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Abstract: Polyethylene (PE) is one the most used plastics worldwide for a wide range of
applications due to its good mechanical and chemical resistance, low density, cost efficiency, ease of
processability, non-reactivity, low toxicity, good electric insulation, and good functionality. However,
its high flammability and rapid flame spread pose dangers for certain applications. Therefore,
different flame-retardant (FR) additives are incorporated into PE to increase its flame retardancy.
In this review article, research papers from the past 10 years on the flame retardancy of PE systems are
comprehensively reviewed and classified based on the additive sources. The FR additives are classified
in well-known FR families, including phosphorous, melamine, nitrogen, inorganic hydroxides, boron,
and silicon. The mechanism of fire retardance in each family is pinpointed. In addition to the efficiency
of each FR in increasing the flame retardancy, its impact on the mechanical properties of the PE system
is also discussed. Most of the FRs can decrease the heat release rate (HRR) of the PE products and
simultaneously maintains the mechanical properties in appropriate ratios. Based on the literature,
inorganic hydroxide seems to be used more in PE systems compared to other families. Finally, the role
of nanotechnology for more efficient FR-PE systems is discussed and recommendations are given on
implementing strategies that could help incorporate flame retardancy in the circular economy model.
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1. Introduction

In recent times, polymers have been used in a wide range of industrial applications, such as
packaging, electronics, and construction [1,2]. To better the performance of the aforementioned
applications, polymers need to be more environmentally friendly, safe, and durable [3]. The utilization
of polymers is encouraged due to good functionality, acceptable durability, and cost-efficiency; however,
high flammability, and poor thermal properties are noticeable limitations for their applicability [4].
Most polymers are flammable and, by exposure to enough energy, they will leave a considerable
amount of smoke and heat [5]. It is reported that annually about 5000 people in Europe and 4000 people
in the United States are killed by fires. Furthermore, the economic loss of these fire accidents is
estimated to be about 0.3% of the GDP [6]. Following the analysis conducted by Geneva-based Aircraft
Crashes Record Office (ACRO), it is possible to reduce the possibility of fire catastrophes and their
subsequent fatalities by reducing the flammability of polymeric materials [6]. Therefore, related to
the use of polymers, there are environmental, economic, and health issues which are considered as
the driving forces to motivate the conduction of research and different studies on the flammability of
polymers [7].

Polyolefins are a group of the most popular polymers in various applications [8]. One of the main
polymers of this group is PE, with more 100 million tons production per year, that is, 34% of total
plastic market, and is extensively used due to good mechanical and chemical resistance, low density,
cost efficiency, ease of processability, non-reactivity, low toxicity, good electric insulation, and good
functionality [9]. However, like other polymers, the concern about PE is its flammability in applications
requiring good flame retardancy. Although the emissions from PE have low toxicity, it has a low
limiting oxygen index (LOI) and drips during burning, which causes rapid flame spread [10].

Typically, physical or chemical modifications, as well as applying FRs, are recommended to reduce
the flammability of PE products [11]. Flame retardancy of polymers increases by incorporation of FRs
and is estimated to triplicate their survival time in case of fire [12]. FRs are necessary as they enhance the
flammability of polymeric materials by delaying the fire and it’s spread [13]. The common commercial
FRs used for PE systems are based on phosphorus, borate, inorganic hydroxides, silicon, and nitrogen
and are introduced to polymer matrixes during processing [14]. Each of the FR approaches uses a
different mechanism and their application is attributed the polymer matrix and the intended usage.
For example, regarding the inorganic hydroxides, they will reduce the burning rate by releasing water
to decrease the temperature since decomposition occurs at higher temperatures. Although gas-phase
reactions are important in controlling flames in PE systems, quenching FRs based on halogens are not
recommended due to environmental concerns [15]. Moreover, intumescent flame retardants (IFRs) are
of great importance and efficiency in restricting the fire by forming a swollen char and are applicable
for polymeric materials [16]. Considering the high production and applicability of PE, the issue of
its flammability is of great importance and hence, there is an urgent need to develop strategies that
minimizes the flammability of PE.

A web search revealed that several review papers have been published on flame retardancy of
polymers; however, there is a dearth of comprehensive research on FRs for PE composites [16,17]. Herein,
this study reviews the specific approaches in enhancing flame retardancy of PE and some research
papers published in the past 10 years, whiletaking into account the newly emerged FR nanocomposites.

2. PE Grades and Properties

PEs are one of the most potential materials of value-adding in case of accurate formulation
modifications [18]. It is of great importance to know the grades of PE as their flame performance is
correlated with their chemical structure (i.e., branching type) and FR formulations [18]. The structure
and properties of PE main grades, including density, crystallinity, LOI, thermal conductivity,
melting temperature, and molecular weight are summarized in Table 1.
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Table 1. Different properties of PE’s grades [19–21].

PE Grades Structure’s
Description

Density
(g/cm−3)

Crystallinity LOI (%)
Thermal

Conductivity
(W/m·K)

Melt
Temperature

(◦C)
Mw (g/mol)

LDPE
(Low-density PE)

Branched structure
containing long
and short chains

0.915–0.932 Lower degree
of crystallinity 17–18 0.32–0.35 105–115 <50,000

LLDPE
(Linear low-density PE)

Branched structure
containing

short chains
0.910–0.930 Slightly higher

than LDPE 17–18 0.35–0.45 120–130 <50,000

HDPE
(High-density PE) Linear structure 0.940–0.970 Higher degree

of crystallinity 17–18 0.45–0.5 128–136 Up to 200,000

3. FR Approaches and Materials

In this section, the specific approaches and materials used for enhancing the flame retardancy of
the PE systems are discussed and their recent works are investigated.

3.1. Phosphorous and Melamine

Phosphorus-based FRs are the most considerable halogen-free type of FRs used for improving flame
retardancy of PE. Common phosphorus-based FRs include red phosphorus (RP), phosphine oxides,
phosphines, phosphonates, phosphates, ammonium phosphate, and phosphites [19,20]. Regarding the
PE structure, phosphorus compounds are more advantageous in comparison with the halogen-based
FRs as they work in two separate phases, gas and condense [21]. The physical and chemical reactions
mostly affect flame inhibition and heat reduction because of the controlling melt flow, surface protection
by acids, char layer promotion, and char layer protection against oxidation. Phosphorus FRs volatilize
into the gas phase and strongly scavenge the hydrogen and hydroxyl radicals [22]. The Equations (1)–(5)
demonstrates the radical scavenging of Ḣ and ȮH by the active phosphorus radicals such as PȮ and
HṖO2, which are present in the flame (M is a third body species) [21].

HP
.

O2 +
.

H→ PO + H2O (1)

HP
.

O2 +
.

H→ PO2 + H2 (2)

HP
.

O2 + O
.

H→ PO2 + H2O (3)

P
.

O +
.

H + M→ HPO + M (4)

P
.

O + O
.

