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Abstract: Alzheimer’s disease (AD) is a progressive neuronal/cognitional dysfunction, leading to
disability and death. Despite advances in revealing the pathophysiological mechanisms behind
AD, no effective treatment has yet been provided. It urges the need for finding novel multi-target
agents in combating the complex dysregulated mechanisms in AD. Amongst the dysregulated
pathophysiological pathways in AD, oxidative stress seems to play a critical role in the pathogenesis
progression of AD, with a dominant role of nuclear factor erythroid 2-related factor 2 (Nrf2)/Kelch-like
ECH-associated protein-1 (Keap1)/antioxidant responsive elements (ARE) pathway. In the present
study, a comprehensive review was conducted using the existing electronic databases, including
PubMed, Medline, Web of Science, and Scopus, as well as related articles in the field. Nrf2/Keap1/ARE
has shown to be the upstream orchestrate of oxidative pathways, which also ameliorates various
inflammatory and apoptotic pathways. So, developing multi-target agents with higher efficacy and
lower side effects could pave the road in the prevention/management of AD. The plant kingdom is
now a great source of natural secondary metabolites in targeting Nrf2/Keap1/ARE. Among natural
entities, phenolic compounds, alkaloids, terpene/terpenoids, carotenoids, sulfur-compounds, as well
as some other miscellaneous plant-derived compounds have shown promising future accordingly.
Prevailing evidence has shown that activating Nrf2/ARE and downstream antioxidant enzymes,
as well as inhibiting Keap1 could play hopeful roles in overcoming AD. The current review highlights
the neuroprotective effects of plant secondary metabolites through targeting Nrf2/Keap1/ARE and
downstream interconnected mediators in combating AD.
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1. Introduction

As a progressive dysfunction in neurons and cognition, Alzheimer’s disease (AD) is a
leading cause of death and disability [1]. Inflammation, apoptosis, and oxidative stress are major
dysregulated pathways involved in the progression of AD, which the latter is linked to several
neurodegenerative diseases and seems to play key destructive roles [2]. Consequently, the activation
of endogenous antioxidant mediators is a critical strategy in combating related complications [3].
In this regard, the inflammatory and oxidative hypothesis in AD seem to be of great importance.
The oxidative pathways mainly pass through the byproducts of the electron transport chain, including
hydrogen peroxide radicals (H2O2), superoxide radical (O2

−.) and the hydroxyl radicals (OH·) [4].
These pathways/mediators seem to be regulated by nuclear factor erythroid 2-related factor 2 (Nrf2) as
an upstream mediator. Nrf2, in turn, is tightly regulated by Kelch-like ECH-associated protein-1 (Keap1)
and antioxidant responsive elements (ARE) [5–7]. Under oxidative stress, Keap1 modification causes
conformational changes to disrupt the Keap1/Nrf2 interaction and prevents Nrf2 degradation. This leads
to nuclear translocation of Nrf2, binding to ARE, followed by the activation of antioxidant enzymes.
Besides, increased level of oxidative stress also elevates the production of inflammatory mediators,
including interleukin (IL)-1β, IL-6, as well as tumor necrosis factor-α (TNF-α) and subsequently,
contribution of phosphatidylinositide 3-kinases (PI3K)/Akt/mammalian target of rapamycin (mTOR).
The resulted inflammation induced by pro-inflammatory cytokines, in turn, causes synaptic damage and
neuronal loss toward the progression of AD [8]. Oxidative stress could also trigger apoptotic pathways
(e.g., Bax, Bad, and caspase) and amyloid β peptides (Aβ1–42), as well as tau phosphorylation toward
neuronal death. Overall, oxidative stress could be considered an upstream regulator of dysregulated
destructive pathways in AD, and Nrf2/ARE pathway as a major inhibitory orchestrate against AD.
In addition to the inflammatory and oxidative hypothesis in AD, the tau hypothesis, amyloid-cascade
and cholinergic hypothesis seem to play more critical roles in the pathogenesis of AD. The tau
hypothesis declares that abnormal or excessive phosphorylation of tau leads to the transformation of
normal adult tau into paired helical filament (PHF)-tau and intracellular neurofibrillary tangles (NFT).
This procedure facilitates the interaction of tau isomers with tubulin to stabilize microtubule assembly,
and leading to cell death/dementia. As mentioned, the amyloid-cascade, as the process of forming Aβ

plaques peptide aggregation resulted from proteolytic cleavages of Aβ precursor protein (APP), is also
central to AD pathology. Additionally, dysregulation in the function of basal forebrain cholinergic
cell (cholinergic hypothesis), as well as other neurotransmitters (e.g., glutamate, norepinephrine,
dopamine) are other pivotal theories leading to AD [9].

Prevailing studies are showing the pivotal role of oxidative stress in triggering other causative
destructive pathways. So targeting oxidative stress and its major pathway (Nrf2/Keap1/ARE) is of
great importance. Despite advances in clinical studies, no effective treatment has yet been provided.
Considering the complexity of destructive oxidative pathways behind AD, single-target antioxidants
seemed not to be appropriate therapeutics in AD. Prevailing evidence has been established toward
effective AD treatment among natural sources to activate Nrf2 and ARE pathway. During recent
decades, the plant kingdom has been a major source of active metabolites in targeting oxidative stress
in neurodegenerative diseases. Phytochemicals are structurally diverse compounds with potential
pharmacological mechanisms and beneficial effects on human health. These compounds are of potential
importance in drug discovery because they provide a large range of compounds with therapeutic
potentials for the treatment of diverse diseases [10]. They have also attracted particular attention
in the management/control of AD by targeting oxidative stress mediators [11]. Several classes of
plant-derived secondary metabolites, including phenolic compounds, alkaloids, terpene/terpenoids,
carotenoids, sulfur-compounds, and other miscellaneous compounds have successfully targeted the
Nrf2/Keap1/ARE pathway and related interconnected mediators in AD.

Previous studies have introduced Nrf2 as a therapeutic target in chronic diseases [12,13] and
AD [14–17], with no focus on the role of natural secondary metabolites. The present review reveals
the role of Nrf2/Keap1/ARE and interconnected pathways as therapeutic targets in the treatment of
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AD. A promising perspective for plant secondary metabolites has also been provided to find potential
therapeutic agents in the treatment of AD.

2. Study Design

A comprehensive review was performed, using electronic databases, including Scopus, PubMed,
Medline, Web of Science, and related articles regarding Alzheimer’s disease, as well as the
phytochemicals effects. The keywords (“Alzheimer’s disease” OR “Nrf2” OR “Keap1”, OR “ARE”)
[title/abstract/keywords] were used. All the interconnected mediators to Nrf2/Keap1/ARE as well as
all the phytochemicals, including phenolic compounds, alkaloids, terpene/terpenoids, carotenoids,
sulfur-compounds were found in the whole text. Overall, the inclusion criteria were phytochemicals
affecting Nrf2/Keap1/ARE and cross-talk pathways, as major involved pathways of Alzheimer’s disease
in all the study types, including in vitro, in vivo, and clinical trials. Data were collected without date and
language restrictions until August 2020. The reference lists and citation hand search with the authors’
expertise in signaling pathways and Nrf2/Keap1/ARE as pivotal therapeutic targets of phytochemicals
in Alzheimer’s disease were also used to complete the search on the electronic databases.

3. Nrf2/Keap1/ARE Pathway and Interconnected Mediators in AD

Oxidative stress seems to be an upstream orchestrate of neurodegeneration either by activating
the inflammatory and apoptotic pathways in neurodegenerative diseases. Prevailing studies have
shown the critical role of overactivated reactive oxygen species (ROS)/reactive nitrogen species (RNS)
in causing cell death, during pathological conditions. Consequently, the oxidative phosphorylation
of mitochondria, as well as parallel dysregulated pathways, could be major sources of produced
ROS/RNS. Of those parallel hallmarks of AD, amyloid-beta (Aβ) plays a major role in activating
oxidative mediators [18]. On the other hand, Nrf2 is now identified as a key upstream defence
mediator against oxidative pathways. Essentially, Nrf2 is a member of the cap’n’collar (CNC)
family of basic region-leucine zipper transcription factors, responsible for activating the antioxidant
enzymes, including NAD(P)H quinone oxidoreductase-1 (NQO1), superoxide dismutase-1 (SOD1),
heme oxygenase-1 (HO-1), glutathione S-transferase (GST), catalase (CAT), and glutathione peroxidase
(GPx), as downstream antioxidant enzymes [19,20]. In normal condition, Keap1 is a repressor protein
that binds to an E3 ubiquitin ligase complex (Rbx-1) via cullin-3 to promote the degradation of Nrf2.
However, in the situation of oxidative stress, Keap1 undergoes conformational changes toward the
release of Nrf2 and subsequent activation of ARE. Several interconnected mediators could activate
Nrf2 through phosphorylation and proceed antioxidative responses. Amongst those mediators,
PI3K [21], c-Jun N-terminal kinase (JNK), extracellular regulated kinase (ERK) and mitogen-activated
protein kinases (MAPKs) [22] are key kinases that phosphorylate Nrf2 and allowing to its nucleus
transportation. On the other hand, some kinases are overactivated during the pathological conditions
to degrade Nrf2 via Keap1-dependent and independent manners. For instance, glycogen synthase
kinase 3-beta (GSK-3β) has been shown to make proteasomal degradation of Nrf2 [23], while p38
MAPK stabilizes the Keap1/Nrf2 interaction toward oxidative responses [22]. GSK-3β plays a key
role in the advancement/etiology of AD. From the mechanistic point of view, GSK-3β is in a near
link with Aβ deposition and tau hyper-phosphorylation, which is associated with AD pathogenesis.
Additionally, GSK-3β affects the oxidative stress, as a major hypothesis in AD. In this line, growing
studies have paid to build a connection between GSK-3β and Nrf2 in AD pathology. Consistently,
GSK-3β suppression was found to increase Nrf2 and some downstream AREs in brain cortex during
AD [24]. Nowadays, usefulness of dual GSK-3β inhibitors/Nrf2 inducers are shown in various reports
against AD.

From the inflammatory point of view, nuclear factor-κB (NF-κB) has also been shown to
co-transported with Keap1 into nuclei regarding trapping Nrf2 [25]. Alternatively, Nrf2, in turn, could
suppress inflammatory pathways through activating anti-inflammatory mediators (e.g., IL-10) and
inhibiting inflammatory ones (TNF-α, IL-6, IL-1β). Besides, Nrf2 has also shown inhibitory effects on
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apoptotic mediators (e.g., Bax, Bad) and stimulatory effects on antiapoptotic factors (e.g., Bcl-2) [20].
In general, the Nrf2/ARE pathway is down-regulated within hippocampal neurons during AD [26].
Therefore, inducing Nrf2/ARE could be a valuable strategy for the treatment of AD.

Considering the multiple dysregulated pathways interconnected with Nrf2, providing multi-target
therapeutic agents is of great importance. Figure 1 indicates the general view of Nrf2/Keap1/ARE and
related interconnected mediators in AD.
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Figure 1. General overview of Nrf2/Keap1/ARE and interconnected pathways, how to be targeted by
phytochemicals. Phytochemicals activate Nrf2, ARE (e.g., SOD, CAT, GPx, GSH, GST) and autophagy,
while inhibits Keap1, oxidative mediators (e.g., ROS, MDA, NO, iNOS) and inflammation (IL, TNF-α,
NF-κB). ↑ green: Activate or up-regulation, ⊥ red: inhibit or down-regulation, ARE: antioxidant
response element, CAT: catalase, GPCRs: G protein-coupled receptors, GPx: glutathione peroxidase,
GSH: glutathione, GSK-3β: glycogen synthase kinase 3-beta, GST: glutathione S-transferase, IL:
interleukin, iNOS: inducible nitric oxide synthase, Keap1: Kelch-like ECH-associated protein-1, MDA:
malondialdehyde, mTORc: mammalian target of rapamycin, NF-κB: nuclear factor-κB, NO: nitric oxide,
Nrf2: nuclear factor erythroid 2-related factor 2, ROS: reactive oxygen species, RTKs: receptor tyrosine
kinase, SOD: superoxide dismutase, TNF-α: tumor necrosis factor-α.

4. Phytochemicals Affecting Nrf2/Keap1/ARE Pathway to Combat AD

Considering the critical role of Nrf2/ARE in preventing the pathogenesis of AD, several
classes of phytochemicals have shown a bright future in targeting those mediators, thereby
combating AD. Amongst those plant-derived secondary metabolites phenolic compounds, alkaloids,
terpenes/terpenoids, carotenoids, and sulfur compounds are of great importance.
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4.1. Phenolic Compounds

Phenolic compounds have been considered of the greatest group of plant secondary metabolites
that are extensively distributed in various parts of the plants. In addition to their undeniable roles in the
plant’s defense, they can also contribute flavor, color, and astringency of fruits to show an impressive
role in accelerating pollination, antifungal and antibacterial activities [27]. Furthermore, phenolic
compounds have shown several biological activities, such as cardioprotective, anti-inflammatory,
antioxidant, immune system promoting, and anti-carcinogenic effects [28]. Curcumin, quercetin,
resveratrol, naringin, naringenin, and chalcones are some of the key ingredients belonging to this
class with hopeful Nrf2/Keap1/ARE-mediated roles in the treatment of neurodegenerative diseases,
especially AD [29].

