limitation for the treatment of all previously discussed health conditions is the lack of
long-term studies. There has virtually been no research examining the long-term effects, especially of
hemp-derived CBD-based treatments. Short-term data shows that it has been well-tolerated and results
in minimal adverse side effects [119]. The cannabinoids and terpenes in Cannabis work synergistically
together to provide the discussed health benefits in addition to the flavonoids present [118]. In the
future, investigations should be conducted to understand the synergistic effect of all the phytochemicals
in addition to validating the health benefits of minor constituents of hemp seed.

5. Food and Nutraceutical Applications

Consumers have become increasingly interested in the way their diet can address health deficits
and wellbeing. Over a decade ago, two thirds of grocery shoppers reported that their purchases were
highly influenced by the pursuit of preventing, managing, or treating a specific health condition [120].
Since then, food scientists have targeted such consumer demands by investigating and advertising
additional health benefits and bioactive properties that functional foods provide. In recent years, some
unconventional plant-derived oils, such as hemp seed oil, have earned a reputation for providing not
only cooking and alimentary services but also providing medicinal and nutraceutical potential [121].
Hemp seed oil is currently advertised primarily as a natural health product for body care purposes,
as oil for salad dressings, or to be taken directly as a dietary supplement. The hemp seed oil has a
strong susceptibility to rancidity with heat and prolonged storage, which reduces its use as cooking
oil [40,120,121]. Because hemp prohibition was only lifted about 20 years ago, only recently that hemp
seed has been investigated for its applications in the food and nutraceutical industry for its benefits
beyond basic nutrition.

5.1. Hemp Seed in Food Products

In addition to the primary use of hemp seed as oil, it has been used in the milled form as a
source of vegetable protein and dietary fiber, facilitating its incorporation into food products such as
energy bars, flavored yogurt, baked goods, and more [36,122,123]. Shim [124,125] patented a process
of making bread and confectionary from hemp seed oil and hemp seeds, respectively. Guang and
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Wenwei [126] patented hemp seed flours to be used in functional foods that aid in the prevention of
certain diseases by increasing the levels of high-density lipoprotein (HDL) and stabilizing the levels
of other glycerides and lipoproteins. A seasoning sauce from fermented hemp seeds was developed
by Metz and Selg-Mann [127], while Steinbach [128] developed a process for producing pralines and
chocolates from hemp seed and hemp seed oil. A process was developed for obtaining hemp milk
that did not change color or develop bitterness when subjected to pasteurization [129]. Hemp seed as
a powder and an additive has been used as a source of protein [130,131]. Furthermore, Guang and
Wenwei [132] developed a process for using hemp protein powder in treating anemia. Though the
most popular part of the hemp plant to ingest is the seeds, sprouts, leaves, and flowers can also be
consumed raw in juice or salads [133]. The inclusion of juice obtained from hemp in alcoholic beverages
is speculated to have digestive benefits [134].

Frassinetti et al. [135] examined hemp seeds and sprouts to be rich in beneficial bioactive
compounds with both in vitro and ex vivo antioxidant activities. Furthermore, these compounds
exhibited an antimutagenic effect on Saccharomyces cerevisiae. The main polyphenols identified in seeds
and sprouts exhibiting antioxidant activities were cannabisin A, B, C, and caffeoyltyramine (Figure 2).
The two primary compounds identified in sprouts that provide nutraceutical benefits were linoleic
acid and gluconic acids, which act as intermediaries in the production of vitamin C [135]. Terpenes,
which are also found in hemp, have anti-inflammatory and some antiallergic properties, can treat pain,
prevent the production of ROS, and act as potent antioxidants [133]. Due to the presence of a wide
variety of nutrients, including high levels of PUFA and essential amino acids, hemp seeds are praised
for providing adequate quantities of different nutrients to satisfy human dietary requirements [136,137].

5.2. Advancement in the Extraction of Oil and Cannabinoids from Hemp Seed

There are numerous methods for extraction of hemp seed oil, including cold press, supercritical CO2

extraction, solvent extraction with isopropanol, hexane, dimethyl ether, and numerous pretreatments.
However, all of these methods possess different advantages and disadvantages depending on the end
use of the product and the extraction fraction in question [138].

Cold-pressed oils from seeds have become more commercially popular since they are viewed
as natural and safe products to be used in food [120,139]. Cold-pressing passes the raw seed
material through a conventional screw press, without the addition of harsh chemical solvents or
high heat treatments [40,120]. This process retains more of the beneficial components of the seeds,
including valuable PUFA and bioactive substances, while minimizing degradative changes in the
oil [40,120,121,139]. One notable disadvantage of cold-pressed oil is the low yield potential of 60–80%
of extractable oil [6].