H + M→ HPO2 + M (5)

The produced HPO can effectively quench the flame and lower the reactivity of the material
compared to Ḣ and OḢ. Some phosphorus-containing compounds can decompose to phosphoric acid
and polyphosphoric acid in the condense phase. A molten viscous layer formed by acids protect the
surface of the polymers and restrict oxygen penetration [22,23]. Ammonium polyphosphate (APP)
has been broadly used in IFR systems as an acidic source and blowing agent. Khanal et al. [24]
prepared a novel IFR system containing APP and tris (2-hydroxyethylene) isocyanurate (THEIC) to
enhance the fire and flammability performance of HDPE. Flammability of the prepared HDPE/IFR
(AAP/THEIC) composite was evaluated by LOI analysis and cone calorimeter tests (CCT) indicating
different parameters, but just one of them is investigated, which is peak heat release (PHR) rate here.
The LOI analysis indicated that the LOI value of the HDPE/IFR composite with the weight ratio of 3:1
was higher than the LOI value of the pure HDPE and HDPE/APP. It is evident that adding THEIC as
a char agent increased the flame retardancy of HDPE/IFR composite while the most striking feature
was the optimum weight ratio of APP (3) to THEIC (1). The LOI value of the composite decreased by
increasing the amount of THEIC. The CCT analysis illustrated that the combustion time of HDPE/IFR
composite is slower than the pure HDPE and the PHR rate decreased and occurred at a longer time.
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It is clear that the charring formation attributing to THEIC component caused a significant reduction
of PHR rate value.

Melamine (MLM) is another unique material containing 67 wt.% nitrogen and excellent thermal
resistance, which could be combined with phosphorus compounds used in FR applications. Among the
MLM-containing compounds, MLM phosphate is specific due to the presence of phosphorus.
Other commercially available MLM-based FRs are melamine cyanurate (MC), melamine pyrophosphate
(MP), and melamine polyphosphate (MPP). Moreover, MLM can form salts with high thermal stability
and strong acids. Salasinksa et al. [4] evaluated the effect of incorporating copper phosphate and
melamine phosphate (CUMP) into HDPE as a FR compound and compared it with HDPE/APP.
The fire property of HDPE containing CUMP was carried out by CCT. Figure 1 indicates the scanning
electron microscope (SEM) images of PE/APP and PE/CUMP formed char layer, as well as char
chemical composition.
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Figure 1. SEM images of cone calorimetry residues of Polyethylene/Ammonium polyphosphate
(PE/APP) (outer and inner) and Polyethylene/Copper phosphate and melamine phosphate (PE/CUMP)
(outer and inner), reprinted with permission from Ref. [4].

The SEM images of the residues CCT conducted on HDPE/APP and HDPE/CUMP samples
confirmed the char formation of both. Regarding the HDPE/APP, the formed char layer was thin
without swollen structure while HDPE/CUMP was found to be porous inside char. The chemical
composition analysis demonstrated that the char layer composed of C, O, N, and P components.
CUMP were likely to be decomposed to CuO and P2O7, and then take part in the crosslink process,
which finally causes a dense char layer formation and mechanical behavior improvement. It was
evident that the HDPE/CUMP resulted in more char formation in comparison with pure HDPE.
Compared to pure HDPE, HDPE/CUMP showed a significant reduction in PHR rate. Furthermore,
the CUMP worked in both condense and gas-phase via char layer formation and emission of more



Molecules 2020, 25, 5157 5 of 28

non-flammable gases, respectively. Other works on the flame-retardancy of PE using phosphorous and
MLM compounds have been summarized in Table 2.

Table 2. Recent studies on flame retardancy of PE using phosphorus, melamine, and nitrogen.

Polymer Matrix Additive(s) Mechanism(s) Result(s) Ref.

HDPE CUMP Char formation, Emission of
non-flammable gases

-Reduction of decomposition rate
-Increasing the yield of residue
-Reduction of heat release rate (HRR)
-Increasing the time of burning

[4]

HDPE APP
THEIC Char forming

-HDPE/APP/THEIC showed the heist
LOI value
-IFR incorporation significantly declined
the PHR rate of HDPE

[24]

LDPE Carbonization agent,
APP, MP

Char formation, Physical barrier
creation able to deactivate the

oxidation-active centers of carbon

-Optimal flame retardancy belongs to
carbonization agent/APP/MP with the
weight ratio of 7:7:1
-Increasing the maximum temperature of
the decomposition peak of LDPE

[10]

LDPE

APP, Pentaerythritol
(PER), Salt of MP,

Dibromoneop-enty
Glycol (DBNPG)

Char forming, Thermal barrier

-Improving the char layer
-Thermal barrier behavior enhancement
-Increase in melt viscosity with proper
amount of DBNPG

[25]

PE
Poly (piperazine

methylphosphonic acid
pentaerythritol ester)

Char formation,
Exert condensed phase

-Improvement the residual mass and
thermal stability
-Reduction in HRR, THR
-UL-94 V0 rating

[26]

LDPE APP, PER, MLM Char formation -Increasing in thermal stability [27]

LDPE PSPHD-SEP Vapor phase radical-trapping effect

-Reduction in PHR rate, THR
-Improving the thermal stability
-Increasing the LOI value (21%) compared
to neat LDPE
-UL-94 V-2 rating

[28]

HDPE

10 wt.% of mono
ammonium phosphate

(MAP), ammonium
zeolite (AZ),

and microcrystalline
cellulose (MCC)

Char forming

-Slowing down the burning rates of
HDPE/MAP10 and
HDPE/MCC/MAP5/AZ5 composite by
64% and 62%, respectively
-Improving the LOI level and char
forming by incorporating FRs

[29]

LDPE

THEIC,
microencapsulated

ammonium
polyphosphate (MCAPP)

Formation of a compact char

In the composite with MCAPP/
THEIC (2:1):
-Achieving V-0 rating of UL-94
-Reduction in PHR rate and THR by 74.8%
and 71.9%, respectively compared to
pure LDPE
-Enhancing thermal stability at
high temperature

[30]

PE/Wood
Flour (WF) APP Performance of WF as the charring

agent with incorporation IFRs

-Achieving V-0 rating of UL-94
-Positive effect of IFRs and WF to control
the fire spreading and the risk
of combustion
-Reduction in PHR rate of the composites
containing IFRs and compatibilizers

[31]

PE

Phenyl phosphinic arid
di-4-[1-(4-pheny
phodphonic acid

monophenyl
ester-yl)-methyl-ethyl]

phenyester
dimelaminium

(PDEPDM)

Char forming

In composite containing
32 wt.% PDEPDM:
-Achieve in V-0 rating of UL-94
-Improvement in LOI, formation of
char residue
-Increase in char yield from 0.08 wt.% for
neat PE to 5.17 wt.% for composite
containing 40 wt.% PDEPDM at 800 ◦C
-Reduction in tensile and impact strength

[32]

LDPE

Expandable graphite
(EG), Ethylenediamine

phosphate (EDAP),
3,5-diaminobenzoic acid

phosphate (DABAP)

Releasing CO2 gas acting as an
effective charring effect

-Substantial reductions in PHR rate for all
flame-retarded samples
-Decreasing the mass loss rate by adding
intumescent additives

[33]

LLDPE

MLM salt of
pentaerythritol

phosphate
montmorillonite

(MPPM)

thermally stable char forming

-Enhancing the char formation and the
thermal stability of LLDPE at
high temperatures
-Substantial reduction in PHR rate, THR,
mean mass loss rate, and fire growth
rate index
-Achieving V-0 rating in UL-94V test

[34]
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Table 2. Cont.

Polymer Matrix Additive(s) Mechanism(s) Result(s) Ref.