4.1.1. Curcumin

Curcumin is one of the most impressive natural polyphenols acquired from Curcuma longa L.,
that can modify and modulate various pharmacological and biological targets, such as genes and
cytokines, growth factors, and transcription factors [27,30]. Curcumin suppresses and adjusts the
inflammatory processes via modulating several pro-inflammatory mediators like cyclooxygenase-2
(COX-2), TNF-α, and IL-8 [30]. Additionally, it was documented that curcumin can effectively decrease
the aggregation of Aβ and other dysregulated proteins, regarding targeting neurodegenerative disorder,
primarily AD [29,31]. Sarkar et al. investigated the advantages of using curcumin in preventing and
decreasing the neurotoxicity on the SH-SY5Y and IMR-32 cell lines. Their results emphasized that
it can increase the expression of DNA repair enzymes APE1, and poly(ADP-Ribose) polymerase 1
(PARP1), as well as the activation of ARE via up-regulation of Nrf2 [32]. Also, in a similar study,
the beneficial effects of curcumin analogues were inquired and results showed that interfering with
Nrf2/Keap1/HO-1 signaling pathway is the main mechanism of these analogues to diminish the
oxidative stress induced by Aβ25–35, in vitro [33]. Besides, curcumin properly protected neuronal
differentiated human SK-N-SH cells from ROS. The in vivo advantages showed that it can also reduce
the activity of caspase-3 and caspase-7 along with the levels of H2O2 in the brain. Curcumin also
enhanced the concentrations of GSH and the ratio of free to oxidized GSH, in vivo [34]. In a similar
study, curcumin decreased the damages caused by oxidative stress, ROS, malondialdehyde (MDA),
mitochondrial dysfunction, and increased levels of thiol [35]. Poly(lactic-co-glycolic acid) nanoparticles
of curcumin also showed a remarkable amelioration of the recognition and spatial memory in the mice
model of AD. Decreasing the IL-6, ROS, Aβ level, TNF-α, and increasing the SOD activities are some
of the important mechanisms suggested for the anti-AD effect of curcumin [36]. Moreover, it was
documented that curcumin, in combination with berberine, significantly decreased the inflammation
and oxidative stress and increased the AMPK signaling in AD-induced mice [37]. Besides, interfering
with Nrf2/ARE signaling pathway was reported as the main neuroprotection mechanism of curcumin
in an animal’s model of traumatic brain injury [38]. Sahin et al. showed that curcumin attenuated the
in vivo heat stress through the Nrf2/HO-1 pathway and interconnected oxidative stress mediators [39].
Di-O-demethylcurcumin is another analog of curcumin that showed a neuroprotective potential via
the activation of Nrf2 and suppression of NF-κB [40]. So, curcumin could be considered a hopeful
agent in targeting AD through Nrf2/Keap1/ARE and interconnected pathways.

4.1.2. Naringenin and Naringin

Naringenin and its glycosylated structure, naringin (naringenin 7-O-neohesperidoside),
are substantial flavonoids with variant pharmacological effects. The neuroprotective effects of these
compounds are repeatedly reported against different neurodegenerative diseases [41]. Naringenin
recuperated the streptozotocin-induced AD via enhancing the activity of GPx, SOD, CAT, GST,
glutathione reductase (GR), and Na+/K+-ATPase in a rat model of AD [42]. Also, decreasing the level
of MDA in hippocampus has been reported as the main anti-AD approach of naringenin in the animal
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level [43]. Furthermore, activation of the Nrf2/ARE signaling pathway is a basic protective mechanism
of naringenin against the in vivo and in vitro models of neurotoxicity induced by 6-hydroxydopamine
(6-OHDA) [44]. Naringenin improved the mitochondrial dysfunction and decreased oxidative stress
in brain neurons of Sprague-Dawley rats through interfering with the Nrf2/ARE pathways [45].
In a similar study, naringin could effectively ameliorate the memory deficit in male Wistar rats by
improving mitochondrial dysfunction [46]. Naringin also showed a neuroprotective activity against
3-nitropropionic acid (3-NP)-induced neurotoxicity in the PC12 cell line via interfering with the Nrf2
signaling pathway [47]. Furthermore, naringin showed substantial protective effects versus okadaic
acid, lipopolysaccharide (LPS), and colchicine-induced dysfunctions via the variant approaches such
as mitigating the activity of acetylcholinesterase, increasing the levels of SOD, GSH, CAT and blurting
another anti-inflammatory, antioxidant, and antiapoptotic properties [48–50]. Overal, naringin and
naringenin are promising polyphenols in the management of AD through modulating Nrf2/Keap1/ARE
and cross-talk mediators.

4.1.3. Quercetin

Quercetin is a well-known bioflavonoid that can be found in vegetables, fruits and some oils
of herbal origin. It was documented that quercetin has a substantial potential to scavenge the
ROS, and thereby exert anti-inflammatory, anti-cancer, and neuroprotective activities [28]. In 2017,
Fuxing et al. investigated the in vitro advantages of quercetin in neurotoxicity induced by d-galactose
(d-gal). Results emphasized that interfering with the Nrf2/ARE signaling pathway is the main
neuroprotective mechanism of quercetin that led to improve memory and learning in mice [51].
Moreover, quercetin showed a protective effect in neuronal cultures via enhancing the Nrf2 nuclear
translocation, and GSH levels [52]. In another study, a complex of phospholipid and quercetin
represented potent antioxidative activities on the retinal pigmented epithelium (ARPE-19 cell line) via
activation of the Nrf2 pathway [53]. The manganese-induced neuroinflammation was also properly
attenuated via the application of quercetin and interfering with Nrf2/HO-1 and inducible nitric oxide
synthase (iNOS)/NF-κB pathways [54]. Quercetin in combination with sitagliptin activated the Nrf2
signaling in a rat model of AD [55]. Besides, the in vivo neuronal toxicity induced by H2O2 was
properly improved by quercetin via decreasing the ROS level [56]. Furthermore, the antioxidant,
neuroprotection and anti-inflammatory activities of quercetin on the variant cell lines such as ARPE-19,
SH-SY5Y, and APPswe were investigated and approved [57,58].

4.1.4. Chalcones

Chalcones are other important natural compounds, belong to the flavonoid’s family and are present
in variant fruits such as apple, citrus, tomato, and several vegetables, for instance, bean sprouts, shallots,
potatoes, etc. Diverse biological activities have been reported for chalcones and their derivatives,
including neuroprotective, anti-inflammatory, antibacterial, antiviral, antioxidant, anticarcinogenic,
antifungal, and antimalarial activities [59]. Xanthohumol is a main chalcone derivative obtained from
hop (Humulus lupulus L.) that showed anti-inflammatory activities via the induction of HO-1 through
the involvement of Nrf2/ARE signaling in microglial BV2 cells [60]. Also, the advantages of novel
chalcone derivatives were investigated in the treatment of scopolamine-induced mouse model of
learning and memory impairment and results emphasized that chalcone derivatives could properly
attenuate the learning and memory impairment through the activation of Nrf2 [61]. Furthermore,
2′,3′-dihydroxy-4′,6′-dimethoxychalcone (DDC) significantly diminished the Aβ induced neuronal
death and neurotoxicity on the cortical neuronal cell through enhancing the activation of the Nrf2/ARE
pathway and increasing the expression of HO-1 [62].

4.1.5. Other Phenolic Compounds

Some other phenolic compounds have also shown the potential of being used in neurodegeneration
and AD. Reducing the inflammatory factors, decreasing ROS generation, enhancing the activity of SOD
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and neurotrophic factors are some of other anti-AD mechanisms of polyphenolic phytochemicals [63–67].
Rutin is resulted from the glycoside combining the quercetin and the disaccharide rutinose with
significant antioxidant and anti-amyloidogenic activities in APPswe cells [58]. As another natural
phenol, phloretin improved the amnesia induced by scopolamine in mice via enhancing the activity of
antioxidant enzymes, especially CAT, and SOD, and decreasing the level of MDA which all are in near
interconnection with Nrf2 [68]. In this line, magnolol is also a lignan that compensated for the learning
disability induced by scopolamine via restoring the total nitric oxide synthase and acetylcholinesterase
(AChE) activity. Additionally, magnolol improved the antioxidation effects by increasing the SOD
activity and decreasing the methane dicarboxylic aldehyde content [69]. Carmona et al. investigated
the in vitro anti-AD effects of isoquercitrin, morin, hesperidin, and neohesperidin on MC65, HT22,
and APPswe cell lines. These agents prevented the aggregation of Aβ25–35, facilitated its disaggregating,
decreased the intracellular ROS levels, also attenuated caspase-9, and -3 activations [70]. Pinocembrin
and phenethyl ester of caffeic acid are other phenolic compounds that showed a neuroprotective,
and anti-AD effects through the Nrf2/HO-1 pathway [71–73]. It was documented that luteolin, farrerol,
gastrodin, baicalein, and garlic-derived hybrids accomplished their neuroprotective and antioxidant
effects by engaging with Nrf2/ARE signaling pathway [74–77]. Table 1 shows the potential use of
phenolic compounds in AD through Nrf2/Keap1/HO-1 and interconnected pathways.

Table 1. Polyphenols in combating AD through Nrf2/Keap1/ARE and interconnected pathways.

Compounds Types of Study Cell Line(s)/Animal Model(s) Mechanisms of Action References

Curcumin In vitro human neuroblastoma cell
lines (SH-SY5Y, IMR-32)

↑APE1 and Nrf2 [32]

In vitro, In vivo human neuroblastoma cell
lines (SH-SY5Y), CD1
athymic mice

↓caspase-3 and caspase 7
↓H2O2
↑GSH
↑the ratio of free to
oxidized GSH

[34]

In vivo male Sprague-Dawley rats ↓mitochondrial
dysfunction
↓MDA
↓ROS
↑Thiol

[35]

male AD model
(APP/PS1dE9) mice

↓IL-6
↓ROS
↓Aβ level
↓TNF-α
↑SOD activities

[36]

male ICR mice model of
traumatic brain injury

↓neuronal apoptosis
↓MDA
↑SOD
↑GPx

[38]

Japanese quails
(Coturnix coturnix japonica)

↓MDA levels
↑SOD
↑GPx
↑CAT
↑Nrf2 and HO-1 levels

[39]

Curcumin and
berberine

In vivo B6C3-Tg
(APPswePSEN1dE9)/Nju
double transgenic mice model
of AD

↓IL-1β
↓TNF-α
↓IL-6
↓GFAP and IBA1

[37]

In vitro human neuroblastoma cell
line (SH-SY5Y)

↓ROS
↓iNOS, ↓NO
↓NF-κB
↑Nrf2

[40]
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Table 1. Cont.

Compounds Types of Study Cell Line(s)/Animal Model(s) Mechanisms of Action References

In vitro rat adrenal
pheochromocytoma cell
line (PC12)

↑Nrf2/HO-1 protein
expression
↓Keap1
↑translation of Nrf2 into
nuclear
↑SOD/CAT
↑Bcl-2
↓Bax and cytochrome c

[33]

Naringenin In vivo male Wistar rats’ model of AD ↑SOD
↑GPx
↑GST
↑CAT
↑GR
↑Na+/K+ ATPase

[42]

↓MDA levels [43]

In vivo, In vitro male C57BL/6 mice model of
PD, human neuroblastoma cell
line (SH-SY5Y)

↑GSH levels
↑Nrf2/ARE pathway
↑ARE pathway genes
↓ROS formation
↑Nrf2 protein levels

[44]

In vitro neurons isolated from the
brains of Sprague-Dawley rats

↓ROS
↑high-energy
phosphates level
↑mitochondrial ANT
transport activity
↑mitochondrial
membrane potential
↑expression of Nrf2
↑activation of the
Nrf2/ARE

[45]

Naringin In vivo male Wistar rats’ model of AD ↑CAT
↑SOD
↑GSH
↓TNF-α
↓IL-1β

[46]

In vitro pheochromocytoma cell
line (PC12)

↓LDH
↓lipid peroxidation
↓ROS generation
↑GPx
↑CAT
↑GR
↑SOD
↑GSH levels
↑Nrf2 activation
↑HO-1 and NQO-1

[47]

In vivo male Wistar rats’ model of
cognitive impairment

↑CAT
↑SOD
↑GSH levels
↓TNF-α, ↓TGF-β, ↓IL-1β
↓NF-κβ p65 subunit,
↓caspase-3

[48]

In vitro pheochromocytoma cell
line (PC12)

↓CYP2E1
↓ROS
rectify the antioxidant
protein contents of Nrf2,
HO-1, SOD2, and GSS

[49]
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Table 1. Cont.

Compounds Types of Study Cell Line(s)/Animal Model(s) Mechanisms of Action References

In vivo male Wistar rats’ model of
cognitive impairment

↓MDA
↓nitrite
↑CAT
↑SOD
↑GST
↑GSH levels

[50]

Quercetin In vivo male Kunming strain mice
model of brain aging process
and learning and
memory defect

↑Nrf2/ARE
↑Nrf2
↑HO-1
↑SOD

[51]

In vitro cerebellar granule neurons
isolated from
Sprague-Dawley rats

↑GCLC gene expression
↑activation of the Nrf2
↑GSH

[52]

In vitro human RPE cell
line (ARPE-19)

↑GPx
↓ROS and MDA
↑HO-1, NQO-1, and GCL
↑CAT
↑SOD
↑Nrf2

[53]

In vitro, In vivo Sprague-Dawley male rats,
Neuroepithelioma cell line
(SK-N-MC)

↑CAT
↑SOD
↓MDA
↑GSH levels
↓ROS

[54]

In vivo male Sprague-Dawley rats ↑CAT
↑SOD
↓MDA
↑GSH levels
↑Nrf2/HO-1 pathway

[55]

In vitro, In vivo homozygotic transgenic
mouse line
B6.129S7-Sod2tm1Leb/J,
hippocampal neurons isolated
from Sprague-Dawley
rat embryos

↓ROS [56]

In vitro human RPE cell line
(ARPE-19)

↑Nrf2
↑HO-1

[57]

APP695-transfected SH-SY5Y
cell line (APPswe),
human neuroblastoma cell
lines (SH-SY5Y)

↓lipid peroxidation
↓MDA
↑GSH levels
↓ROS

[58]

Xanthohumol In vitro mouse microglia BV2 cells ↑Nrf2-ARE signaling
pathway activation
↑Nrf2 expression
↑HO-1 expression
↑GSH
↓NO, IL-1β, and TNF-α
↓NF-κB

[60]

Chalcone
derivative

In vivo scopolamine-induced
mice model

↑Nrf2/HO-1 protein
expression
↓ROS
↑Superoxide dismutase
activity

[61]
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Table 1. Cont.