Soxhlet extraction is the conventional method of extraction; the selected solvent is heated to reflux
and floods the solid material, extracting the desired compounds, including volatile compounds [140].
Many solvents have been successfully used to extract hemp seed oil with high yields. N-hexane and
petroleum ether [141], dimethyl ether [142], ethanol [143] and isopropanol [144] have been used and
optimized with regards to extraction time, temperature, and other extraction conditions.

Another method optimized recently is supercritical fluid extraction, most commonly using CO2.
Using the response surface method, Da Porto, Decorti, and Tubaro [145] and Da Porto, Voinovich,
Decorti, and Natolino [146] optimized supercritical CO2 extraction of hemp oil; they observed
fatty-acid compositions and oxidative stability at different stages of the extraction process while
varying the parameters to obtain maximum efficiency of extraction. In addition, Aladić et al. [147] and
Tomita et al. [148] further refined the processing temperature, pressure, and time to determine how
these conditions affect the constituency of hemp oil, especially focusing on fatty acids, tocopherol, and
pigment content. Supercritical CO2 using n-propane as a solvent, reduces the extraction pressure and
preserves the physical and nutritional properties of hemp seed oil [144].

There have been many innovations in hemp seed oil extraction. Optimized procedures to extract
hemp seed oil rich in CBD by supercritical CO2 are well established [149,150]. To remove pigments and
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waxes prior to supercritical CO2 extraction, crushed silicon sand and ultrasonic-assisted extraction,
respectively, can be used [151,152]. Procedures to extract hemp seed oil free of THC have also been
developed to satisfy regulatory requirements and societal concerns. Separation techniques such as
chromatographic columns, and stabilization reactions such as oxidation with heat and isomerization
with UV light, have been reported [153,154]. Dynamic maceration with ethanol for 45 min is an
efficient method to extract non-THC cannabinoids from hemp seed oil [155]. New methods using
ultrasonication-assisted extraction are also gaining interest due to minimal intervention with the
product and shorter extraction time [156,157]. Similarly, the response surface method has been
used to optimize the microwave-assisted extraction of cannabinoids, which also provides a shorter
extraction time [158]. Recently, many advances have been made to combine different techniques,
such as supercritical fluid extraction, ultrasonication, and microwave-assisted extraction, to increase
efficiency [156]. Hemp seed oil extracted through the above methods are different in yield, physical
properties, and chemical composition. Furthermore, the cost is also an important factor in the selection
of the extraction method. Considering an initial economic cost-benefit analysis, supercritical CO2

extraction is most efficient, followed by Soxhlet extraction and ultrasonication [138]. In terms of
scale-up extraction, ultrasonication and Soxhlet extraction are the best methods, while the desirable
omega-6 PUFA/omega-3 PUFA ratio can be achieved by the Soxhlet extraction method [138]. Selecting
the most appropriate method of extraction depends on the end use and desired bioactives in the
final products.

5.3. Methods of Enhancing Oxidative Stability of Hemp Seed Oil

To maintain oxidative stability, it is necessary to monitor the fatty-acid profiles throughout the
extraction process to standardize temperature, pressure, and particle size required for supercritical
CO2 extraction of hemp seed oil [145,146]. Hemp seed oil can maintain oxidative stability
through the presence of tocopherols and polyphenols. Tocopherols effectively stop or slow
down the lipoperoxidative radical chain reactions by preventing the oxidation of PUFAs [159].
Furthermore, phytosterol concentrations of approximately 15% also have excellent oxidative prevention
functions [160]. Among them, b-sitosterol, campesterol, and D5–avenasterol can withstand high
temperatures and reinforce the plasma membranes of eukaryotic cells. Storage studies must be
conducted for hemp seed oil while observing the changes in composition and antioxidant activity.

Some research has been done in improving oxidative stability and adhesion of hemp seed oil to
surfaces such as skin or hair. A method of saponizing and quarternizing fatty acids [161] resulted in the
minimization of oxidation and crosslinking of released essential fatty acids. Many cosmetic formulations
of hemp seed oil were prepared with this method to improve adherence to skin. Maintenance of the
antioxidant properties of the oil helps regulate oxidative stability as well. Temperature and pressure
play a major role in altering oxidative stability; however, there is no universal standard that specifies
the optimal conditions for maintaining oxidative stability as it varies greatly between extraction
procedures. Hence, it is more likely that optimization at the local process level will help maintain the
oxidative stability of hemp seed oil.