LLDPE

MLM salt of chitosan
phosphate (MCHP),

Organically modified
montmorillonite

(OMMT)

-Char forming

-Increasing the char residue
-Improving the thermal stability
-Reduction of PHR rate, total heat release
(THR), CO, CO2 emissions and fire
growth index (FGI)

[35]

HDPE
APP, PER, modified

porous mesostructured
silica (SBA-15)

Intumescent char layer formation

-Better flammability characteristics at low
SBA-15 loadings (<2 wt.%)
-Enhancement in fire properties affected
by formation of crystalline silicone
phosphate barrier

[36]

LDPE RP, APP Intumescent char layer formation

-Increase in LOI value from 17.5 to 24.2 by
addition of 30wt% APP
-The highest LOI value of 27.2 and UL-94
rating of V0 at ratio of 5:1 (APP:RP)
-Increase in the gas phase action by the
addition of RP

[37]

HDPE APP, MLM Intumescent char layer formation

-Improvement in the composite’s tensile
strength and combustion process by FR
loading’s increase
-Improving the thermal stability and char
formation’s promotion by FRs

[38]

PE
Pentaerythritol

phosphate nickel salt
(PPNS), APP

Intumescent char layer formation

- LOI value increased from 30% to 34%
-Reduction in total HRR by 46.3%
and 51.9%
-Reduction in average mass loss rate by
40.6 and 87.5%

[39]

HDPE/WF
APP, Aluminum

trihydroxide (ATH),
SiO2, CaCO3

Char forming

-Increase in both mechanical and fire
properties by using nanofiller additive
-Combination of APP and SiO2 showed
the highest LOI value, and the
lowest HRR

[40]

PE DABAP, EDAP, EG Char forming

-Higher decomposition temperature was
attributed to DABAP
-The best char yields was belonged to
PE/DABAP
-PE/EDAP/EG showed the best flame
retardancy behavior

[41]

HDPE/WF APP Char forming

-APP decreased HRR and total smoke
values of system
-The heat of ignition remained constant
-Maximum reduction of HRR obtained by
increasing the amount of APP to 4 wt.%

[42]

HDPE
Phosphorous–nitrogen-

based charring
agent (PDTBP), APP

Intumescent char
layer formation

-UL-94 V-0 rating
-Low migration percentage (2.2%)
-Decrease in PHR rate, THR, and fire
hazard value
-High tensile and flexural strength

[43]

LLDPE

MLM salt of
montmorillonite

phosphate (MMP),
zinc borate (ZB)

Char layer formation

-Increasing in thermal stability and
char formation
-Reduction in PHR rate, mean HRR, THR,
and mean mass loss rate
-Reduction in the fire risk
-UL-94 V-0 rating for the composite with
30 wt.% MMP and 5 wt.% ZB
-Highest char residue formation for the
composite with 32 wt.% MMP and
3 wt.% ZB
-Max. fire performance index (142%) for
the system with only MMP (40 wt.%)

[44]

Ethylene-vinyl
acetate

(EVA)/LLDPE

MLM, TRZ, and
Bentonite Clay

Strengthening the protective char
barrier produced by ATH

E-PE/120ATH in comparison with the
conventional E-PE/185ATH achieved:
-Self-extinguishing behavior
(UL-94 V-0 rating)
-Reduction in the stiffness and
improvement in elongation at break,
Composites with TRZ and clay showed
23% reduction in PHR rate and 11% in
smoke production

[45]

LDPE/WF APP, WF Char forming

Increasing the LOI value from 17.5 to 24.2
with addition of 30 wt.% m-APP
25% reduction in THE in the
LDPE/WF/APP.

[46]
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3.2. Nitrogen

Nitrogen-based FRs have also been used in PE systems to improve its flame resistance.
Essential environmentally friendly groups of FRs are nitrogen-comprising ones because of their
low toxicity, efficiency, recyclability, and their low evolution of smoke during combustion [47,48].
Commonly known nitrogen-based FRs are ammonia, MLM, and their derivatives, whilst other types
based on urea and guanidine are also identified. Generally, MLM and derivatives are the basic
components of an intumescent system [49,50]. Nitrogen-containing compounds showed a well-effective
synergism with the fire retardants containing phosphorus [51]. As a case in point, MP and APP
materials, taking advantage of N-P synergism, are the most used P and N-containing fire retardants.
Besides, MLM/ammonium salts with organic or inorganic acids such as boric acid (BA), cyanuric acid,
phosphoric acid, or pyro/poly-phosphoric acid are typically used to provide higher thermal stability
along with lower volatility [52]. Polymeric nitrogen compounds based on cyanuric acid have been
recently developed and MC, as a two-dimensional, highly thermally stable structure, showed strong
synergism with phosphorus compounds [53,54].

The flame retardancy action mode of MLM and its salts is somewhat different [55]. Upon heating
of the pure MLM, MLM starts volatilization by heat absorption caused by cooling down the surface of
the polymeric matrix. Under high temperature, MLM undergoes further endothermic decomposition
to produce cyanamid [56]. In the meanwhile, thermally stable condensates, i.e., melam, melem,
and melon, as well as ammonia gas, may form. The chemical structure of the produced condensates
is illustrated in Figure 2. These residue condensates contribute to the creation of an insulative layer
in the condensed-phase. In addition, the ammonia evolution dilutes the burning atmosphere with
inert/non-combustible gases, causing a gas phase flame retardancy contribution. In MLM salts,
if MLM reforms upon dissociation of the salts exposed to the heat, a same decomposition mechanism
is expected. Because of more progressive condensation in MLM salts rather than the pure MLM,
their condensed-phase contribution is dominant [57]. Likewise, N-containing synergistic systems either
form char through condensed-phase or promote gas phase reaction to scavenge free radicals [52,58].
Moreover, the ammonium salts decrease the spread rate of the flame but evolve potentially toxic
gases [58].
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In an interesting study reported by Luyt et al. [18], six FR compositions obtained by mixing
commercial N- and P-containing FRs were embedded into different grades of LDPE and LLDPE to
evaluate their effects on thermal stability and fire-resistance. LDPE grade produced in an autoclave
reactor showed the best flame retardancy performance (UL 94 V0, char residue: 10 ± 1% at 800 ◦C)
when 35 wt.% of the triazine (TRZ) derivative and APP formulated FR was incorporated. This was due
to the phosphorus-nitrogen synergism forming the highly thermally stable phosphorous oxynitride
residue. In contrast, LDPE from the tubular reactor and LLDPE, contained TRZ derivative and APP
formulated FR, represented poorer fire resistance since their strongly entangled molecules hindered well
dispersion of FRs and lessened their activity due to the premature thermal decomposition. Results of
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the nitrogen-based FR revealed that nitrogen-based compounds alone could not achieve a V0 rating in
any grades of PE. Table 2 indicates the works conducted by using nitrogen-based FRs in PE systems
during the past 10 years.

The nitrogen and phosphorus-based flame retardants used as treatments in PE, LDPE, LLDPE,
and HDPE are listed in Table 2 with emphasis on the effect each additive have on the polymer
matrix. Meanwhile, some additives greatly improve the flame retardancy of the polymeric
composites others, such as the Phenyl phosphinic arid di-4-[1-(4-pheny phodphonic acid monophenyl
ester-yl)-methyl-ethyl] phenyester dimelaminium (PDEPDM), caused a reduction in the mechanical
properties of PE. Hence, it is more appropriate to apply FRs that enhance fire properties without
compromising their mechanical properties.