Compounds Types of Study Cell Line(s)/Animal Model(s) Mechanisms of Action References

2′,3′-Dihydroxy-
4′,6′-dimethoxy-
chalcone (DDC)

In vitro cerebellar cortex neurons
isolated from embryonic
17–19-day-old Wistar/ST
rat fetuses

↑Nrf2-ARE signaling
pathway activation
↑Nrf2 expression
↑HO-1 expression

[62]

Rutin In vitro APP695-transfected SH-SY5Y
cell line (APPswe),
human neuroblastoma cell
lines (SH-SY5Y)

↓lipid peroxidation
↓MDA
↑GSH levels
↓ROS

[58]

Phloretin In vivo scopolamine-induced
mice model

↑CAT
↑SOD
↓MDA

[68]

Magnolol ↑total nitric oxide
synthase
↑AChE activity
↑SOD
↓methane dicarboxylic
aldehyde

[69]

Morin In vitro mouse hippocampal nerve
cells (HT22),
Swedish mutant APP stable
cell line (APP695-transfected
SH-SY5Y)

↓ROS levels
↓caspase-9, and -3
↓β- and γ-secretase

[70]

Isoquercitrin ↓ROS levels
↓caspase-9, and -3
↓β- and γ-secretase

[70]

Pinocembrin In vitro human neuroblastoma cell
lines (SH-SY5Y)

↑Nrf2 protein levels
↑Nrf2/HO-1 pathway
↓ROS levels

[71]

Caffeic acid
derivative

In vivo, In vitro male Kunming mice model of
learning and memory
impairment
human neuroblastoma cell
lines (SH-SY5Y)

↑GSH
↑SOD
↑HO-1 and NQO-1
↑Nrf2
↓protein carbonylation
level
↓MDA

[72]

Caffeic acid
derivative

In vivo male C57Bl/6 mice model
of AD

↓ROS
↑Nrf2 mRNA
↑activation of the
Nrf2 signal
↑HO-1 protein

[73]

Gallic acid In vivo Drosophila melanogaster
model of AD

↓activity of
cholinesterases
↓MDA and ROS

[63]

Resveratrol In vivo Wistar rats’ model of
combined AD and diabetes

↑GSH levels
↑SOD
↓MDA levels

[64]

Resveratrol
derivative

In vitro pheochromocytoma cell
line (PC12),
mouse microglia BV2 cells

↓NO
↓ROS

[65]

p-hydroxybenzyl
alcohol

In vitro, In vivo ICR mice model of AD,
human neuroblastoma cell
line (SH-SY5Y)

↑Nrf2 protein levels
↑BDNF
↑GDNF

[66]

Taxifolin derivative In vitro, In vivo male Swiss mice model of AD,
mouse hippocampal nerve
cell (HT22)

↑Nrf2
↑GSH

[67]
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Table 1. Cont.

Compounds Types of Study Cell Line(s)/Animal Model(s) Mechanisms of Action References

Luteolin In vitro pheochromocytoma cell line
(PC12), rat glioblastoma cell
line (C6)

↑Nrf2
↑NQO1-ARE-response
interfering ERK1/2
pathway

[74]

Farrerol In vitro mouse microglial BV-2 cells ↑Nrf2/Keap1 pathway
↓ROS and MDA
↑SOD
↑SOD1 and SOD2
mRNA

[75]

Gastrodin In vitro hippocampal neurons isolated
from Sprague-Dawley rats

↑ SOD
↑mRNA expression of
CAT
↑CAT
↑gene expression of Nrf2
↑ERK1/2
phosphorylation

[76]

Baicalein In vitro pheochromocytoma cell
line (PC12)

↑Nrf2/HO-1 [77]

Curcuma &
garlic-derived
hybrids

In vitro human neuroblastoma cell
line (SH-SY5Y)

↑Nrf2 [78]

↑: Increase or up-regulation, ↓: decrease or down-regulation, AChE: acetylcholinesterase, ANT: adenine nucleotide
translocator, APE1: apurinic/apyrimidinic endonuclease 1, ARE: antioxidant response element, Aβ: amyloid-beta,
BDNF: brain-derived neurotrophic factor, CYP2E1: cytochrome P450 2E1, ERK: extracellular signal-regulated kinases,
GDNF: glial cell-derived neurotrophic factor, GFAP: glial fibrillary acidic protein, GSS: glutathione synthetase, HO-1:
heme oxygenase-1, IBA1: ionized calcium-binding adaptor molecule 1, IL-1β: interleukin 1 beta, IL-6: interleukin 6,
iNOS: inducible nitric oxide synthase, Keap1: kelch-like ECH-associated protein 1, LDH: lactate dehydrogenase,
MDA: malondialdehyde, NF-κB: nuclear factor kappa-light-chain-enhancer of activated B cells, NO: nitric Oxide,
NQO-1: NAD(P)H quinone dehydrogenase 1, Nrf2: nuclear factor erythroid 2–related factor 2, ROS: reactive oxygen
species, SOD: superoxide dismutase, TGF-β: transforming growth factor-beta, TNF-α: tumor necrosis factor-alpha.

4.2. Alkaloids

Alkaloids are nitrogen-containing basic secondary metabolites, divided into true alkaloids
(nitrogen-containing heterocyclic compounds) and proto-alkaloids (contain nitrogen atom(s) that is
not a part of the heterocyclic ring). Although most of the common alkaloids have been isolated from
plants, they could also be found in microorganisms, marine organisms, animals, and fungi. In the plant
kingdom, some families contain more alkaloids than others, including Amaryllidaceae, Papaveraceae,
Solanaceae, and Ranunculaceae. These organic natural compounds have a wide range of biological
and pharmacological activities, including analgesic, anticancer, antimalarial, antioxidant, anxiolytic,
anti-inflammatory, antidepressant, antiasthma, antiarrhythmic, antibacterial, and antihyperglycemic
effects [28,79,80].

Berberine is an isoquinoline alkaloid with a wide variety of biological and pharmacological
effects [81]. It possesses antioxidant and anti-inflammatory properties assessed by in vitro and in vivo
models of AD. The regulatory effects of berberine on Nrf2/ARE pathway could be considered as one of
its main protective mechanisms in oxidative stress-induced neuronal cell damages. In some in vitro
studies, pretreatment with berberine significantly improved SOD activity and intracellular GSH levels,
while decreased ROS generation, MDA formation, and LDH release [81–83]. Sadraie et al. reported that
berberine improved spatial recognition memory in LPS-induced learning and memory dysfunctions in
rats by up-regulation of Nrf2 target genes, like SOD and CAT. It also improved antioxidant capacity
through increasing GSH and GPx levels and decreasing MDA and protein carbonyl levels [84]. Oxidative
stress, in turn, could activate inflammatory pathways with a major contribution to the pathogenesis
of AD. Furthermore, Nrf2 can decrease the transcription of pro-inflammatory cytokines in microglia,
astrocytes, and macrophages; and increase the expression of anti-inflammatory mediators [85]. Besides,
berberine also attenuated inflammation-related indices like TNF-α, IL-6, NF-κB, and toll-like receptor 4
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(TLR4) [84,86]. Moreover, de Oliveira and colleagues indicated similar protective effects from berberine
on streptozotocin-induced dementia in male Wistar rats [87].

Trigonelline (TRG) is another alkaloid that showed anti-AD activities in Aβ1–40- and LPS-induced
AD, in vivo [88,89]. TRG improved spatial learning and memory in the Morris water maze and Y maze
test. According to a cross-talk between antioxidant and anti-inflammatory pathways, neuroprotective
effects of TRG in AD could be related to its regulating role in ARE and Nrf2 pathway (Table 2).

Tetramethylpyrazine, also known as ligustrazine, is an alkaloid isolated from Chinese herbal
medicine Ligusticum wallichii Franchat, showed considerable in vitro and in vivo anti-AD effects on
cobalt chloride-induced neurotoxicity in PC12 cells and male Wistar rats. This effect was exerted through
the stimulation of Nrf2/glutamate-cysteine ligase (GCL)-mediated regulation of GSH, GSSG, and
repression of hypoxia-inducible factor-1α (HIF-1α)/NADPH oxidase (NOX)-mediated ROS production
and superoxide level, contributed to the amelioration of oxidative stress and then increasing cell
viability under hypoxic conditions [90]. Ligustrazine phosphate (LP) is the synthetic product of
ligustrazine that exerts considerable effects on scopolamine-induced amnesia in male rats. LP enhanced
the activities of the antioxidant enzymes (SOD and GPx activities) with a remarkable reduction in lipid
peroxidation levels [91,92]. The LP transdermal ethosomal system had a higher penetration ability
than aqueous one [91]. Shi et al. also showed its higher ability in improving behavioral performance
when used in combination with huperzine A, a sesquiterpene alkaloid that extracted from Chinese club
moss Huperzia serrata [92]. Besides, another study represented that a cholinesterase inhibitor alkaloid,
huperzine A, prevented morphological damages and increased cell viability via regulating AREs [93].

Piperine, as the most abundant alkaloid in pepper, has several pharmacological activities like
anticonvulsant, anti-depressant and improving cognitive abilities [94,95]. Yang et al. synthesized a novel
piperine derivative, HJ22, in attenuating cognitive impairment, oxidative stress, neuroinflammation
and apoptosis in rats. HJ22 was connected to the Keap1, and prevented from protein-protein interaction
of Keap1/Nrf2 complex, thereby nuclear Nrf2, ARE and downstream genes like SOD, CAT, and GR
expression in the hippocampus of rats. In addition, activation of Nrf2, significantly decreased the
expression of thioredoxin-interacting protein (TXNIP), contributing to the inactivation of nod-like
receptor protein 3 (NLRP3) inflammasome, and IL-1β depletion [94].

Dauricine, an isoquinoline alkaloid that isolated from the Rhizoma menispermi, has been found to
yield neuroprotective effects. Wang et al. reported that dauricine increased cell viability, decreased
Aβ1–42 secretion, alleviated the chronic and acute oxidative damages, and repressed the apoptotic
rate in AD models. These effects were in a near link with the regulation of the Nrf2/Keap1/Bcl-2
pathway [96]. As a bisbenzylisoquinoline alkaloid, fangchinoline, has been shown to protect HT-22
mouse neuronal cells against glutamate-induced oxidative damage through the up-regulation of
Nrf2 and its target genes, HO-1 and SOD. Fangchinoline also down-regulated Keap1 expression.
These mechanisms led to an increase in cell viability and blocked cell morphological damages [97].
Deoxyvasicine is a main quinazoline alkaloid isolated from the aerial parts of Peganum harmala Linn.
It effectively ameliorated learning and memory deficits in scopolamine-treated mice by the same
mechanisms as huperzine A did in attenuating oxidative stress and neuroinflammation [98].

Plumbagin is another alkaloid that isolated from the plants of Plumbago genus. It has been
reported that plumbagin indicated its anti-Alzheimer effects through up-regulating of Nrf2/ARE
pathway. Plumbagin also prevented the cognitive impairments induced by STZ in mice via Nrf2/ARE
mediated attenuation of astrogliosis and suppression of the β-secretase enzyme [99].

As another alkaloid, embelin (2,5-dihydroxy-3-undecyl-1,4-benzoquinone) notably improved the
memory retention and recognition index in scopolamine-induced amnesia in rats by elevated expression
of SOD1 and CAT as Nrf2 target genes [100]. Embelin also increased the expression of brain-derived
neurotrophic factor (BDNF), as an inducer of Nrf2 [100,101]. Harmaline and harmine isolated from
Peganum harmala L. also showed promising anti-amnesic effects on the scopolamine-induced memory
deficits in mice [102]. Pretreatment with these β-carboline alkaloids remarkably improved SOD and
GPx activities, while relieved MDA and TNF-α levels [102].
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In the same studies on alkaloids, isorhynchophylline, oxindole [103], aloperine [104],
matrine, methyl jasmonate, neferine, norcepharadione B, and vincamine [105–109] showed
remarkable anti-Alzheimer properties mediated by improving antioxidant capacity and targeting
Nrf2/ARE pathway.

Recent studies also showed that Corydalis edulis Maxim. has several pharmacological activities.
Hence, Liang and colleagues evaluated the efficacy of Corydalis edulis Maxim. total alkaloids (CETA) in
d-gal-induced AD in rats. In their study, eleven alkaloids (protopine, berberine hydrochloride, berberine,
dehydrocorydaline, acetylcorynoline, fumariline, tetrahydroberberine, tanguinarine, ochotenimine,
palmatine chloride, and corynoline) were identified by UPLC-MS/MS analysis from CETA extract [110].
In another study, the effects of a total alkaloidal extract from Murraya koenigii (MKA) leaves (girinimbine,
mahanimbine and murrayanine) was evaluated on age-related oxidative stress in aged mice [111].
CETA and MKA both ameliorated oxidative stress via the Nrf2-dependent induction of SOD and CAT
and suppressing NF-κB expression, TNF-α, IL-1β levels and Aβ accumulation [85,110,111].