5.4. Microencapsulation Technologies

To increase the bioavailability and protect unstable food constituents, such as PUFAs, from
oxidation, different types of microencapsulation techniques have been used for plant-based oils [162].
Spray drying [163], freeze-drying [164], fluidized bed coating [165], centrifugal extrusion [166], complex
coacervation [167,168], ionotropic gelation [169], liposome entrapment [170], and electrospraying [171]
are the most predominant methods used for microencapsulation. Hemp seed oil is a prime candidate
for these interventions to increase its nutritional value and benefits. The selection of the shell coating
material to protect the core substance during microencapsulation depends on the microencapsulation
method, the nature of the core material, the end use of the product, its physicochemical characteristics,
and possible interactions with the core material [172].



Molecules 2020, 25, 4078 15 of 24

Nanoencapsulation is remarkable in improving the low water solubility, bioavailability, volatility,
and stability of high-value oils [173]. Belščak-Cvitanović et al. [174] concentrated and encapsulated
the bioactive compounds extracted from hemp fiber processing waste, also called hemp fiber meal.
Hemp fiber meal can be used for isolation of essential amino acids, especially arginine, by using food
grade enzymes for polysaccharide digestion; the resulting polysaccharide fragments can be subjected
to ultrafiltration and removed to concentrate the protein content, making it a superior isolate compared
to other hemp protein products [175].

Considerable evidence of the potential health benefits of hemp seed oil has been uncovered in the
past two decades; however, additional investigations are required to use hemp seed oil as a functional
food ingredient. The value-added hemp food sector is growing; with increased consumer awareness
and product innovation, the health applications of hemp seed oil are expected to expand [24,42].

6. Future Prospects and Conclusions

Since ancient times, hemp has been cultivated to provide nutritional and medicinal benefits.
Although the government regulations repressed the cultivation and scientific inquiry of industrial
hemp in the past, under recent legalization with stringent production regulations, hemp has proven
to hold viable, value-added food and nutraceutical applications (Figure 3). Recently, many studies
have demonstrated that the nutrient and bioactive composition of hemp contributes to the prevention
and treatment of several ailments suggesting its potential as a valuable functional food ingredient.
This review sought to highlight these advances in understanding the medical, nutritional, and
nutraceutical benefits of industrial hemp. The ease of production and suitability to many climatic and
geographical locations are assets to the expansion of this industrial crop. Due to its versatility, breeding
of hemp is underway in many universities and breeding centers across North America and Europe
to develop high-yielding varieties for both fiber and oil seed production. This will help standardize
varieties across different growing regions, thus maintaining quality and reducing disease and insect
pressure. The controversial association of industrial hemp with medical Cannabis has also slowed
expansion efforts. Therefore, breeding of hemp to clearly differentiate it from medical Cannabis may
accelerate its development and consumer acceptance, as well as ease regulatory barriers of the crop.Molecules 2020, 25, x FOR PEER REVIEW 16 of 26 

 

Figure 3. Advanced value-added technologies can drive value-added innovation to make use of 

industrial hemp to introduce a wide array of functional food ingredients and nutraceuticals. 

A lot of advances have also been made in the extraction technologies of hemp seed oil and its 

nutraceutical benefits. However, there is still no industry consensus on the best methods of extraction, 

as it depends on the scale of production and end-use. The development of standardized processing 

guidelines for hemp seed and hemp seed oil will help ensure stringent quality control. There are 

opportunities in food innovation through the incorporation of hemp seed oil and its constituents, 

especially PUFA and CBD, in mainstream value-added and supplemented food products. Also, there 

is potential for the use of hemp processing byproducts in various food, feed, and industrial 

applications. 

For innovation of novel hemp-derived food ingredients and nutraceuticals requires precise 

identification and quantification of major bioactives and standardization of the products. The 

analytical methods required for bioactives such as CBD need to be standardized. To ensure the 

authenticity and safety of hemp-derived food and nutraceuticals, it is important to quantify the 

amount of THC in the final product and includes it in the label. For example, in North America and 

most of Europe, to classify as industrial hemp, THC content should not exceed 0.3% on a dry weight 

basis. If the regulatory agencies could make a requirement for declaring THC content, that will help 

the food and nutraceutical industry to stay away from complicated regulatory issues around medical 

Cannabis. Since the impact of CBD is dose-dependent, an acceptable limit of CBD to be determined 

for inclusion in the labels of nutraceuticals and dietary supplements. The manufacturers should be 

aware that CBD content may change from batch-to-batch due to the variations of sources of materials, 

growing conditions, and manufacturing. Future investigations should also be aimed at quantification 

of trace cannabinoids other than THC and CBD and exploring their pharmacological effects. The 

pharmacokinetics of these bioactives, when incorporated in different food matrices, need to be 

understood. The inclusion of the content of omega-3 PUFA and omega-6 PUFA and their ratio in the 

label is useful for consumers to recognize the benefits of hemp oil and other value-added food 

products. 