3.3. Inorganic Hydroxides

Inorganic hydroxides are widely applied to develop the fire retardancy of PE products because of
their benefits, such as low toxicity, cost efficiency, minimal corrosion, and contribution to declining
smoke emission during the combustion process. In addition, releasing water at the temperature above
200 ◦C is a distinct characteristic of inorganic compounds. The two main types of inorganic hydroxide
are ATH and magnesium hydroxide (MH). There are typically two mechanisms of action in flame
retardancy of ATH and MH compounds including flame dilution and the catalytic effect, which leads
to charring enhancement [59]. The anhydrous alumina and magnesia are white powerful refractor
powders, which can reflect the heat and assist to improve heat insulation with aggregating on the
surface. Regarding the ATH, water releasing occurs at 220 ◦C, while MH releases water at 330 ◦C.
The largest commercially use of ATH and MH FRs is in wire and cable insulation applications. There are
several advantages associated with ATH, such as low cost, non-toxicity, and excellent flammability
behavior. Generally, flame retardancy analysis requires at least 35% of metal hydroxide. Increasing the
amount of metal hydroxide could lead to degrading physical properties as well as low-temperature
flexibility. As a result, one of the most important techniques is to combine metal hydroxides with
other FRs, such as phosphorus compounds, boron compounds, and nanoclays [60,61]. In some cases,
surface modification is effective to increase flame retardancy of hydroxide compounds. Moreover,
ATH is able to work in two different phases, gas and condense. The main mechanism of ATH in the
condensed phase is heat absorption during the decomposition process. The ATH decomposition occurs
at the range of 220–400 ◦C based on the reaction as shown in Equation (6) [62].

2Al(OH)3 → Al2O3 + 3H2O (6)

The decomposition reaction of ATH is extremely endothermic and absorbs about 1kJ/gr heat.
The heat absorption reaches its maximum at 300 ◦C. The most striking feature is the formation of water
vapor from the hydroxyl groups bonded to aluminum. Furthermore, the combustion is hindered by
releasing the water vapor into the fire, diluting the flammable gases concentration, and limiting the
accessibility of oxygen to the surface of the composite [62]. On the contrary, to the halogenated-FRs,
the produced gases from the decomposition reaction of ATH are non-toxic and non-corrosive. Generally,
the required characteristics of inorganic hydroxides FRs in commercial products are: (a) low cost,
(b) highly accessible with low surface area and small particle size, (c) low toxicity, (d) exhibiting
endothermic decomposition reaction between 100–300 ◦C, (e) capable of being used at high loading,
and (f) colorless [22].

Layered double hydroxides (LDH) are synthetic materials containing negatively charged layers of
inorganic/organic anions, which alternately located in the interlayer of positively charged layered of
metal hydroxide [63,64]. The general formula of LDH is presented in Equation (7) [64].[

M2+
1−xM3+

x (OH)2

]x+
An−

x
n

yH2O (7)
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LDH is considerably important to be used in commercial polymer industries, as they are
environmentally friendly FRs. These types of FR compounds are attractive due to their endothermic
decomposition against high temperature, nontoxicity, and high level of smoke suppression [64,65].
Until now, various studies have been conducted to evaluate the effect of incorporating metal hydroxides
with polymers and nanocomposites.

Arslan et al. [66] investigated the result of using metal hydroxide, ZB, MLM, APP, and PER
as reinforcements to improve flammability of LDPE/Polylactic acid (PLA). The efficiency of flame
retardancy of the composites was evaluated by LOI analysis. The results showed the higher LOI
values for samples containing MLM, APP, and PER. The LOI values of LDPE/PLA/ZB, LDPE/PLA/AH,
LDPE/PLA/MH, LDPE/PLA/MLM, and LDPE/PLA/APP were 21.3, 20.2, 21.4, 20.4, and 22.3, respectively.
As can be observed, the compound of ZB, AH, MH, and MLM indicated a negative impact
on flammability of the LDPE/PLA blend. The highest value of LOI analysis was attributed to
LDPE/PLA/APP30/PER15/MLM15/ZB3 composite with 95.17% improvement in comparison to the
LDPE/PLA blend. The best flame retardancy results were reported in Figure 3a. It is crystal clear
that APP is the most effective FR, which significantly promoted the flame behavior of LDPE/PLA.
In addition, APP/MLM/PER incorporation considerably increased the strength and integrity of the
char layer due to the promotion of phosphor and oxygen. Figure 3 demonstrates the images of char
layer after LOI analysis and char residue of LDPE/PLA/APP/MLM/PER composite.Molecules 2020, 25, x FOR PEER REVIEW 10 of 28 
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Figure 3. (a) Limiting oxygen index (LOI) values of all samples, images of (b) char of the
LDPE/PLA/APP/MLM/PER after the LOI analysis, and (c) char residue of the LDPE/PLA/APP/MLM/PER,
reprinted with permission from Ref. [66].
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Recent studies on the flame-retardancy of PE using inorganic hydroxides have been summarized
in Table 3.

Table 3. Recent studies on flame retardancy of PE using inorganic hydroxides.

Polymer Matrix Additive(s) Mechanism(s) Result(s) Ref.

HDPE MH, Modified MH Char forming with both MH
and modified MH

-The flame sustainability of
HDPE/modified MH was higher
than HDPE/MH
-The flame retardancy behavior of
HDPE/modified MH did not enhance
compared to HDPE/MH

[67]

HDPE ATH, MH Endothermic decomposition
reaction and heat absorption

-The HDPE/ATH/MH system
demonstrated the lowest value of
PHR rate
-The lowest amount of THR belonged
to HDPE/ATH/MH system
-Combination of ATH and MH
indicated the significant
non-flammability behavior

[68]

LDPE Zn/Al, Ni/Al, Co/Al Char forming

-The incorporation of Zn/Al-LDH
and Ni/Al-LDH with LDPE showed
more decrease of flammability
compared to
Co/Al-LDH incorporation
-The composite containing LDH
alternated with organic onions
indicated more flammability
reduction in comparison with
composite containing
inorganic anions

[69]

LDPE ATH, MH, Ferric
oxyhydroxide (FH)

Char forming, Restriction of
oxygen diffusion

-The higher LOI value of composites
containing ATH compared to
composites containing MH and FH
-LDPE/MPP/Starch (ST)/ATH system
indicated the more protective
charred layer with smaller pores on
it compared to other systems

[14]

LDPE/EVA
Organopalygorskite

(OPGS), Molybdenum
sulfide (MoS2), MH

Char formation

-Increasing the LOI value (26%)
-Reduction in the burning rate (66%)
and PHR rate (83%) compared neat
polymer blend
-Indicative the UL-94 V-0 rating

[70]

Paraffin/HDPE MH, ATH, EG Char formation, physical barrier

-Increasing in thermal stability and
carbonization ability
-Increasing the amount of
char residue
-Reduction in the THR and PHR rate

[71]

PE/PCS MH Exert condensed phase, barrier
effects of char formation

-Improving thermal stability
-Forming the multi-layered
char structure

[72]

EVA/LDPE
ATH, Magnesium
hydroxide sulfate
hydrate (MHSH)

Char forming

-Improving thermal stability
-Reduction in thermal degradation
rate in the temperature ranges of
410 ◦C∼510 ◦C
-Indicative V-0 in UL-94 test

[73]

LDPE/EVA
MH, Keratin fibers
(KF), deoxyribose

nucleic acid (DNA)
Char forming

-Increasing the LOI up to 24.5%
-Reducing the HRR by 82% compared
to PE/EVA sample with 55 wt.% MH

[74]

LDPE/EVA MH, TiO2 Char forming

-Reaching to V-0 with LOI
value of 24.9%
-Increasing mass residue from 5 wt.%
for blend to 25 wt.% for the
composite containing both FRs
-Increasing tensile strength and
modulus of LDPE/EVA blend from
6.4 MPa to 7.1 MPa and 127 MPa to
133 MPa respectively by
incorporation of both FRs
-Improving impact strength from 27.8
to 35.2 KJ·mm−2

[75]
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Table 3. Cont.