Therefore, secondary metabolites mentioned in this part could be promising for drug development
in preventing AD and related diseases. Other mechanisms of these compounds are mentioned in
Table 2.

Table 2. Alkaloids in combating AD through Nrf2/Keap1/ARE and interconnected pathways.

Compounds Types of Study Cell Line(s)/Animal Model(s) Mechanisms of Action References

Berberine In vitro axonal transport impairment
induced by calyculin A in
wild-type mouse
neuroblastoma-2a cell
line (N2a)

↑SOD
↓MDA
↓tau and NFs
hyperphosphorylation,
↑cell metabolism,
↑cell viability
↑PP-2A activity
↑NF axonal transport

[81]

glutamate-induced oxidative
stress and apoptosis in
pheochromocytoma cells
(PC12) and neuroblastoma-2a
(N2a) cell lines

↓ROS
↓MDA
↑SOD
↑GSH
↓Bax/Bcl-2
↓caspase-3
↓DNA fragmentation
↑cell viability

[82]

homocysteic acid-induced
neuronal cell death in murine
hippocampal neuronal cell
line (HT-22)

↓ROS, ↓LDH, ↓nuclear
condensation, ↓necrotic
death, ↓cell apoptosis,
↑cell survival,
↑phosphorylated Akt

[83]

In vivo LPS-induced learning and
memory dysfunctions in the
male albino Wistar rats

↑GSH, ↑GPx, ↑SOD,
↑CAT, ↓MDA,
↓3-NT, ↓NF-κB, ↓TLR4,
↓TNF-α, ↓IL-6, ↓COX-2,
↓AChE, ↓DNA
fragmentation,
↓caspase-3
↓protein carbonyl,
↓GFAP, ↑sirtuin 1, ↓p38
MAPK, ↑spatial
recognition memory

[84]
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Table 2. Cont.

Compounds Types of Study Cell Line(s)/Animal Model(s) Mechanisms of Action References

streptozotocin-induced
dementia in male Wistar rats

↓ROS, ↑GSH, ↑T-SHs,
↑GST activity, ↓TBARS,
↓protein carbonyl levels,
↑δ-ALA-D, ↑NTPDase,
↑5′-nucleotidase activity,
↑ADA activity,
↑recognition index

[87]

Trigonelline In vivo Aβ1–40 induced AD in adult
male Swiss albino mice

↑SOD, ↑GSH, ↑MMP,
↓MDA, ↓protein
carbonyl levels, ↓LDH,
↓COX-2, ↓GFAP,
↓TNF-α, ↓IL-6, ↑spatial
recognition memory

[88]

LPS-induced cognitive
impairment in the male albino
Wistar rats

↑SOD, ↑GSH, ↓MDA,
↓AChE, ↓TNF-α, ↓IL-6,
↑BDNF, ↑spatial
learning, and memory

[89]

Tetramethylpyrazine
(Ligustrazine)

In vitro cobalt chloride-induced
neurotoxicity in PC12 cells

↓mitochondrial and
intracellular superoxide,
↓ROS, ↑GSH, ↓GSSG,
↑nuclear Nrf2
expression, ↑GCLc
expression, ↑Nrf2
transcription activity,
↑ARE-luciferase, ↑cell
viability, ↓Bax, ↓cleavage
of caspase-3 and -9,
↓PARP, ↑Bcl-2,
↓cytochrome c, ↓cell
apoptosis,
↓HIF-1α/NOX2 pathway

[90]

In vivo cobalt chloride-induced
neurotoxicity in adult male
Wistar rats

↑Nrf2, ↓HIF-1α, ↓NOX2
protein expression, ↓cell
apoptosis, ↑spatial
learning and memory

Ligustrazine
phosphate

In vivo scopolamine-induced amnesia
in male Sprague-Dawley rats

↑SOD, ↑GPx, ↓MDA,
↑behavioral performance

[91]

In vitro abdominal skins of male
Sprague-Dawley rats

↑penetration ability,
↑drug deposition in skin

Ligustrazine
phosphate and
huperzine A

In vivo scopolamine-induced amnesia
in male Sprague-Dawley rats

↑SOD, ↑GPx, ↓MDA,
↑spatial memory

[92]

Huperzine A In vitro tert-butyl
hydroperoxide-induced
oxidative stress in
pheochromocytoma
cells (PC12)
Aβ25–35-induced neurotoxicity
in PC12 cells

↓ROS, ↑SOD, ↓LDH,
↑cell viability,
↓morphological damage
↑cell viability

[93]

Deoxyvasicine In vivo scopolamine-induced
cognitive dysfunction in male
C57BL/6J mice

↑GPx, ↓TNF-α, ↓AChE,
↑ChAT, ↑BDNF, ↑ACh,
↑spatial learning
and memory

[98]
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Table 2. Cont.

Compounds Types of Study Cell Line(s)/Animal Model(s) Mechanisms of Action References

HJ22 (a novel
derivative
of piperine)

In vivo ibotenic acid-induced
cognitive impairment in
Sprague-Dawley rats

↓PPI of Keap1-Nrf2,
↑nuclear Nrf2
expression, ↑SOD, ↑CAT
activities, ↑GR, ↓MDA,
↑ARE, ↓IL-1β, ↓TXNIP,
↓NLRP3, ↓apoptotic cell
death, ↓AChE, ↑ChAT,
↑ACh, ↑Bcl-2/Bax ratio,
↑Nissl body, ↓ASC,
↓caspase-1

[94]

Radical-containing
nanoparticles
coupled with
piperine

In vitro Aβ1–42-induced damage in
human neuroblastoma
SH-SY5Y cells

↓ROS, ↓hydroxyl radical
production, ↑GPx, ↑CAT,
↓MDA, ↓protein
carbonyl levels,
↓8-OHdG, ↓DNA
fragments, ↑cell viability

[95]

Fangchinoline In vitro glutamate-induced oxidative
neuronal damage in mouse
neuronal cells (HT-22)

↓ROS overproduction,
↑SOD activity, ↑Nrf2
protein level, ↓Keap1
expression, ↑HO-1
protein level, ⊥cell
morphological damages,
↑cell viability, and
regulating Keap1/Nrf-2
antioxidation signaling
pathway

[97]

Dauricine In vitro Cu2+ induced oxidative
damage on APPsw cells

↑nuclear Nrf2, ↓Keap1
expression, ↑cell
viability, ↓ROS levels,
↑SOD activity, ↑MMP
level, ↓Aβ1–42 secretion,
↓Bax/Bcl-2 ratio,
↓caspase-3 activity,
↓apoptotic rate

[96]

Aβ1–42-transgenic
Caenorhabditis elegans GMC101

↓oxidative toxicity of Aβ,
↑survival rates

Plumbagin In vivo streptozotocin-induced AD in
adult male Swiss-albino mice

↑activation of Nrf2/ARE
pathway, ↓astrogliosis,
↓GFAP expression,
↑spatial learning
and memory

[99]

In silico ↓β-secretase enzyme

Embelin In vivo scopolamine-induced amnesia
in Sprague-Dawley rats

↑SOD1, ↑CAT, ↓4-HNE,
↑immature neurons in
the SGZ, ↑BDNF
expression, ↑CREB1,
↑ACh, ↓Glu, ↓Dopamine,
↓NE, ↑recognition index,
↑memory retention,

[100]

Harmaline In vivo scopolamine-induced memory
impairments in male
C57BL/6 mice

↑SOD, ↑GPx, ↓MDA
level, ↓MPO, ↓NO,
↓TNF-α, ↓AChE activity,
↑ChAT activity, ↑ACh,
↑L-Trp, ↑5-HT, ↑L-Glu,
↓γ-GABA, ↑spatial
learning and
memory,↓MDA level,
↓TNF-α, ↑ChAT activity,
↑ACh, ↑L-Trp,

[102]
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Table 2. Cont.

Compounds Types of Study Cell Line(s)/Animal Model(s) Mechanisms of Action References

Isorhynchophylline In vitro Aβ25–35-induced neurotoxicity
cells (PC12)

↑cell viability, ↓ROS
levels, ↑GSH, ↓MDA
levels, ↑MMP level,
↓DNA fragmentation,
↓caspase-3 activity,
↑Bcl-2/Bax ratio

[103]

Aloperine In vitro neuroblastoma N2a cells
co-transfected with Swedish
mutant APP and ∆E9
deleted presenilin-1
(N2a/Swe.D9)
H2O2-induced secondary
insults in N2a/Swe.D9 cells

↑intracellular GSH
levels, ↑GPx activity,
↓generation of ROS,
↓4-HNE, ↑MMP level,
↑intracellular ATP level
↑cell viability,
↓apoptosis, ⊥LDH
release, ↓translocation of
cytochrome c, ↓Bax/Bcl-2
ratio, ↓caspase-3 activity,
⊥p38-JNK pathway

[104]

Matrine In vivo scopolamine-induced amnesia
in male ICR mice

↑T-AOC, ↑SOD, ↑CAT,
↓MDA, ↓AChE activity,
↓BuChE activity,
improve learning and
memory

[105]

Methyl jasmonate In vivo scopolamine-induced
cognitive impairment in male
Swiss mice

↑SOD, ↑CAT, ↑GSH,
↓MDA, ↓AChE activity,
↑spatial working
memory, ↑recognition
memory, ↑alternation
behaviors,

[106]

Neferine In vivo aluminium chloride-induced
AD in Wistar rats

↓ROS formation, ↑SOD,
↑CAT, ↑GSH, ↓MDA,
↓LDH, ↓NO, ↓AChE
activity, ↓Na+K+ATPase
activity, ↓TNF-α, ↓IL-1β,
↓IL-6, ↓iNOS, ↓COX-2,
↓NF-κB, ↑IKBα,
↑memory and learning
ability

[107]

Norcepharadione B In vitro hydrogen peroxide
(H2O2)-induced neuronal
injury in HT-22 mouse
neuronal cells

↑SOD, ↑GSH, ↓MDA,
↓LDH activity, ↑HO-1,
↑Bcl-2/Bax ratio, ↓VSOR
Cl− currents, ↓cell
apoptosis, ↓cell volume
change,
↑phosphorylated Akt

[108]

Vincamine In vitro Aβ25–35 induced cytotoxicity
in PC12 cells

↓ROS levels, ↑SOD,
↑GSH, ↓MDA,
↑Bcl-2/Bax ratio,
↑phospho-Akt/Akt ratio,
↑cell viability, ↓cell
apoptosis

[109]

Corydalis edulis
total alkaloids

In vivo d-gal induced AD in
Sprague-Dawley male rat

↓ROS, ↑SOD, ↑CAT,
↓MDA, ↓TNF-α, ↓IL-1β,
↓Aβ accumulation,
↓NF-κBp65 expression,
↑MAP2, ↑memory and
learning ability

[110]
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Table 2. Cont.

Compounds Types of Study Cell Line(s)/Animal Model(s) Mechanisms of Action References

girinimbine,
mahanimbine and
murrayanine

In vivo Ageing-induced oxidative
stress in male Swiss
albino mice

↑GPx, ↑GSH, ↑GRD,
↑SOD, ↑CAT, ↓LPO level,
↓NO levels, ↑ACh,
↓AChE activity

[111]

↑: Increase or up-regulation, ↓: decrease or down-regulation, ⊥: blockade or suppressed, Aβ: Amyloid beta, ACh:
acetylcholine chloride, AChE: acetylcholinesterase, AD: Alzheimer’s disease, ADA: adenosine deaminase, APPsw:
Swedish mutant form of human β-amyloid precursor protein, ARE: antioxidant response element, ATP: adenosine
triphosphate, BDNF: brain-derived neurotrophic factor, BuChE: butyrylcholinesterase, CAT: catalase, Ch: choline
chloride, ChAT: choline acetyltransferase, COX-2: cyclooxygenase 2, d-gal: d-galactose, GCLc: γ-glutamylcysteine
ligase, GFAP: glial fibrillary acidic protein, GPx: glutathione peroxidases, GRD or GR: glutathione reductase,
GSH: glutathione, GSSG: oxidized GSH, GST: glutathione S-transferase, γ-GABA: γ-aminobutyric acid, HIF-1α:
hypoxia-inducible factor 1α, HO-1: heme oxygenase-1, IKBα: NF-κB inhibitor, IL: Interleukin, iNOS: inducible
nitric oxide, Keap1: Kelch-like ECH-associated protein 1, LDH: lactate dehydrogenase, LPO: lipid peroxidation,
LPS: lipopolysaccharide, l-Glu: l-glutamic acid, l-Trp: l-tryptophan, MAPK: mitogen-activated protein kinase,
MAP2: microtubule-associated protein 2, MDA: malondialdehyde, MMP: mitochondrial membrane potential, MPO:
myeloperoxidase, NE: Norepinephrine, NFs: neurofilaments, NF-κB: nuclear factorkappa B, NLRP3: nod-like
receptor protein 3, NO: nitric oxide, NOX2: nicotinamide oxidase 2, Nrf2: nuclear factor erythroid 2-related
factor 2, NTPDase: ecto-nucleoside triphosphate diphosphohydrolase, PARP: Poly (ADP-ribose) polymerase,
PPI: protein-protein interaction, PP-2A: Protein phosphatase 2A, ROS: reactive oxygen species, SGZ: subgranular
zone, SOD: superoxide dismutase, TBARS: thiobarbituric acid reactive substance, TLR4: toll-like receptor 4,
TNF-α: tumor necrosis factor α, T-SHs: total thiols, δ-ALA-D: δ-Aminolevulinic acid dehydratase activity, TXNIP:
thioredoxin-interacting protein, T-AOC: total antioxidant capacity, VSOR: volume-sensitive outwardly rectifying,
3-NT: 3-nitrotyrosine, 4-HNE: 4-hydroxy-2-nonenal, 5-HT: 5-hydroxy- tryptamine, 5-HIAA: 5-hydroxyindole-3-acetic
acid, 8-OHdG: 8-hydroxy-2′-deoxyguanosine.