Most of the health benefits-associated research of industrial hemp has been conducted under 

pre-clinical conditions. However, due to the possibility of concentrating bioactive phytochemicals 

during the manufacturing process, the industry should pay attention to the dosing to optimize the 

potential health benefits and avoid possible safety concerns. There is a need to conduct appropriately 

designed, randomized, placebo-controlled, double-blind clinical studies on the effects of hemp-

derived functional food ingredients and products, dietary supplements, and nutraceuticals on the 

promotion of human health. The hemp seed oil has potential as a nutraceutical due to the desired 

ratio of omega-6 PUFA to omega-3 PUFAs, and the bioactive CBD. Future research should focus on 

exploring other bioactive phytochemicals of industrial hemp, such as polyphenols and isoprenoids. 

The contribution of polyphenols and isoprenoids of hemp to the sensory quality, shelf life, and health 

benefits of the final products still to be understood. Overall, the hemp industry is starting to flourish 

across the globe. Regulatory agencies need to distinguish industrial hemp from medical Cannabis 

(marijuana), so the economic potential of industrial hemp as a sustainable source of value-added 

functional food ingredients and nutraceutical products can be realized. 

Seed

Flowers
Leaves
Stems

Sprouts

Hemp seed oil

• Seed flour
• Hemp milk
• Fermented 

hemp seed

Byproducts
Hemp fiber meal

Functional Ingredients

• Omega-3 PUFA
• Phytocannabinoids
• Vegetable protein 

and amino acids
• Dietary fiber
• Phytosterols
• Tocopherols
• Polyphenols

• Terpenes
• Other micro-nutrients

Value-added &
Supplemented Food

Nutraceuticals

Figure 3. Advanced value-added technologies can drive value-added innovation to make use of
industrial hemp to introduce a wide array of functional food ingredients and nutraceuticals.

A lot of advances have also been made in the extraction technologies of hemp seed oil and its
nutraceutical benefits. However, there is still no industry consensus on the best methods of extraction,
as it depends on the scale of production and end-use. The development of standardized processing
guidelines for hemp seed and hemp seed oil will help ensure stringent quality control. There are
opportunities in food innovation through the incorporation of hemp seed oil and its constituents,
especially PUFA and CBD, in mainstream value-added and supplemented food products. Also, there is
potential for the use of hemp processing byproducts in various food, feed, and industrial applications.

For innovation of novel hemp-derived food ingredients and nutraceuticals requires precise
identification and quantification of major bioactives and standardization of the products. The analytical
methods required for bioactives such as CBD need to be standardized. To ensure the authenticity and
safety of hemp-derived food and nutraceuticals, it is important to quantify the amount of THC in the
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final product and includes it in the label. For example, in North America and most of Europe, to classify
as industrial hemp, THC content should not exceed 0.3% on a dry weight basis. If the regulatory
agencies could make a requirement for declaring THC content, that will help the food and nutraceutical
industry to stay away from complicated regulatory issues around medical Cannabis. Since the impact
of CBD is dose-dependent, an acceptable limit of CBD to be determined for inclusion in the labels of
nutraceuticals and dietary supplements. The manufacturers should be aware that CBD content may
change from batch-to-batch due to the variations of sources of materials, growing conditions, and
manufacturing. Future investigations should also be aimed at quantification of trace cannabinoids
other than THC and CBD and exploring their pharmacological effects. The pharmacokinetics of these
bioactives, when incorporated in different food matrices, need to be understood. The inclusion of the
content of omega-3 PUFA and omega-6 PUFA and their ratio in the label is useful for consumers to
recognize the benefits of hemp oil and other value-added food products.

Most of the health benefits-associated research of industrial hemp has been conducted under
pre-clinical conditions. However, due to the possibility of concentrating bioactive phytochemicals
during the manufacturing process, the industry should pay attention to the dosing to optimize the
potential health benefits and avoid possible safety concerns. There is a need to conduct appropriately
designed, randomized, placebo-controlled, double-blind clinical studies on the effects of hemp-derived
functional food ingredients and products, dietary supplements, and nutraceuticals on the promotion of
human health. The hemp seed oil has potential as a nutraceutical due to the desired ratio of omega-6
PUFA to omega-3 PUFAs, and the bioactive CBD. Future research should focus on exploring other
bioactive phytochemicals of industrial hemp, such as polyphenols and isoprenoids. The contribution
of polyphenols and isoprenoids of hemp to the sensory quality, shelf life, and health benefits of the
final products still to be understood. Overall, the hemp industry is starting to flourish across the
globe. Regulatory agencies need to distinguish industrial hemp from medical Cannabis (marijuana),
so the economic potential of industrial hemp as a sustainable source of value-added functional food
ingredients and nutraceutical products can be realized.
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