Polymer Matrix Additive(s) Mechanism(s) Result(s) Ref.

LLDPE MH, SiO2 Char forming
-Improving thermal degradation
resistance and the LOI value
-Reduction in PHR rate and THR

[76]

LLDPE Huntite and
hydromagnesite (HH) Char forming

-Increase in value of LOI and
elastic modulus
-Reduction in the horizontal burning
rate, tensile strength, and elongation
at break

[77]

HDPE/LDPE/Nylon 6 MH, MWCNT,
Kenaf fiber Char forming

-Increasing the tensile strength value
by 50% at 0.5/0.5 wt.% loading of
Mg(OH)2/MWCNT compared to
composite without filler
-Reduction in PHR rate with addition
of Mg(OH)2/MWCNT

[78]

HDPE/WF

MH,
1,2-bis(pentabromophenyl)

ethane,
Aluminum hydroxide

Char forming

-Significant decrease in the HRR
and THR
-Best fire resistance for
composite containing
1,2-bis(pentabromophenyl) ethane

[79]

MDPE MH, Calcium-based
hydrated minerals

Formation of cohesive CaCO3
combustion residue

-Reduction in PHR rate for
Ca-based composites
-Generation of an intumescent
mineral residue during the
combustion by calcium hydroxide

[80]

LDPE MH, Montmorillonite
(MMT) Char forming

-Higher interlayer spacing is
observed for organosilylated clay
(SC1) compared to original MMT
-Improving thermal stability
compared to commercial organoclays

[81]

LDPE

Azocyclohexane
(AZO),

Bis(cyclohexylazo
cyclohexylmethane)

(BISAZO), FlameStab®

NOR116, Magnesium
dihydroxide (MDH),
Luvogard MB81/PE

Intumescent char
layer formation

-Better performance in flame
retardancy when using AZO and
BISAZO compared to the
other additives

[82]

LDPE/EVA
Hexaphenoxylcyclo

triphosphazene,
Mg(OH)2, Al(OH)3

Char forming

-Blends showed better flame
retardancy when composited with
Mg(OH)2 and Al(OH)3
-The maximum specific optical
density is reduced
from 370.65 to 91.72
-An increase in the residual volume
and compactness of solid residue
surface layer based on SEM
morphology is observed

[83]

LDPE ATH, EVA Char forming

-Flame resistance of EVA/LDPE/ATH
blends is slightly enhanced after
γ-irradiation
-Increase in the cross-linking density
caused an enhancement in electrical
and thermal properties
-γ-irradiation delayed the thermal
degradation process of
EVA/LDPE/ATH blends

[84]

LDPE/Cross-linked
polyethylene (XLPE)

MMT, MH,
LDPE-g-MA Char forming

-The increase in the tensile and
impacts strengths induced by the
addition of clay and LDPE-g-MA
-Thermal stability at high
temperatures is enhanced due to the
increase in char residual
of nanocomposites
-XLPE nanocomposites showed
efficient level of flame retardancy

[85]
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Table 3. Cont.

Polymer Matrix Additive(s) Mechanism(s) Result(s) Ref.

MDPE/EVA
MDH, Hydrated lime,

Hydrated
dolomitic limes

Intumescent char
layer formation

-Ca-based MDPE composites
depicted similar rates of PHR with
MDH composite
-Lower PHR rate observed for
Ca-based fillers in EVA compositions
-The formation of an intumescent
cohesive residue in the combustion
process is induced by an effective
role of calcium di-hydroxide

[86]

HDPE ATH, ZB Char forming

-2 phr organo-clay additive is used to
achieve V0 rating
-FR materials with high
processability and mechanical
properties is obtained when using
HDPE rendering

[87]

LLDPE/Ethylene-acrylic
acid (EAA) MH Char forming

-Addition of EAA improved LOI
value of LLDPE/EAA/MH
from 28% to 30%
-Reduction of HRR and SPR values
was occurred because of the
acceptable dispersion of MH
-Improvement of thermal oxidative
stability of LLDPE/EAA/MH due to
the EAA presence

[88]

LLDPE CaCO3, MgCO3, Talc Intumescent char
layer formation

-HRR peaks were considerably
reduced with incorporation of all
mineral fillers
-Improvement of nanoparticle
dispersion in LLDPE by stearic acid

[89]

From Table 3, Huntite and hydromagnesite caused a reduction in the tensile strength and elongation
of the LLDPE material. Some of the notable additives that must be taken into consideration with
regards to the flame retardancy of PE and its grades are the Organopalygorskite (OPGS), Molybdenum
sulfide (MoS2), and MH, which all resulted in a drastic reduction of peak heat release rate. Furthermore,
the addition of MH, TiO2 and LDPE composites had an excellent fire resistivity and mechanical
performance. Aside from Modified MH, all the additives of HDPE produced better results and can
therefore be utilized when developing flame retardant strategies for PE.

3.4. Boron

In addition to the water-soluble boron compounds including sodium borate (borax), BA, and boron
oxide, water-insoluble ones and more commonly ZBs, are widely used as boron-derived FRs,
former for application in cellulosic materials and latter in thermoplastics [52]. Boron based FRs
possess low cost, high thermal stability, non-toxicity, and ease of handling, which have resulted
in their wide use in PE systems [90]. Employment of ZB, with the most commercial importance,
not only improves flame retardancy but also helps with the smoke suppression and anti-arcing in
condensed phase [52]. Although ZB FRs are often used in halogen-containing systems, it has also
been utilized in halogen-free and FR polymers [91]. Based on the studies conducted by Li et al. [92]
and Wu et al. [93], the introduction of ZB into PE systems can result in the increase in residual
char and thermal stability improvement. An extensive review of various types of ZB and their
application was conducted recently by David M. Schubert [94]. In the most reported literatures [95,96],
boron compounds were used together with other synergistic retardants such as nitrogen, phosphorus,
silicon, and other synergies that has been comprehensively investigated in the following section.
Therefore, other boron-based FRs, including calcium borate, melamine borate, boron phosphate,
ammonium pentaborate, borosiloxane, etc., have become potential candidates only in recent years [52].

Upon heating and polymer combustion, depending on the grades of ZBs, endothermic dehydration
occurs, in which the ZB loses its chemically bonded water molecules. This water vaporization not
only provides a heat sink, delaying the combustion, but also dilutes the concentration of the oxygen
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and gaseous flammable components in the flame zone, causing an enhancement in the residual char
formation [97]. Furthermore, at elevated temperatures, a glassy protective layer may form on the
polymer/char surface, acting as a barrier to the transfer of heat, oxygen, and decomposition products,
resulting in char strength and further combustion retardant [98]. Hence, another function of the ZB
would be inhibiting the oxidation of the char (afterglow suppression), as well as suppressing smoke
formation. Accordingly, a change in the oxidative decomposition direction of the halogen-free polymers
(e.g., PE) is demonstrated when ZB is used. However, it is hesitated due to the suppression effect
of boron oxides on hydrocarbons’ decomposition [99], or graphite oxidation in the char [59], or just
because of the insulative layer formation. Besides contributing to the condensed phase retardancy,
in the presence of halogens, a gas phase flame retardancy is also attributed to the ZB due to the
production of halogenated compounds, scavenging hot radicals, during the reaction between ZB and
halogens. It is believed that BA and ZB are following the same flame retardancy mechanism just a few
studies on flame retardancy effects of BA are released [100,101]. On the other hand, boron oxide can
function only in the condensed phase by forming an insulative layer [52].