4.3. Terpenes and Terpenoids

Terpenes are known as an important group of secondary metabolites composed of the numbers of
isoprene (C5H8) units. Isoprene is an unsaturated hydrocarbon that could be constructed by disparate
plants and animals. Modifying various functional groups, as well as rotating, removing, or oxidizing
the methyl group at variant positions of primitive structure of terpenes, consequences to the terpenoid
category. Antibacterial, antioxidant, antifungal, anti-inflammatory, anticarcinogenic, neuroprotective,
and cardioprotective activities are some of the important pharmacological effects of terpenes and
terpenoid compounds [112].

It was reported that in vitro and in vivo neuronal impairment induced by ethanol, was properly
improved via the antiapoptotic and antioxidative activities of carvacrol [113]. 1,8-cineole and α-pinene
are other monoterpenes agents, which demonstrated an in vitro neuroprotective activity against the
oxidative stress induced by H2O2 via the interposition to the ROS production and increasing the level
of several enzymes and compounds like CAT, SOD, GPx, and HO-1 [114]. The investigation from the
hippocampus of Swiss mice treated with p-cymene emphasized that this monoterpene reduced nitrite
content, lipid peroxidation, and enhanced the activity of CAT and SOD [115]. Similarly, linalool is
a monoterpenoid that showed a protective effect against the in vivo cognitive deficits via enhancing
the activity of GPx, SOD, and the Nrf2/HO-1 pathway proteins [116]. The in vivo cognitive deficits
mediated by a high-fat diet, after the administration of thymol, was satisfactorily improved via the
up-regulating the Nrf2/HO-1 pathway [117]. Similarly, the neuroprotective and anti-Alzheimer’s
effects of other monoterpenes have been repeatedly mentioned in various studies. Enhancing the
activity of antioxidant enzymes and up-regulation of Nrf2 are the main neuroprotective mechanisms
of carvacryl acetate, borneol, and geraniol [118–120].

7β-(3-ethylcis-crotonoyloxy)-1α-(2-methylbutyryloxy)3,14-dehydro-Z-notonipetranone (ECN) is
a neuroprotective sesquiterpenoid that has previously shown anti-inflammatory and cytoprotective
effects through activating the Nrf2/HO-1 signaling pathway and decreasing ROS generation in vivo and
in vitro studies [121,122]. Administration of some other sesquiterpenoids, including lactucopicrin [123],
α-cyperone [124], and artemether [125] ameliorated the oxidative stress via activation of the Nrf2
pathway and downstream mediators such as HO-1, SOD, and anti-inflammatory mediators in the mice
model of AD. Park and colleagues showed, bakkenolide B (a sesquiterpene), isolated from Petasites
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japonicus leaves, might be considered a strategy in the treatment/prevention of neurodegenerative
diseases like AD. Bakkenolide B, exerted its neuroprotective effects by up-regulation of Nrf2/ARE
signaling pathways and related downstream factors, including HO-1 and NQO1, which led to reduced
ROS production and neuroinflammation. These activations were associated with the enhancement of
AMPK phosphorylation [126].

Carnosic acid is an important diterpene with various biological activities such as anti-inflammatory,
neuroprotective, antioxidant, and anticancer effects. Carnosic acid protected the SH-SY5Y cell line
against neurotoxicity via interfering with the PI3K/Akt/Nrf2 signaling pathway [127]. Moreover,
it was documented that Nrf2 plays a critical role in the neural differentiation and neuroprotective
effects mediated by carnosic acid [127,128]. Takumi et al. investigated the in vivo and in vitro
neuroprotective effects of carnosic acid, and protecting the PC12h cell line via activating the Nrf2/ARE
pathways [129]. Furthermore, carnosic acid diminished the production of Aβ1–42 in SH-SY5Y cell
lines through inducing the activation of TACE, expressions of Aβ-degrading enzymes, and a poor
modulatory effect on Nrf2 [130]. As another lactone diterpenoid, andrographolide, that isolated from
Andrographis paniculata showed in vitro anti-Alzheimer’s advantages in HT22 and PC12 cell lines via
activation of Nrf2/ARE/HO-1 and the Nrf2-mediated p62 signaling pathways [131,132].

As another terpene, compound K is a triterpenoid structure isolated from red ginseng that
could significantly improve memory functions in an animal model of neurotoxicity. Furthermore,
interfering with the Nrf2 signaling pathway and antioxidant enzymes was suggested as a main
neuroprotective mechanism of compound K [133]. It was documented that ginsenoside showed its
neuroprotective effects via activation of Nrf2 and inhibiting the ROS/ASK-1 in SH-SY5Y cell lines [134].
Tom et al. designed a study to investigate the anti-Alzheimer effects of gedunin in the IMG cell
line. The results emphasized that gedunin prevented neurotoxicity via interfering with the Nrf2
and NF-κB signaling pathways [135]. Besides, administration of lycopene leads to attenuate the
cognitive impairments and amyloidogenesis induced by LPS through inhibiting oxidative stress and
neuroinflammation [136]. In another study by Xiangbao et al. gypenoside XVII effectively attenuated
the neurotoxicity induced by Aβ25–35 via activation of Nrf2/ARE pathways [137]. Table 3 indicates the
potential of terpenes/terpenoids against AD through Nrf2/Keap1/ARE.

Table 3. Terpenes and terpenoids in combating AD through Nrf2/keap1/ARE and
interconnected pathways.

Compounds Classification Types of Study Cell Line(s)/Animal
Model(s)

Mechanisms of
Action References

Carvacrol monoterpene In vivo, In vitro male C57BL/6 mice,
hippocampal neurons
isolated from neonatal
C57BL/6 mice

↑GPx
↑CAT
↑SOD
↓MDA
↑GSH
↓ROS

[113]

α-Pinene ↓ROS [114]

1,8-Cineole monoterpene In vitro pheochromocytoma cell
line (PC12)

↑CAT
↑SOD
↑GPx
↑GR
↑HO-1

p-Cymene monoterpene In vivo male Swiss mice ↓nitrite
↓lipid peroxidation
↑CAT
↑SOD

[115]
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Table 3. Cont.

Compounds Classification Types of Study Cell Line(s)/Animal
Model(s)

Mechanisms of
Action References

Linalool monoterpenoid In vivo male C57BL/6 J mice ↑GPx
↑SOD
↑Nrf2/HO-1

[116]

Thymol ↑Nrf2/HO-1
signaling

[117]

Carvacryl
Acetate

monoterpenoid In vivo,
In vitro

male Swiss albino mice,
hippocampal neurons
isolated from Swiss
albino mice

↓lipid peroxidation
↓nitrite contents
↓hydroxyl radical
contents
↑GSH
↑CAT
↑GPx
↑ SOD

[118]

Borneol monoterpenoid In vitro human neuroblastoma
cell line (SH-SY5Y)

↓ROS
↑Nrf2
↑HO-1

[119]

Geraniol ↑GSH
↓ROS

[120]

ECN sesquiterpenoid In vitro, In vivo pheochromocytoma cell
line (PC12)
Male ICR mice

↑Nrf2
↑HO-1
↑Nrf2/ARE signaling

[121]

In vitro murine microglial cell
line (BV-2)

↓ROS production [122]

Lactucopicrin sesquiterpenoid In vitro neuroblastoma cell
lines (N2a),
Rat glioblastoma cell
line (C6)

↑Nrf2
↑nerve growth factor
↓ROS
↑mAChR, p-Akt, and
Bcl-2

[123]

α-Cyperone sesquiterpenoid In vitro murine microglial cell
line (BV-2),
human neuroblastoma
cell line (SH-SY5Y),
mouse hippocampal
nerve cells (HT22)

↑Akt/Nrf2/HO-1
↑nuclear tanslocation
of Nrf2

[124]

Artemether sesquiterpenoid In vitro, In vivo homozygous 3xTg-AD
mouse (34,830-JAX)
model of AD,
human neuroblastoma
cell line (SH-SY5Y),
pheochromocytoma cell
line (PC12)

↑HO-1
↑SOD
↑Nrf2
↓MDA

[125]

Bakkenolide B sesquiterpenes In vitro LPS-induced
neuroinflammation in
mouse BV2
microglial cells

↑Nrf2, ↑HO-1,
↑NQO1, ↓ROS
production, ↑AMPK
phosphorylation,
↓IL-1β, ↓IL-6, ↓IL-12,
↓TNF-α, ↓NO,
↓iNOS, ↑cell viability

[126]

Carnosic acid diterpene In vitro human neuroblastoma
cell line (SH-SY5Y)

↑PI3K/Akt
↑Nrf2

[127]

In vitro rat pheochromocytoma
subclone cell line
(PC12h)

↑Nrf2 [128]
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Table 3. Cont.

Compounds Classification Types of Study Cell Line(s)/Animal
Model(s)

Mechanisms of
Action References

In vitro, In vivo male C57BL/6 mice,
Rat pheochromocytoma
subclone cell
line (PC12h)

↑Nrf2/ARE pathway [129]

In vitro human neuroblastoma
cell line (SH-SY5Y)

inducing the
metalloprotease gene
TACE/ADAM17

[130]

Andrographolide diterpenoid In vitro mouse hippocampal
nerve cells (HT22)

↑Nrf2/ARE/HO-1
pathway

[131]

pheochromocytoma cell
line (PC12)

↑Nrf2-mediated p62
signaling pathway

[132]

Compound K triterpenoid In vitro, In vivo male C57BL/6 mice,
mouse hippocampal
nerve cells (HT22)

↑Nrf2
↑HO-1
↑quinone
oxidoreductase 1

[133]

Ginsenoside triterpenoi In vitro human neuroblastoma
cell line (SH-SY5Y)

↑activation Nrf2 [134]

Gedunin triterpenoid In vitro immortalized microglial
cell line (IMG),
human neuroblastoma
cell line (SH-SY5Y)

↓NO
↓NF-κB
↑Nrf2

[135]

Lycopene tetraterpene In vitro, In vivo male C57BL/6J mice,
murine microglial cell
line (BV-2)

↑Nrf2
↑HO-1
↑NQO-1

[136]

Gypenoside
xvii

tetraterpenoid In vitro pheochromocytoma cell
line (PC12)

↑Nrf2/ARE/HO-1
pathways

[137]

↑: Increase or up-regulation, ↓: decrease or down-regulation, ADAM17: ADAM metallopeptidase domain
17, Akt: protein kinase B (PKB), ARE: antioxidant response element, Bcl-2: B-cell lymphoma 2, ECN:
7β-(3-ethylcis-crotonoyloxy)-1α-(2-methylbutyryloxy)3,14-dehydro-Z-notonipetranone, HO-1: heme oxygenase-1,
Keap1: kelch-like ECH-associated protein 1, mAChR: muscarinic acetylcholine receptor, NQO-1: NAD(P)H
quinone dehydrogenase 1, Nrf2: nuclear factor erythroid 2-related factor 2, p-Akt: phospho-protein kinase B, PI3K:
phosphoinositide 3-kinases, ROS: reactive oxygen species, SOD: superoxide dismutase.

4.4. Carotenoids

Carotenoids are lipophilic and richly colored molecules that are found in a wide variety of plants,
algae, and bacteria. They are responsible for the red, yellow, and orange colors of many plants.
Carotenoids are divided into two major classes of xanthophylls (contain at least one oxygen) and
carotenes (hydrocarbons without oxygen). Several studies showed antioxidant, anti-inflammatory and
antiapoptotic activities of carotenoids, thus they play effective roles in neurodegeneration. Although
over 1100 various carotenoids have been yet identified, researchers have focused mainly on a few
of them with their beneficial effects on human health [138–140]. Astaxanthin (AST) is a xanthophyll
keto-carotenoid with significant antioxidant properties, and because of its structure, it could be able
to pass through the blood-brain barrier (BBB) [141–143]. AST conserved HT-22 mouse neuronal cells
from glutamate-induced ex situ neurotoxicity, via Nrf2/ARE-dependent HO-1 expression [144]. In an
in vivo study, Al-Amin et al. reported that AST ameliorated scopolamine-induced memory impairment
in mice. This result could be attributed to the up-regulation of Nrf2 target genes, like SOD and
CAT [145]. Moreover, with relatively similar mechanisms, Taksima and colleagues showed that AST
orally administration improved spatial learning and memory in Aβ1–42-induced AD in rats [146]. Later,
in vitro and in vivo studies demonstrated that AST significantly reduced ROS, thiobarbituric acid levels
while elevated GSH and GSH/GSSG ratio as protective antioxidants against oxidative stress. Besides,
because of the cross-talk between Nrf2 and anti-inflammatory pathways, AST indicated a remarkable
reduction in the expression of the proinflammatory cytokines like TNF-α, IL-1β and IL-6 [147,148],
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as well as upstream mediators (e.g., Akt, p-ERK) [149]. In an in vitro study, Yang et al. indicated that
AST attenuated tert-butyl hydroperoxide-induced production of ROS in PC12 cells. They also reported
that the mentioned neuroprotective effects were enhanced in a combination use of AST with huperzine
A [93]. These results confirmed AST potential efficacy in managing and/or treating AD. Following
the anti-Alzheimer effects of carotenoids, the in vitro and in vivo investigation of a xanthophyll
carotenoid, crocin, indicated its neuroprotective effects via regulation of oxidative stress-associated
apoptosis signaling pathway [150]. Studies reported that crocin protected HT-22 mouse neuronal cells
against L-glu-induced damages by an increase in phosphorylation levels of Akt, which led to the
enhancement of Nrf2/ARE-dependent protection in the oxidative stress pathway [150,151]. They also
indicated that crocin could improve spatial learning and memory in an AlCl3/d-gal-induced AD in
mice by increasing GPx and SOD activities [150]. In another study by Mohammadzadeh et al., crocin
antagonized malathion-induced cognitive deficit in rats. This neuroprotective effect of crocin was
attributed to its antioxidant activities through increasing GSH, decreasing MDA levels, thereby, TNF-α,
IL-6, and repressing tau hyperphosphorylation [152]. Also, it was reported that crocin ameliorated
streptozotocin-induced spatial memory deficit via similar antioxidative mechanisms [153,154].

Lycopene, a tetraterpene carotene, is a red plant pigment found in tomatoes, watermelons,
grapefruit, etc, which has exerted significant antioxidant activity in recent studies [136,155]. Wang et al.
found that pretreatment with lycopene prevented LPS-induced AD in the preclinical studies by
increasing the expression of nuclear Nrf2, HO-1, NQO-1, SOD, CAT, and GSH in Nrf2/ARE antioxidant
pathway. Additionally, this activation of Nrf2-dependent target genes could relieve NF-κB nuclear
translocation and elevated expression of anti-inflammatory mediators like IL-10 [85,136]. Besides,
lycopene enhanced spatial and passive memory of tau transgenic mice through increasing in antioxidant
capacity [156]. β-carotene and levocarnitine are also some of the other carotenoids with anti-Alzheimer
effects on mice related to the involvement of the Nrf2/ARE pathway [157,158].

Strigolactone is a novel emerged apocarotenoid plant hormone [159]. Kurt and colleagues indicated
that GR24rac, a strigolactone analogue, could exert glia/neuroprotective effects on LPS-treated mouse
microglial cells. GR24rac showed that these effects are concomitant with an increase in nuclear
Nrf2, HO-1, and NQO-1 expression, which could play a role in reducing TNF-α and IL-1β levels.
The activation of Nrf2/ARE pathway resulted in inhibition of NF-κB nuclear deposition induced by
LPS. In addition, NF-κB affected on COX-2 and iNOS levels. Consequently, these sequences caused
neuroprotective and anti-neuroinflammatory properties of GR24rac [160].

The overall studies suggest carotenoids as a promising source for the management or treatment of
Alzheimer’s and related diseases. Other mechanisms of these secondary metabolites involved in their
effects are given in Table 4.

Table 4. Carotenoids combating AD through Nrf2/Keap1/ARE and interconnected pathways.

Compounds Types of Study Cell Line(s)/Animal Model(s) Mechanisms of Action References

Astaxanthin In vitro glutamate-induced
neurotoxicity in mouse
neuronal cell line (HT-22)

↓intracellular ROS
accumulation, ↑ARE,
↑nuclear Nrf2, ↑HO-1,
↑Bcl-2/Bax ratio, ↓PARP,
↓caspase-3/8/9 activity,
↓cytochrome c, ↓LDH,
↓AIF, ↑p-Akt, ↑p-GSK-3β
(Ser9), ↑cell viability

[144]

In vivo scopolamine-induced spatial
learning deficits in Swiss albino
male mice

↑SOD, ↑CAT, ↓NO,
↑spatial learning and
memory

[145]
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Table 4. Cont.

Compounds Types of Study Cell Line(s)/Animal Model(s) Mechanisms of Action References

In vivo Aβ1–42-induced AD in adult
male Wistar rats

↑GPx, ↓MDA,
↓superoxide anion,
↓protein carbonyl levels,
↓neuronal degeneration,
↓positive staining of Aβ,
↑spatial learning and
memory

[146]

In vivo LPS-induced mice AD model ↓ROS, ↑GSH,
↑GSH/GSSG ratio,
↓thiobarbituric acid,
↓NO, ↓β-secretase
activity, ↓APP level,
↓BACE1, ↓Aβ1–42,
↓COX-2, ↓GFAP, ↓IBA-1,
↓iNOS, ↓TNF-α, ↓IL-1β,
↓IL-6, ↓MCP-1, ↓MIP-1α,
↓MIP-1β, ↓STAT3,
↑spatial learning and
memory

[147]

In vitro BV-2 microglial cells ↓NO, ↓TBARS,
↓β-secretase, ↓APP level,
↓BACE1, ↓COX-2,
↓IBA-1, ↓iNOS, ↓TNF-α,
↓IL-1β, ↓IL-6, ↓MCP-1,
↓MIP-1α, ↓MIP-1β,
↓STAT3

In vitro tert-butyl hydroperoxide-
induced oxidative stress in
pheochromocytoma cell
line (PC12)

↓ROS, ↑SOD, ↓MDA,
↓LDH release, ↑cell
viability, ↓morphological
damage

[93]

Aβ25–35-induced neurotoxicity
in PC12 cells

↑cell viability

Astaxanthin and
Huperzine A

In vitro tert-butyl hydroperoxide-
induced oxidative stress in
PC12 cells
Aβ25–35-induced neurotoxicity
in PC12 cells

↓ROS, ↑SOD, ↓MDA,
↓LDH, ↑cell viability,
↓morphological damage
↑cell viability

[93]

Crocin In vitro L-glutamate-damaged HT-22
mouse neuronal cells

↓intracellular ROS,
↓MMP dissipation,
↓overload of Ca2+,
↑Bcl-xL, ↓Bax, ↓Bad,
↓cleaved caspase-3,
↓apoptosis rate, ↑cell
viability,
↑phosphorylation of Akt
and mTOR

[150]

In vivo AlCl3/d-gal-induced AD in
BALB/c mice

↓ROS, ↑GPx, ↑SOD,
↓Aβ1–42 deposition,
↓AChE, ↑ChAT, ↑ACh,
↑memory abilities and
cognitive functions

In vivo malathion-induced spatial
memory deficits in adult male
Wistar rats

↑GSH, ↓MDA, ↓TNF-α,
↓IL-6, ↓tau
hyperphosphorylation,
↑PSD93 protein level,
↓caspase-3/8/9 activity,
↓Bax/Bcl-2 ratio, ↓cell
apoptosis, ↑spatial
learning and memory

[152]
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Table 4. Cont.

Compounds Types of Study Cell Line(s)/Animal Model(s) Mechanisms of Action References

streptozotocin-induced spatial
memory deficit and oxidative
stress in adult male Wistar
Albino rats

↑GPx activity, ↑total thiol
concentration, ↓MDA

[153]

[154]

Lycopene In vitro LPS-treated BV2
microglial cells

↓intracellular ROS
generation, ↑MMP,
↑Nrf2, ↑HO-1 expression,
↑NQO-1 expression,
↓p-ERK, ↓p-JNK, ↓p-p38,
↓p-AKT, ↓NF-κB nuclear
translocation, ↓p-IκB,
↑Nrf2

[136]

In vivo LPS-induced
learning and memory loss in
male C57BL/6J mice

↑GSH, ↑SOD, ↑CAT,
↓Aβ1–42 accumulation,
↓APP level, ↓BACE1
expression, ↑ADAM10,
↓IBA-1, ↓COX-2, ↓iNOS,
↓IL-1β, ↑IL-10, ↓MMP-9
expression, ↑spatial
learning and memory

In vivo Tau transgenic mice
expressing P301L mutation

↑GPx activities, ↓MDA
levels, ↓tau
hyperphosphorylation,
↑spatial and passive
memory

[156]

Strigolactone
analogue
(GR24rac)

In vitro LPS-treated SIM-A9 mouse
microglial cells

↑Nrf2 nuclear level,
↑HO-1, ↑NQO-1, ↓NO,
↓iNOS, ↓TNF-α, ↓IL-1β,
↓COX-2, ↓NF-κB,
↑PPARγ expression

[160]

LPS-treated BBB bEnd.3
mouse brain endothelial cells

↓TNF-α, ↓IL-1β,
↑NQO-1

β-carotene In vivo streptozotocin-induced AD in
adult male Swiss albino mice

↑GSH, ↑SOD, ↑CAT,
↓GSSG/GSH ratio,
↓AChE activity, ↓Aβ1–40
and Aβ1–42 levels,
↑cognitive performance

[157]

In silico ↓AChE activity

Levocarnitine In vivo AlCl3-induced spatial
working memory deficits in
adult male Swiss albino mice

↓GSH, ↓MDA, ↓NO,
↓AOPP levels, ↑spatial
working memory
performance

[158]

↑: Increase or up-regulation, ↓: decrease or down-regulation, ⊥: blockade or suppressed, Aβ: Amyloid beta,
ACh: acetylcholine chloride, AChE: acetylcholinesterase, AD: Alzheimer’s disease, ADAM 10: a disintegrin and
metalloprotease 10, AIF: apoptosis-inducing factor, Akt: protein kinase B, AlC13: aluminum trichloride, AOPP:
advanced oxidation of protein products, APP: amyloid precursor protein, ARE: antioxidant response element, BACE1:
β-secretase 1, BBB: blood–brain barrier, CAT: catalase, ChAT: choline acetyltransferase, COX-2: cyclooxygenase 2,
d-gal: d-galactose, ERK: extracellular signal-regulated kinases, GFAP: glial fibrillary acidic protein, GPx: glutathione
peroxidases, GSH: glutathione, GSK-3β: glycogen synthase kinase 3 beta, GSSG: oxidized GSH, HO-1: heme
oxygenase-1, IBA-1: ionized calcium binding adaptor molecule 1, IL: Interleukin, iNOS: inducible nitric oxide, JNK:
C-Jun N-terminal Kinase, LDH: lactate dehydrogenase, LPS: lipopolysaccharide, MDA: malondialdehyde, MMP:
mitochondrial membrane potential, MMP-9: matrix metallopeptidase 9, mTOR: mammalian target of rapamycin,
NF-κB: nuclear factorkappa B, NO: nitric oxide, Nrf2: nuclear factor erythroid 2-related factor 2, NQO-1: NAD(P)H
dehydrogenase [quinone] 1, PARP: Poly (ADP-ribose) polymerase, PPARγ: peroxisome proliferator-activated
receptor γ, PSD93: postsynaptic density protein 93, ROS: reactive oxygen species, SOD: superoxide dismutase,
STAT3: Signal transducer and activator of transcription 3, TNF-α: tumor necrosis factor α, TBARS: Thiobarbituric
acid reactive substance.
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4.5. Sulfur-Containing Secondary Metabolites

Sulfur-containing secondary metabolites are known as an essential class of plant secondary
metabolites, with a limited number of identified compounds (approximately 200). Onion and garlic
volatile components, as well as glucosinolate’s agents, are considered as two major groups of this
category that observed in high levels in plants. Glucosinolate’s components and their breakdown
products such as oxazolidinethiones, epithionitriles, isothiocyanates, and thiocyanates are the most
known group of this secondary metabolite [161,162]. 1,3-dithiolthiones, mono and disulfide derivatives,
and cysteine sulfoxide are natural constituents of onion and garlic volatile components [162]. A wide
range of different biological effects, such as antiasthmatic, antibacterial, antioxidant, anticarcinogenic,
antithrombotic, antihyperlipidemic, and antiangiogenic activities, have been observed and reported
from these compounds. In addition, several structures of sulfur-containing metabolites showed
suitable advantages to the management or prevention of various neurodegenerative diseases, especially
AD [28,162].

4.5.1. Sulforaphane

Sulforaphane, with the molecular formula of C6H11NOS2, is an isothiocyanate agent that belongs to
the organosulfur compounds. Due to its isothiocyanate group, sulforaphane has achieved electrophilic
properties to allow this compound in interacting with a nucleophiles structure such as specific protein’s
residues like cysteine [163]. Sulforaphane showed significant anti-inflammatory and antioxidative
activity in an in vitro model of AD via up-regulating the expression of Nrf2 [164]. Additionally, the
administration of sulforaphane leads to the enhancement of total GSH level and GST in the SH-SY5Y cell
line [165]. Sulforaphane properly protected hippocampal neurons versus hemin induced neurotoxicity
via reinforcing antioxidant defense approaches and activating the ARE/Nrf2 pathway [166]. In a
similar study, neuronal cell isolated from the Wistar rat’s striatum, protected from paraquat and
H2O2-induced toxicity via the administration of sulforaphane and an analog of isothiocyanate [167].
Moreover, the neuroprotective advantages of sulforaphane in the in vivo and in vitro models of PD
have been proved in several studies [168–170]. Furthermore, it exhibited a suitable anti-Alzheimer
activity against Aβ peptide via interfering with Nrf2/HO-1 cascade, which leads to the attainment of
anti-inflammatory properties in human THP-1 macrophages [171]. In a recent study, the efficiency of
sulforaphane, in the protection of mice with Alzheimer’s-like lesions was investigated by up-regulating
Nrf2 transcription activity [172]. Furthermore, sulforaphane protected several cells such as astrocytes
and PC12 cells against neurotoxicity and oxidative stress via the activation of Nrf2 and other related
enzymes [173,174].