Recently, Sultigova et al. synthesized a certain chemical composition of ZB (2ZnO•3B2O3•3,5H2O),
using borax and zinc sulfate as the precursors in aqueous solution, aiming at producing composites
based on HDPE [102]. The composites were obtained via extrusion of the mixture at several prescribed
temperatures. It is found out that the polymeric composites burnt much more slowly, without the
formation of polymer melt droplets. Furthermore, the percentage of LOI and coke residue (CR) of the
composites was 20.6 and 8.6, respectively, which were much higher than those values for the initial
polymer. The results revealed that the incorporation of ZB into HDPE, increased the fire resistance of
the starting polymer without diminishing its mechanical properties. Another recent study is developed
by Abdulrahman et al. to investigate the effect of BA and borax on the thermal and viscoelastic
properties of natural rubber (NR)/LDPE/high abrasion furnace carbon black composites [103]. For both
fillers, the residual char yield was increased in the related composites. The loading of the fillers showed
a considerable impact on the flammability behavior of the composites altering it from slow-burning
to self-extinguishing (LOI: 28.5%) for BA and to the upper range of slow-burning (LOI: 27.8%) for
borax (Figure 4). Boron-containing FRs can show an advantageous synergistic interaction with MH,
phosphorus, carbon, Si- and N- comprising compounds. For instance, Boron phosphate or metal
borophosphate are produced in the intumescent systems containing phosphorus compounds (i.e., APP)
and BA or ZB and boost the char formation and integrity. In the case of boron-nitrogen synergies,
generation of boron nitride during fire may change the dominant fire retardancy mode of action.
Furthermore, for the boron-nitrogen synergetic systems, it is believed that borosilicate glass or ceramic
is formed because of borate/silica fusion at high temperatures. This phenomenon increases the fire
resistance in the condensed phase [97]. Other works in the past 10 years on the flame-retardancy of PE
using boron compounds have been summarized in Table 4.

Table 4. Recent studies on flame retardancy of PE using boron and silicon based FRs.

Polymer Matrix Additive(s) Mechanism(s) Result(s) Ref.

PE ZB, Phosphorus–Nitrogen
(DOPO-N)

Exert condensed phase and
gas phase

For the PE/20%ZB/10%DOPO-N
composite:
-Increasing in thermal stability
-Reduction in PHR, THR, average heat
combustion, and FGI

[104]

HDPE

Fullerene (C60),
Decabromodiphenyl

oxide/Sb2O3
(brominated FRs)

trapping radical ability in
condensed phase and gaseous

phase by C60
and BFR, respectively

-Improving the thermal and
thermo-oxidative stability of
HDPE/BFR blends by adding C60
-A remarkable reduction in PHR rate
especially at higher concentration
of C60

[105]
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Table 4. Cont.

Polymer Matrix Additive(s) Mechanism(s) Result(s) Ref.

HDPE/WF

1,2-bis(pentabromophenyl)
and ethylene

bis(tetrabromophthalimide),
and nanoclay, MAPE

as compatibilizer

Trapping the free radical
produced from WF by

Bromine radicals
Char forming by WF

and nanoclay

-Decreasing the composite strength by
adding FRs
-Synergistic effect in
1,2-bis(pentabromophenyl)-clay-MAPE
system by reducing PHR rate and
increasing thermal stability

[106]

HDPE WF, BA, borax (BX) Char forming

-CCT showed that the addition of
BA/BX improved the fire performance
of the samples
-Increasing the ratio of BA/BX has a
negative effect on ignition time, HRR,
smoke production rate, and specific
extinction area

[107]

HDPE/EVA Two different particle
sizes of EG Char forming

-According to TGA and CCT tests,
thermal stability and fire resistance of
HDPE/EVA blend considerably
increased due to the existence of EG
-EG incorporation decreased the
mechanical properties

[108]

mLLDPE/(NR/ENR-50) ZB Char formation

-Improvement in crystallinity of all
the blends due to ZB presence and the
best crystallinity was obtained at 6
phr ZB blend
-Increasing the thermal stability of NR
because of ZB incorporation
-The best thermal stability was
achieved at 8 phr ZB blend
-Incorporation of ZB enhanced the
LOI value of mLLDPE

[109]

HDPE Modified Clay Decomposition of fillers and
char layer formation

-The decrease in PHR from 13 to 62%
by adding 3, 5 and 7 wt.% of each
PFS1 or PFS2 and their OMMTPFS1
and O-MMTPFS2
-62.41% reduction in PHR rate for the
composite containing
7 wt.% of O-MMTPFS2
-TTI was higher or similar to initial
HDPE for all samples
-Decrease in the fire growth rate for all
composites by increasing the
filler loading

[110]

LLDPE

Aerosil® r974 organically
treated fumed silica

(Ar974) in combination
with Al hydroxide Alufy®

2 (AF) or Mg hydroxide
Hydrofy® G1.5 (HF)

Char Formation

-Both PE/HF/Ar974 composites with
20 wt.% HF and (2 or 5 wt.% Ar974)
self-extinguished (LOI values were
31.9% and 35.2%, respectively)
-Effect of nanosilica on decreasing the
PHR rate is significant in
synergistic systems
-Composite containing 20 wt.% HF
and 5 wt.% Ar974 showed best fire
performance based on LOI and CCTs

[111]

HDPE
Aminosilane modified
silica in combination

with MWCNT

Char layer formation that can be
promoted by MWCNT

-Composite with 5% MWCNT and no
nanosilica represented the max. value
of LOI: 26.0 (36.8% higher than that of
neat HDPE) and the min. value of the
PHR rate (54% reduction)
-Increase in MWCNT loading
decreased PHR rate
-Lowest smoke production for the
composite with only nanosilica and
highest with the ones with
only MWCNT
-Higher MWCNT loading, thicker and
more homogeneous char layer
-Slight synergism between fillers

[112]
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Table 4. Cont.

Polymer Matrix Additive(s) Mechanism(s) Result(s) Ref.

LDPE 4A zeolite Intumescent char
layer formation

-Enhancement in the LDPE/IFR’s
LOI value
-Successful passing in the UL-94 V-0
rating test for all composites
-Improvement in the strength and
compactness of the char surface

[113]

HDPE SiO2 or CaCO3, APP, PER Intumescent char
layer formation

-Sample composition has significant
role in WPCs’ properties
-Best properties obtained when using
SiO2 as the filler

[114]

LDPE/EVA Nanoclay, ATH, ZB Char formation

-Using nanoclays improved many
parameters of flammability including
ignition time, FGI, and PHR
-Nanoclays effects are intensified
when combined with traditional
aluminum hydroxide or
aluminum hydroxide

[115]

LDPE Fe-MMT, Fe-OMMT Intumescent char
layer formation

-Lower HRR and lower THR
observed for LDPE/IFR/Fe-MMT
compared to LDPE/IFR/Fe-OMMT for
the same loading percentage

[116]

HDPE APP, SiO2 Char formation

-Lower initial temperature and peak
temperature of thermal degradation is
achieved for RPC compared to
wood-HDPE composites (WPC)
-Introducing APP to RPCN expedites
the thermal degradation of RPC
-Better flame retardancy is
observed for RPC

[117]

LDPE/EVA
OMMT, Piperazine

spirocyclic pentaerythritol
bisphosphonate) (PPSPB)

Intumescent char
layer formation

-Thermal stability increased while
flammability considerably decreased
-PHR rate, THR, and average mass
loss rate reduced significantly
-The PHR rate of
LDPE/EVA/PPSPB/OMMT showed
50% reduction compared to the
LDPE/EVA blend.