4.5.2. S-Allyl Cysteine

S-Allyl cysteine is a sulfur-containing secondary metabolite with the chemical formula of
C6H11NO2S that can be found in significant amounts in fresh garlic. S-allyl cysteine is a cysteine
derivative obtained by adding an allyl group to the sulfur atom. Various biological effects of this
compound such as the antihyperlipidemic, antioxidant, neuroprotective, antihepatotoxic, anticancer,
and chemopreventiveactivities, were documented [175]. S-allyl cysteine suppressed oxidative stress,
GPx, and GSH in a mouse model of AD [175]. Furthermore, S-allyl cysteine showed in vitro and in vivo
antioxidant, cytoprotective, neuroprotective, and anti-amyloidogenic effects through attenuating
several signaling pathways and enzyme levels like MDA, SOD, Nrf2, etc. [176–178]. Similarly,
the investigation of the beneficial effect of S-allyl-l-cysteine and isoliquiritigenin in PC12 cell lines
demonstrated that these compounds improved the mitochondrial membrane potential [179].

Hippocampal and cerebellar granule neurons isolated from embryos of Wistar rats were protected
by S-allyl-l-cysteine against the neuronal toxicity induced by Aβ protein [180]. S-allyl, S-ethyl,
and S-propyl are three other cysteine amino acid-containing metabolites, which have been shown to
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reduce the production of Aβ protein, diminished the activity of SOD, GPx and CAT in the brain of
mice treated with d-gal [181].

4.5.3. Other Sulfur-Containing Secondary Metabolites

6-(Methylsulfinyl)hexyl isothiocyanate is another sulfur-containing structure that satisfactorily
protected the studied animals against the Aβ-induced oxidative stress, cognitive deficit, and
inflammation [182]. The in vitro cytotoxicity induced by H2O2 was attenuated via allicin through
the regulating of ROS levels [183]. Allicin improved the aging cognitive deficits in male C57BL/6
mice via the activation of Nrf2 signaling pathways [184]. Also, interfering with p-ERK/Nrf2 signaling
pathway is the main mechanism of allicin to protect models of AD against the endoplasmic reticulum
stress-related cognitive deficits [185]. Thiacremonone, 3H-1,2-dithiole-3-thione, hydrogen sulfide and
lipoic acid are some of the other sulfur-containing secondary metabolites with proven neuroprotective
and antioxidant effects on various in vitro and in vivo models of AD [186–189]. Table 5 indicates the
potential of Sulfur-Containing Secondary Metabolites against AD through Nrf2/Keap1/ARE.

Table 5. Sulfur compounds in combating AD through Nrf2/Keap1/ARE and interconnected pathways.

Compounds Types of Study Cell Line(s)/Animal Model(s) Mechanisms of Action References

Sulforaphane In vitro mouse neuroblastoma cell
line (N2a)

↓ROS
↓MDA
↑SOD
↑Nrf2

[164]

human neuroblastoma cell
line (SH-SY5Y)

↑GSH
↑GR
↑glutathione transferase

[165]

hippocampal neuron isolated
from C57Bl6J mice

↑activation of Nrf2/ARE
pathway

[166]

neuronal cell isolated from the
Wistar rat’s striatum

↑HO-1
↑GSH
↑Nrf2/ARE pathway

[167]

pheochromocytoma cell
line (PC12)

↑HO-1
↑translocation of Nrf2
↑PI3K/Akt

[168]

In vivo male C57Bl/6 mice model
of PD

↑GSH
↑GST
↑GR

[169]

In vitro, In vivo male C57Bl/6 mice model
of PD,
human neuroblastoma cell
line (SH-SY5Y)

↓ROS
↓MDA
↑GSH
↑Nrf2
↑HO-1

[170]

In vitro human microglia-like
THP-1 cells

↑Nrf2/HO-1 [171]

astrocyte isolated from (P1eP2)
Sprague-Dawley rats

[173]

pheochromocytoma cell
line (PC12)

[174]

S-allyl cysteine In vivo Swiss albino mice model of
experimental dementia of
Alzheimer’s type

↑GSH
↑GPx

[175]

In vitro, In vivo Nrf2 heterozygous mice,
Nrf2 knockout mice,
neuronal cell isolated from the
Sprague-Dawley rat embryos

↑Nrf2-dependent
antioxidant responses

[176]

In vivo male C57BL/6 mice ↑Nrf2 transcription
factor

[177]
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Table 5. Cont.

Compounds Types of Study Cell Line(s)/Animal Model(s) Mechanisms of Action References

In vitro pheochromocytoma cell
line (PC12)

↓apoptosis [178]

In vitro pheochromocytoma cell
line (PC12)

↑mitochondrial
membrane potential

[179]

In vitro hippocampal and cerebellar
granule neurons isolated from
embryos of Wistar rats

↓ROS [180]

S-ethyl cysteine,
S-propyl cysteine

In vivo male C57BL/6 mice ↓MDA
↑GSH
↓ROS
↑GPx
↑SOD
↑CAT

[181]

6-(Methylsulfinyl)
hexyl
isothiocyanate

In vitro neuronal cell isolated from the
Wistar rat’s striatum

↑HO-1
↑GSH
↑Nrf2/ARE pathway

[167]

In vivo male C57Bl/6 mice model
of AD

↓ROS
↑GSH
↑Nrf2/ARE pathway

[182]

Allicin In vitro human RPE cell
line (ARPE-19)

↓ROS
↓MDA
↑GSH/glutathione
disulfide ratio

[183]

In vivo male C57BL/6 mice ↑Nrf2/ARE
↑GSH levels
↓ROS levels
↑GPx

[184]

In vivo male Sprague-Dawley rats ↑PERK and Nrf2
↓ROS levels
↑GSH level
↓lipid peroxidation

[185]

Thiacremonone In vitro, In vivo APP/PS1 transgenic
mice model,
neuronal cells isolated from
the Sprague–Dawley (SD) rats

↑GSH
↓NF-κB

[186]

3H-1,2-Dithiole-3-
thione

In vivo Tg2576 AD mouse model ↑Nrf2
↑HO-1
↑Sirt1/Nrf2

[187]

Hydrogen sulfide In vitro mouse hippocampal nerve cell
line (HT22)

↑GSH
↑cysteine
↑KATP channels
↑Cl− channels

[188]

Lipoic acid In vitro, In vivo female C57BL/6 mice,
retinal neuronal cell
line (RGC-5)

↑Nrf2
↑HO-1
↑Keap1/Nrf2
↓ROS

[189]

↑: Increase or up-regulation, ↓: decrease or down-regulation, Akt: protein kinase B (PKB), ARE: antioxidant response
element, HO-1: heme oxygenase-1, Keap1: kelch-like ECH-associated protein 1, MDA: malondialdehyde, NF-κB:
nuclear factor kappa-light-chain-enhancer of activated B, Nrf2: nuclear factor erythroid 2-related factor 2, PERK:
PKR-like endoplasmic reticulum (ER) kinase, PI3K: phosphoinositide 3-kinases, ROS: reactive oxygen species, SOD:
superoxide dismutase, TACE: tumor necrosis factor-α-converting enzyme.

4.6. Miscellaneous Compounds

Several miscellaneous secondary metabolites have also demonstrated promising anti-Alzheimer
effects. Ginsenosides, also called ginseng saponins, are one of the major active components
of Panax ginseng classified into protopanaxadiol saponin and protopanaxatriol saponin.
Protopanaxadiol saponin metabolized through gut microflora into the ginsenoside compound
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K (20-O-β-d-glucopyranosyl-20(S)-protopanaxadiol) (CK) [133,190]. CK showed significant
neuroprotective effects in preclinical studies via increasing the expression of Nrf2/Keap1/ARE signaling
pathway-related factors such as nuclear Nrf2, HO-1, NQO1, SOD, and GPx. In addition, CK attenuated
the expression of Keap1 and MDA levels. Collectively, these effects led to a decrease in Aβ expression,
the number of apoptotic cells and an improvement in spatial learning, cognitive and memory
function [190,191]. Hence, these studies suggested that CK could be a promising agent in the
prevention and treatment of AD.

Ginsenoside Rd (GRd) is a protopanaxadiol type ginsenosides [192]. As well as CK, GRd
exerted its neuroprotective effects against Aβ25–35-induced neuronal damage in primary cultured
hippocampal neurons via the regulation of Nrf2 target genes in the oxidative stress pathway [193].
20(S)-protopanaxatriol (PPT) is another ginsenoside that showed beneficial effects in the central
nervous system. Thus, Lu et al. evaluated its neuroprotective effect in scopolamine-induced cognitive
deficits in male mice. Like protopanaxadiol ginsenosides, PPT could improve memory and learning
abilities of mice in several behavioral tests, by suppressing oxidative stress and increasing cholinergic
neurotransmission [194]. Consistently, ginsenoside Rg1 (Rg1) is a protopanaxatriol type ginsenosides
that abundantly contained in ginseng [192]. Rg1 improved chronic stress-induced learning and memory
impairments in mice through reducing the ROS production, MDA and 8-OHdG levels while increased
the SOD activity. In addition, this regulation of Nrf2/ARE-dependent factors could inhibit NOX2
expression that is also involved in the Rg1 mechanisms of action [195,196].

Pseudoginsenoside-F11 (PF11), an ocotillol-type saponin, mitigated learning and memory deficits
in Aβ1–42-induced AD in mice. PF11 also restored SOD and GPx activities and reduced Aβ precursor
protein (APP) expression MDA production in the cortex of APP/PS1 mice [197]. As another saponin,
timosaponin B-II attenuated scopolamine-induced cognition deficits through increasing SOD, GPx,
and decreasing MDA [198].

Consistently, anthraquinones, lactones, vitamins, fatty acids, and naphthoquinone pigments are
other miscellaneous compounds. In this line, an in vitro and in vivo investigation of aloe-emodin,
an anthraquinone compound, showed its neuroprotective effects by modulating oxidative stress.
Aloe-emodin significantly reduced intracellular ROS accumulation, NO, MDA levels while elevated
SOD and GPx activity as protective factors against both models of H2O2-induced cytotoxicity in PC12
cells and scopolamine-induced amnesia in mice [199]. Besides, Fragoulis and colleagues reported that
methysticin, a kavalactone, indicated its neuroprotective effects on 52-weeks old transgenic mice via
Nrf2-dependent HO-1 expression. Besides, activation of Nrf2/ARE pathway relieved TNF-α, IL-17A,
microgliosis/astrogliosis, and improved long-term memory impairment of APP/Psen1 mice [200].

On introducing vitamins with promising antioxidative effects in AD, α-tocopherol (vitamin E)
decreased oxidative stress by up-regulating the expression of Nrf2 and reducing in iNOS levels.
Besides, α-tocopherol induced the expression of genes participated in the processing of APP and
modulating the expression of genes participated in autophagy. Thus, it could be able to decrease the
neurotoxicity induced by Aβ1–42 in retinoic acid-differentiated neuroblastoma SH-SY5Y cells [201].
As Wang et al. indicated, α-tocopherol quinine (α-TQ), an oxidative metabolite of α-tocopherol,
ameliorated biochemical and behavioral changes in vitro and in vivo. They found that α-TQ decreased
ROS production and MDA levels and increased SOD activity as Nrf2 target genes in the brain of
transgenic AD mice. Thereby, α-TQ reduced NF-κB activation, iNOS, IL-1β and IL-6 expression, also
inhibited microglia activation regarding improving spatial cognitive performance in AD mice [202].

Of fatty acids, α-linolenic acid (ALA), an omega-3 polyunsaturated fatty acid that is present
in vegetable oils, possesses potent neuroprotective and anti-inflammatory properties [203,204].
ALA represented its antioxidant activities through inducing Nrf2 and HO-1 expression, thereby
has been suggested as a promising source for combating AD [203].

As another miscellaneous compound, shikonin, a naphthoquinone pigment, extracted from the
roots of Lithospermum erythrorhizon, and indicated several biological and pharmacological properties,
like antioxidant, anti-inflammatory, antimicrobial, antiviral, antithrombotic, and cancer-preventing
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effects [205,206]. Tong and colleagues evaluated the neuroprotective effects of shikonin against neuronal
insults induced by Aβ1–42 in PC12 cells. Shikonin significantly ameliorated Aβ1–42-induced oxidative
stress by reducing the ROS production, MDA level and LDH release, and increasing the levels of SOD,
CAT and GPx. Moreover, improving the antioxidant capacity could indirectly enhance cell viability
by regulating apoptotic factors [207]. Among other miscellaneous pigments, betalains are a class of
red/yellow tyrosine-derived pigments, where they could be replaced by anthocyanin pigments in plants.
Betalain-enriched extracts have been found to possess potential inhibitory effects on acetylcholine
esterase, and oxidative stress. So, these compounds could be also of great importance in combating
AD [208]. These compounds are potential antioxidants capable of reverting oxidative stress through
modifying the expression of Nrf2 [209]. In this line, melatonin with the potential of pigmentation,
greatly activated Nrf2, thereby counteracted LPS-Induced oxidative stress and rescued postnatal rat
brain [210].

In an in vitro study, Khodagholi et al. indicated that pretreatment with chitosan, an oligosaccharide,
significantly improved Nrf2 activity, HO-1 expression, GSH concentration, γ-glutamylcysteine (γ-GCS)
levels, and Hsp-70 while decreased NF-κB, caspase-3, and Aβ formation. The regulating properties of
chitosan on Nrf2/ARE pathway and its related target genes could be considered as one of the main
protective mechanisms of chitosan in the management of AD [211]. Additionally, Lycium barbarum
polysaccharide [212], Amanita caesarea polysaccharides [213], and Inonotus obliquus polysaccharides [214]
showed significant neuroprotective effects mediated by targeting Keap1/Nrf2/ARE signaling pathway
and their related factors (Table 6). Therefore, these secondary metabolites with known mechanisms of
action could be a promising source for drug development in preventing or treating AD and related
diseases. Other pharmacological mechanisms of these secondary metabolites involved in their effects
are given in Table 6.

Table 6. Miscellaneous compounds in combating AD through Nrf2/Keap1/ARE and
interconnected pathways.

Compounds Classification Types of
Study

Cell Line(s)/
Animal Model(s)

Mechanisms
of Action Reference

Compound K ginsenoside In vivo scopolamine
hydrobromide-induced
memory impaired in
ICR mice

↑Nrf2, ↓Keap1,
↑HO-1, ↑SOD, ↑GPx,
↓MDA, ↓Aβ

expression,
↓neuronal apoptosis,
↓Bax, ↑Bcl-2,
↓caspase-3 activity,
↓APP expression,
↓BACE1, ↓PS1
expression, ↑spatial
cognition and
memory function,
normalize neuronal
morphology

[190]

In vitro glutamate-induced
cytotoxicity in mouse
hippocampal
cells (HT22),

↑Nrf2, ↑HO-1,
↑NQO1, ↑GR,
↓apoptotic cells

[133]

In vivo scopolamine-induced
memory impaired in
male C57BL/6 mice

↑Nrf2-mediated
antioxidant enzyme,
↑spatial learning
and memory
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Table 6. Cont.

Compounds Classification Types of
Study

Cell Line(s)/
Animal Model(s)

Mechanisms
of Action Reference

20(S)-Protopanaxadiol ginsenoside In vivo scopolamine-induced
memory deficit in ICR
male mice

↑SOD, ↓MDA,
↓AChE, ↑ACh,
↑spatial learning and
memory

[191]

Ginsenoside Rd ginsenoside In vitro Aβ25–35-induced
neuronal damage in
primary cultured
hippocampal neurons

↓ROS, ↑SOD, ↑GPx,
↓MDA, ↓loss of
hippocampal
neurons,
↓cytochrome c, ↓Bax,
↑Bcl-2, ↑neuronal
survival

[193]

20(S)-Protopanaxatriol ginsenoside In vivo scopolamine-induced
cognitive deficits in
male mice

↑SOD, ↓MDA,
↓AChE, ↑ACh
content, ↑ChAT
activity, ↑spatial
memory

[194]

Ginsenoside Rg1 ginsenoside In vivo chronic restraint
stress-induced
learning and memory
impairments in adult
male Kunming mice

↓ROS, ↑SOD, ↓MDA,
↓8-OHdG, ↓NOX2
expression, ↑learning
and memory
function

[195]

Pseudoginsenoside-
F11

saponin In vivo Tg-APPswe/PS1dE9
(APP/PS1) mice,

↑SOD, ↑GPx, ↓MDA,
↓APP, ↓Aβ1–40,
↓caspase-3 activity,
↓JNK 2, ↓p53,
↓learning and
memory impairment

[197]

Aβ1–42-induced AD in
male Kunming mice

↑spatial learning and
memory

Timosaponin B-II saponin In vivo scopolamine-induced
AD in male
Kunming mice

↑SOD, ↑GPx, ↓MDA,
↓AChE, ↑spatial
learning and
memory

[198]

Aloe-emodin anthraquinone In vitro hydrogen peroxide
(H2O2)-induced
cytotoxicity in
PC12 cells,

↓intracellular ROS
accumulation, ↓NO,
↓LDH, ↑cell viability

[199]

In vivo scopolamine-induced
memory impairment
in Kunming mice

↑SOD, ↑GPx, ↓MDA,
↓AChE, ↑ACh
content, ↑spatial
learning and
memory

Methysticin kavalacton In vivo 52-weeks old
transgenic APP/Psen1
mice

↑HO-1, ↑GCLC
expression,
↑Nrf2/ARE pathway,
↓microglia activation,
↓astrogliosis, ↓GFAP,
↓IBA-1, ↓TNF-α,
↓IL-17A,
↓memory loss

[200]

α-Tocopherol vitamins In vitro Aβ1–42-induced
neurotoxicity in
SH-SY5Y
neuroblastoma cells

↑Nrf2, ↓iNOS, ↓APP
processing, ↑cell
viability

[201]
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Table 6. Cont.

Compounds Classification Types of
Study

Cell Line(s)/
Animal Model(s)

Mechanisms
of Action Reference

α-Tocopherol
quinine

vitamins In vivo Memory impairment
in APPswe/PS1dE9
transgenic mice
(transgenic mice
with AD)

↓ROS, ↑SOD, ↓MDA,
↓NF-κB, ↓IBA-1
protein levels,
↓iNOS, ↓IL-1β, ↓IL-6,
↓Aβ oligomer levels,
↓microglia activation,
↑spatial cognitive
performance

[202]

In vitro microglial cells (BV-2) ↓NF-κB, ↓IBA-1

α-Linolenic acid fatty acid In vitro Aβ25–35-induced
neurotoxicity in C6
glial cells

↑Nrf2, ↑HO-1, ↓ROS,
↑neprilysin, ↑IDE
expression, ↓NO,
↓TNF-α, ↓IL-6,
↓iNOS, ↓COX-2, ↓Aβ

accumulation, ↑cell
viability

[203]

Chitosan polysaccharide In vitro H2O2/FeSO4-
induced cell death in
the NT2 neural cells

↑Nrf2, ↑HO-1, ↑GSH,
↑γ-GCS, ↑Hsp-70,
↓NF-κB, ↓caspase-3,
↓Aβ formation, ↑cell
viability

[211]

Shikonin naphthoquinone In vitro Aβ1–42-induced
neurotoxicity in
PC12 cells

↓ROS, ↑SOD, ↑GPx,
↑CAT, ↓MDA, ↑MMP,
↓LDH, ↓caspase-3,
↑Bcl-2/Bax ratio, ↑cell
viability

[207]

Lycium barbarum
polysaccharide

polysaccharide In vitro H2O2- induced
neurotoxicity in
PC12 cell

↑Nrf2/HO-1,
↑ARE-luciferase
activity, ↓ROS,
↓mitochondrial
apoptosis, ↓caspase-3
and -9 activity, ↑cell
viability

[212]

In vivo CoCl2-induced
neurotoxicity in male
Wistar rats

↑Nrf2/HO-1
expression,
↓apoptosis, ↑spatial
learning and
memory abilities

Amanita caesarea
polysaccharides

polysaccharide In vitro glutamate-induced
cytotoxicity in HT22
mouse hippocampal
neuronal cells,

↓intracellular ROS
accumulation, ↑Nrf2,
↓Keap1, ↑HO-1,
↑GCLC expression,
↓cytochrome c,
↑MMP, ↓Bax, ↑Bcl-2,
↓caspase-3, ↑cell
viability,
↓apoptotic rate,

[213]

In vivo AlCl3/d-gal-induced
AD in BALB/c
male mice

↓ROS, ↑SOD, ↑GPx
content, ↓Aβ1–42
deposition, ↓AChE,
↑ACh content,
↑ChAT activity,
↓memory
impairment
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Table 6. Cont.

Compounds Classification Types of
Study

Cell Line(s)/
Animal Model(s)

Mechanisms
of Action Reference

Inonotus obliquus
polysaccharides

polysaccharide In vitro l-glutamic
acid-induced
cytotoxicity in HT22
mouse hippocampal
neuronal cells,

↑Nrf2, ↓Keap1,
↑HO-1, ↑SOD-1,
↑GCLC,
↓intracellular ROS
accumulation, ↓LDH,
↑MMP, ↓Bax, ↑Bcl-2,
↓caspase-3 activity,
↑cell viability,
↓apoptotic rate

[214]

In vivo APP/PS1 transgenic
male mice

↓ROS, ↑SOD, ↑GPx
content, ↓MDA,
↑Nrf2, ↓Keap1,
↑HO-1, ↑SOD-1,
↑GCLC levels,
↓Aβ1–42 deposition,
↓neuronal fiber
tangles deposition,
↓4-HNE, ↑memory
and cognition
function

Schisanhenol tannin In vivo scopolamine-induced
cognitive impairment
in male Kunming mice

↑SOD, ↑GPx, ↓MDA,
↓AChE activity,
↓phosphorylated Tau
protein, ↑Sirtuin 1
expression, ↑PGC-1α,
↑learning and
memorial ability

[215]

↑: Increase or up-regulation, ↓: decrease or down-regulation, Aβ: Amyloid beta, ACh: acetylcholine chloride, AChE:
acetylcholinesterase, AD: Alzheimer’s disease, AMPK: AMP-activated protein kinase, APP: Amyloid precursor
protein, ARE: antioxidant response element, BACE1: β-secretase 1, CAT: catalase, COX-2: cyclooxygenase-2, ChAT:
choline acetyltransferase, DPPH: 1,1-Diphenyl-2-picrylhydrazyl, GCLc: γ-glutamylcysteine ligase, GFAP: glial
fibrillary acidic protein, Glc: glucose, GPx: glutathione peroxidases, GSH: glutathione, GR: glutathione reductase,
GSK-3β: Glycogen synthase kinase 3 beta, γ-GCS: γ-glutamylcysteine synthetase, HO-1: heme oxygenase-1, HSP70:
Heat shock protein-70, IBA-1: ionized calcium binding adaptor molecule 1, IDE: insulin-degrading enzyme, IL:
Interleukin, iNOS: inducible nitric oxide, JNK 2: c-Jun N-terminal kinase 2, Keap1: Kelch-like ECH-associated
protein 1, LDH: lactate dehydrogenase, LPO: lipid peroxidation, LPS: lipopolysaccharide, MDA: malondialdehyde,
MitoSOX: mitochondrial superoxide, MMP: mitochondrial membrane potential, NF-κB: nuclear factorkappa B,
NO: nitric oxide, NOX2: NADPH oxidase 2, Nrf2: nuclear factor erythroid 2-related factor 2, NQO-1: NAD(P)H
dehydrogenase [quinone] 1, PARP: Poly (ADP-ribose) polymerase, PGC-1α: PPARγ coactivator 1-α, PS1: presenilin 1,
ROS: reactive oxygen species, SOD: superoxide dismutase, TNF-α: tumor necrosis factor α, X/XO: xanthine/xanthine
oxidase, 4-HNE: 4-Hydroxy-2-Nonenal, 8-OHdG: 8-hydroxy-2′-deoxyguanosine.

5. Clinical Complementary Uses of Plant Secondary Metabolites in Cognitive Dysfunctions

Plant-derived secondary metabolites have shown beneficial effects on human health along with
promising roles in the prevention, management, and treatment of AD. Based on their antioxidant
effects, several clinical trials are trying the possible therapeutic effects of phytochemicals in AD.
Some plants rich in polyphenols of anthocyanin class meaningfully improved some aspects of cognition
in healthy old adults, through reducing oxidative stress (e.g., nitrite, and iNOS) and inflammatory
markers (e.g., COX-2, and TNF-α) [216]. In this line, anthocyanin-rich blueberry improved working
memory through increasing perfusion/activation of brain areas related to cognitive function in healthy
older adults [217]. In a randomized cross-over study, a mixed beverage of anthocyanins improved
cognitive functions in healthy older adults [218]. These secondary metabolites also improved cognitive
function and brain metabolism and significantly affected the early stages of AD in a double-blinded
placebo-controlled pilot study [219]. In a double-blind, placebo-controlled, crossover investigation by
Kennedy et al., a single dose orally administration of resveratrol modulated cerebral blood flow and
cognitive performance [220].
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In addition to the phenolic compounds, some other secondary metabolites have also shown
a bright future towards the improvement of cognitive dysfunction. Supplementation with
carotenoids significantly attenuated memory dysfunction during a 12-month randomized, double-blind
placebo-controlled clinical trial [221]. Besides, an increased intake of carotenoids in patients with mild
cognitive impairment was helpful in lowering the risk of conversion to dementia, GPx and SOD [222].
Some other clinical trials are also ongoing to evaluate the possible potentials of phytochemicals in AD.

6. Conclusions and Perspectives

Compelling evidence has shown the key destructive role of oxidative stress in the pathogenesis
of AD, along with the critical role of Nrf2/ARE in ameliorating neuronal/cognitional complications.
The secondary metabolites of natural sources have found to be promising agents in targeting the
aforementioned pathways/mediators in AD, possessing more efficacy/potency while lower side effects.
In this regard, phenolic compounds, alkaloids, terpene/terpenoids, carotenoids, sulfur-compounds,
as well as some other plant-derived miscellaneous compounds have been accordingly introduced as
multi-target compounds in modulating several dysregulated mediators, especially those with a near
interconnection with Nrf2/Keap1/ARE and related apoptotic/inflammatory pathways. In cognitive
dysfunction, the aforementioned antioxidative pathway, seems to be in the upstream of either apoptotic
(Bax and caspase) and inflammatory (TNF-α and ILs) mediators. So, attenuating Nrf2/Keap1/ARE
could play a pivotal role in combating AD. Several clinical trials have also been provided to evaluate the
therapeutic potential of phytochemicals based on their antioxidant activity. Despite their effectiveness,
plant secondary metabolites often suffer from some pharmacokinetic limitations, including poor
bioavailability, low solubility/selectivity, and week absorption rate, which urges the needs for developing
novel delivery systems [223].

Such studies will provide novel applications of plant-derived secondary metabolites in the
prevention, management, and treatment of AD, by stimulating antioxidant mediators and suppressing
oxidative pathways. Additional studies are also required to reveal the precise role of Nrf2/ARE
and interconnected mediators in AD, and the ways to be targeted by potential phytochemicals in
well-controlled clinical trials.
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