[118]

Wood fiber-HDPE Nano-SiO2 Char formation

-Reduced the HRR, THR, and total
smoke release of wood
fiber-HDPE composites
-Tensile and flexural
strength improved

[119]

HDPE/Wheat straw Mg(OH)2, Nanoclay Char formation

-Increasing the nanoclay and
Mg(OH)2 content reduced the
burning rate, tensile and impact
strength of the samples
-Increasing the nanoclay weight
percentage increased the tensile
modulus and impact strength

[120]

PE MMT, Sepiolite, POSS Char formation

-HRR of CaSiEBA significantly
increased after MMT
nanofibers addition
-Flammability retardancy of CaSiEBA
and CaSiEMAA remained unchanged
after sepiolite incorporation
-Reduction of dripping was occurred
due to the addition of only small
amount of POSS
-POSS enhanced HRR value
of CaSiEMAA

[121]
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Table 4. Cont.

Polymer Matrix Additive(s) Mechanism(s) Result(s) Ref.

PE

OMMT,
Diphenylmethanamine

spirocyclic pentaerythritol
bisphosphonate (PSPD)

Intumescent char
layer formation

-Combination of PSPD and
montmorillonite (MT) improved the
thermal stability of LDPE
-The flammability of LDPE Extremely
reduced due to the
addition of PSPD/MT
-51% decrease in the PHR
rate of LDPE/PSPD/OMMT in
comparison with LDPE

[122]

HDPE
MH, Aluminium

hydroxide, EG, APP,
PER, MMT

Char formation

-Improved flame retardancy behavior
obtained by using APP/PER/MMT
and APP/EG
-Increasing the thermal stability of
HDPE due to the FRs incorporation

[123]
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3.5. Silicon

Silicon-containing FRs always have been in the frontline of co-additives in FR systems for
PE products due to their high versatility, compatibility, low toxicity, and environmentally friendly
characteristics [47,97]. This class of compounds can be mainly categorized into silicones, silica,
organosilanes, silsesquioxanes, and silicates, functioning in FR systems as additives or other
forms [52,90]. Silicon-comprising materials are inherently thermal stable and during a fire, they can
produce an insulative layer upon decomposition. Through the formation of a highly thermally stable
char, further substrate decomposition would be suppressed, and the rate of heat release would be
lowered. Thus, the combustion of silicones is only associated with the emission of a negligible
amount of toxic gases and smoke [124]. The reduction of HRR, PHR rate in CCT, and the rate of
combustibles are most evident in silicone and siloxane. Besides fire retardancy through the condensed
phase, the functionalization of silicone-based FRs with phosphorous or nitrogen groups makes them
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more efficient through contribution to the gas phase by trapping of dynamic radicals in the vapor
phase [90,125].

Silicon dioxide, known as silica, in forms of silica gel, fumed and fused silica, is the most
common silicon-based FR tested in various polymeric matrixes. Employment of functionalized
silica and nano-silicates, in which oligomers or polymers attached through silanol groups, is a
promising approach to produce the most efficient silicon-based fire retardants. This group of
organic silicon compounds attracted intensive attention in recent years and the amount of research
introducing these novel additives is growing [81,110]. Scarfato et al. reported the incorporation of
a novel SC1 into the LDPE matrix to investigate its thermal and burning behavior together with
its synergism with MH [81]. The SC1 was synthesized through the functionalization of MMT with
(3-glycidyloxypropyl) trimethoxysilane (GOPTMS) by a silylation procedure (Figure 5a). LDPE/SC1,
LDPE/MH, and LDPE/SC1/MH composites with various loading of the fillers were prepared. For binary
LDPE/8SC1 system, the LOI value increased only from 17.5 up to 18.6 vol%, demonstrating a minor
change that may be still within the margin of uncertainty. This is probably because of inadequate
protection against direct contact to flames, provided by the inorganic residue layer formed by nanoclays.
On the other hand, the addition of SC1 to LDPE/MH composites lowered their LOI indicating an
adverse effect on the flame retardancy of the system, which is likely due to the worsening of the
protective fire residue quality. Furthermore, with increasing SC1 content in LDPE/SC1 composites,
the time to ignition (TTI) was decreased (Figure 5b).
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In addition to the aforementioned organic silicones, noticeable research works have been conducted
recently on polydimethylsiloxane (PDMS), as one of the most important polyorganosiloxanes, to modify
the fire-resistance properties of organic polymers, through direct mixing with the polymers, deposition
of PDMS on the fillers or synthesis of copolymers [126]. Owning to limited thermodynamic miscibility of
PE with PDMS, ethylene-methyl acrylate copolymer (EMA) is often used as the chemical compatibilizer
in a LDPE-PDMS mixture [127]. A recent review on flame resistance of PDMS systems by Zielecka et al. is
a comprehensive reference for more information [124]. Moreover, polyhedral oligomeric silsesquioxane
(POSS) with their specific hybrid organic-inorganic structures, also attracted significant attention in
recent years [128]. An overview of the fire retardancy properties of polymer/POSS nanocomposites is
represented by Zhang et al. [129]. Monofunctional POSS can contribute to the polymerization processes
to produce, for instance, PE-POSS, poly(methyl methacrylate)-POSS, or other nanocomposites [130].
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Whilst the addition of 2.5 wt.% octamethyl POSS into the PE–calcium carbonate–silicone (CaSiEMAA)
composite system showed poor performance in the CCT, it eliminated dripping completely which is
likely because of promoting ceramization of the silicon at the surface [121]. In essence, the rich chemistry
of silicon compounds, especially, their inherent thermal stability, makes them strong candidates for
FR applications. Table 4 shows a summary of recent studies in the past 10 years on PE systems using
boron-based FRs.

Table 4 shows that POSS can reduce the dripping effect of PE. Nano clays are effective in extending
the ignition times and reducing fire growth capacity, PHR rate as well as increasing the mechanical
properties of PEs. The presence of ZB enhances the crystallinity of PE whiles an increase in the ratio
of BA/BX has an adverse effect on ignition time, HRR, smoke production rate. It is therefore of great
importance to maintain the blends at desirable ratios.

4. The Role of Nanotechnology in Flame Retardancy of Polymer Nanocomposites

Nowadays, the most important role of nanomaterials in polymer nanocomposites is the
improvement of mechanical properties, such as impact strength and stiffness [131,132]. First,
the employment of nanocomposites as FRs is receiving great attention because of nanomaterials
with high aspect ratio, and many studies are conducted in this field [133]. Although some of the
research in this field indicated improvement of flame retardancy via the incorporation of nanomaterials,
some of them showed negative effects of using them [134–136]. Recently, researchers turned to the
simultaneous use of nanomaterials and FRs to improve the flammability of polymer nanocomposites.
Enormous studies have been conducted about the combination of nanomaterials and FR compounds,
which showed synergistic effects in different properties of nanocomposites [137–139]. Exploiting the
combination of these nanoscale materials not only reduces the loading of nanomaterials and FR
additives but also improves the mechanical and flame retardancy properties simultaneously.

4.1. The Role of Nanomaterials in Improving Flame Retardancy of PE Systems

Szustakiewicz et al. investigated on flame retardancy of HDPE/clay nanocomposites with MPP
and APP FRs. They used two different types of organoclay: hydrophobic and hydrophilic. Based on
the results of two flammability test methods (LOI and CCT), the simultaneous addition of organoclay
and FRs to HDPE simultaneously results in a synergistic effect of flame retardancy. In this case, the LOI
increases because of two factors, firstly, hydrophobic clay forms a reinforced structure that hinders the
heat transfer of heat and secondly, APP intumescent char formation. As a result, the combination of
these two effects makes the material burning more slowly [140].

Chuang et al. also found that the incorporation of nano-dispersed layered silicate and low smoke
non-halogen (LSNH) FRs to the EVA/HDPE polymer blend caused a synergistic effect on the flame
retardancy and smoke suppressing. According to the results, during combustion, the HRR of the
FR-EVA/LDPE-n nanocomposite is 40% lower than the FR-EVA/LDPE polymer blend. Furthermore,
they investigated the effect of organoclay contents on the flammability of FR-EVA/LDPE-n. It was
found that there is an optimum loading of organoclay (3 phr), where the nanocomposite has the highest
performance in flame retardancy [141]. In another study by Yu et al., the effects of adding MWCNTs
and Ni2O3 on the flame retardancy performance of LLDPE were investigated. The results of CCT show
a synergistic effect of a combination of MWCNTs and Ni2O3 in improving the flame retardancy of
LLDPE, such that nanocomposite containing 3 wt.% MWCNTs and 5 wt.% Ni2O3 shows 73% reduction
in PHR rate compared to LLDPE and the yield of residual char is 13.7%. The improvement of flame
retardancy of LLDPE by incorporating MWCNTs and Ni2O3 was attributed to the physical effect of
MWCNTs (formation of a network like structure because of the good dispersion of MWCNTs), chemical
effect of Ni2O3 (catalytic carbonization), and the combination of physical and chemical effect. Figure 6
schematically illustrates the aforementioned mechanisms [142].
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Figure 6. Schematic representation of the synergistic effect mechanism between Ni2O3 and MWCNTs
on enhancing the flame retardancy of LLDPE, reprinted with permission from Ref. [142].

Han et al. applied different contents of well-exfoliated graphene nano-platelets to enhance flame
retardancy of polyethylene/alumina trihydrate (PE/ATH) composites and showed the addition of
0.2 wt.% of GNP decreased the PHR by 18% of that of the PE/ATH composite. A possible explanation
of this behavior is a char layer of GNPs acting as a heat shield and a barrier against mass transport.
Images of the PE/ATH/GNPx (x, contents of GNP) after cone testing are represented in Figure 7.
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Table 5 represents some results about the influence of nanomaterials on the flammability of
PE nanocomposites.

Table 5. Effects of different types of nanomaterials on the flammability of PE.

Nanomaterial and Its
Loading Amount

Types of FR and
Its Loading Result(s) Ref.

Ce-MWCNTs, 3 wt.% Brominated FR,
10 wt.%

25% reduction in PHR rate observed
from CCT, improved the UL-94 from

V-2 to V-0
[144]

Nano-SiO2, 6 wt.% APP, 8 wt.%
42% and 44% reduction in average

HRR and PHR rate, respectively, 78%
increase in TTI

[145]

Organic-modified
montmorillonite, 10 wt.% MHSH, 30 wt.%

84% reduction in PHR rate and
increase in tign observed from CCT. [146]

Organic-modified
montmorillonite, 5 wt.% IFRs, 15 wt.% 51% reduction in PHR rate observed

from CCT [122]

Halloysite nanotubes, 2 wt.% IFRs, 28 wt.% 92% and 75% decrease in PHR rate and
THR, respectively. [147]

Graphene, 1 wt.%
Brominated

polystyrene/antimony
trioxide, 6.2 wt.%

Increase LOI value from 23.4% to
24.1%, change UL-94 grades

from NG to V-2.
[148]
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4.2. Incorporation Methods of Nanomaterials in Polymer Matrices

A variety of methods are applied for the incorporation of nanomaterials into PE, depending on
the nature of the nanomaterials [149]. These methods include in situ polymerization, solvent casting,
and melt mixing, which will be elaborated in the following sections.

4.2.1. In Situ Polymerization

In this method, at first nanomaterials and monomers are mixed in a solvent with a proper shear
rate, which obtains a stable suspension [150]. In this stage, some interfacial agents are added to
enhance the stability of the mixture. Then, the obtained mixture is fed to the reactor where the
processing conditions mostly are the same applied to the synthesis of the base polymer. When the
polymerization is complete, the solvent is removed [151]. This method is used for a wide range of
polymer nanocomposites.

4.2.2. Solvent Casting

This method is mostly used in cases that there is not enough dispersion of nanomaterials in the
polymer [152]. In other words, the thermodynamic affinity between polymer and filler is not favorable
for homogeneous dispersion. Therefore, the most important step of this method is the breaking
of the agglomerates of nanomaterials, and ultra-sonication is the best method to achieve this goal.
This process is especially suitable for the exfoliation of clay layers and thermosetting polymers [153,154].
To conserve dispersed/intercalated/exfoliated structure, some interfacial compatibilizers, such as maleic
anhydride grafted polymers, are used.

4.2.3. Melt Mixing

Melt compounding is the most common method for the production of nanocomposites because
of the simplicity and availability of equipment [155,156]. Depending on the amount of the product,
internal mixer and twin-screw extruder are used for processing. There are two major methods of
feeding for melt compounding: direct and master-batch which the later method is more common.
In the master-batch feeding method, first, a concentrated master-batch of filler is prepared and then
is diluted in the base polymer [157]. To obtain a good dispersion of filler in polymer and improve
compatibility among components, some grafted polymers are utilized [158]. The amount of shear rate,
mixing time, temperature, and design of the screw profile can determine the final microstructure and
properties of the nanocomposites [159,160].

5. Summary and Perspective

Flame retardancy of polymeric materials has become an area of keen interest recently following
the rampant fire outbreaks. This research focused on the FRs and different application mechanisms
available for the treatment of PE and its grades. In this study, a list of phosphorus, melamine, nitrogen,
inorganic hydroxide, boron and silicon-based retardants with their loading amounts and effects on the
grades of PE have been presented. The desirable FRs are the additives that presents a balance between
fire resistivity and maintaining or improving the mechanical properties of the composite. It was realized
from the research that the addition of FRs such as POSS, nanoclays, Organopalygorskite (OPGS),
Molybdenum sulfide (MoS2), MH, TiO2, etc., greatly improved the fire and mechanical properties of
the PE samples. Possible concerns for future research should be to investigate the effect of FR polymers
on the environment. Most of the studies analyzed failed to assess the effects of the additives on the
environment. Depending on the lifetime of FR polymers, for the short lifetimes, the biodegradability of
polymer is an important issue, and the recyclability of FRs is an important factor for the polymers with
a long lifetime. The innovative natural sources for the polymer FR additives are highly recommended
possibilities for decreasing environmental issues. Moreover, during burning, some additives of the FRs



Molecules 2020, 25, 5157 21 of 28

can produce toxic compounds that must be controlled or even substituted. Addressing these concerns
will be a step towards the betterment of the circular economy model.
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