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Abstract: Ethyl 5-arylpyridopyrimidine-6-carboxylates 3a–d were prepared as a one pot three
component reaction via the condensation of different aromatic aldehydes and ethyl acetoacetate
with 6-amino-1-benzyluracil 1a under reflux condition in ethanol. Additionally, condensation
of ethyl 2-(2-hydroxybenzylidene) acetoacetate with 6-amino-1-benzyluracil in DMF afforded
6-acetylpyridopyrimidine-7-one 3e; a facile, operationally, simple and efficient one-pot synthesis
of 8-arylxanthines 6a–f is reported by refluxing 5,6-diaminouracil 4 with aromatic aldehydes in
DMF. Moreover, 6-aryllumazines 7a–d was obtained via the reaction of 5,6-diaminouracil with the
appropriate aromatic aldehydes in triethyl orthoformate under reflux condition. The synthesized
compounds were characterized by spectral (1H-NMR, 13C-NMR, IR and mass spectra) and elemental
analyses. The newly synthesized compounds were screened for their anticancer activity against
lung cancer A549 cell line. Furthermore, a molecular-docking study was employed to determine the
possible mode of action of the synthesized compounds against a group of proteins highly implicated
in cancer progression, especially lung cancer. Docking results showed that compounds 3b, 6c,
6d, 6e, 7c and 7d were the best potential docked compounds against most of the tested proteins,
especially CDK2, Jak2, and DHFR proteins. These results are in agreement with cytotoxicity results,
which shed a light on the promising activity of these novel six heterocyclic derivatives for further
investigation as potential chemotherapeutics.

Keywords: 6-amino-1-benzyluracil; 6-Amino-1-(2-chlorobenzyl)uracil; 5,6-diamino-1-benzyl uracil;
ethyl 5-aryl-7-methylpyridopyrimidine-6-carboxylate; 8-aryl-3-(2-chlorobenzyl) xanthines and
6-aryl-1-(2-chlorobenzyl)lumazines; cancer; molecular docking

1. Introduction

Pulmonary cancer among the two sexes has been the leading cause of cancer lung death for
many years and worldwide statistics on incidence and mortality vary widely [1–3]. The world’s
high mortality rate from malignant tumors is attributed to the uncontrolled growth of cells in lung
tissues and to the high metastatic ability of lung cancer [4,5]. Tobacco consumption is a significant
lung cancer risk factor. Genetic susceptibility, diet, alcohol consumption, industrial exposures and
air pollution are other factors [6]. Pulmonary cancer is primarily caused by the abnormal growth of
either small or non-small lung cancer cells [7–10]. In 2015, 80–85% of cases of lung cancer worldwide
were attributed to non-small cell lung cancer (NSCLC) [11]. The main treatment for early lung cancer
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is surgical resection. Radiation is one of the most common methods of treating tumors. In case
of advanced diseases (stage IIIB and stage IV), radiotherapy, targeted therapy and immunotherapy
are applied [1]. Chemotherapy is one of the most common treatment methods for tumors [12,13].
However, current chemotherapeutic therapies appear to have several limitations, including a lack of
tumor cell selectivity [14,15], significant toxic side effects on healthy tissue [16] and drug resistance [17]
leading to unsatisfactory therapeutic effects.

The first form of antimetabolites introduced in the clinic 60 years ago was antifolate drugs [18,19].
Methotrexate (MTX) (B) is a folic acid (A) antagonist required for DNA synthesis, and has a therapeutic
effect on many cancer cell types that over-express folate receptors on the surfaces of many of these
cells (Figure 1) [20]. MTX inhibits the cellular folate metabolism by dihydrofolate reductase (DHFR) in
a competitive way. By inhibiting the enzyme target DHFR [21], MTX suppresses purine and pyrimidine
synthesis. It acts on S-phase and prevents DNA synthesis [22,23]. The chemotherapeutic MTX is
widely used in human malignancies, including acute lymphoblastic leukemia, malignant lymphoma,
lung cancer, breast cancer, osteosarcoma and head and neck cancer [24–27]. MTX has been also
widely used for the treatment of rheumatoid arthritis (RA) through the release of adenosine-mediated
suppression inflammation [28]. Clinical data supports the adenosine-mediated anti-inflammatory
effect of MTX [29].
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Figure 1. Structure of folic acid, methotrexate and the proposed derivatives.

Chronic neurotoxicity can be caused by MTX [30]. It can also cause alveolitis and lung fibroblasting
because of its pulmonary toxicity side effect [31,32]. Hoping to overcome the above mentioned
chemotherapeutic limitations, a new series of pyridopyrimidines, xanthines and lumazines have been
synthesized (Figure 1). All the newly synthesized compounds herein underwent a molecular-docking
study and were screened for their anticancer activity against the A549 cell line.

2. Results

2.1. Chemistry

In this research, our strategy was directed towards developing new fused uracil derivatives of
potential anticancer activity [33,34]. The desired starting materials, including 6-amino-1-benzyluracil
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1a [35] and 5,6-diamino-1-(2-chlorobenzyl)uracil 4 [36] were synthesized according to the literature by
conventional methods.

Ethyl 5-aryl-2-thiopyridopyrimidine-6-carboxylates were prepared by heating under reflux
of 6-amino-1-methyl-2-thiouracil with ethyl 3-aryl-2-cyanoacrylate in absolute ethanol in the
presence of triethylamine (TEA) [37]. Ethyl 5-aryl-2-pyridopyrimidine-6-carboxylates 3a–d were
prepared in higher yields (60–84%) by refluxing compound 1a with different aromatic aldehydes,
ethyl acetoacetate in abs. ethanol containing TEA as a basic medium for 12 h as illustrated in
(Scheme 1). The derivatives were crystallized from DMF/EtOH. Analogously, the treatment of
compound 1a with ethyl 2-(2-hydroxybenzylidene)acetoacetate in DMF in the presence of TEA for
4 h gave 6-acetyl-5-arylpyridopyrimidine 7-one 3e (Scheme 1). The most interesting observation from
comparing the 1H-NMR spectra of compounds 3a–d and compound 3e was the disappearance of both
signals of CH-5 at δ 5.81 ppm and NH2 (6) at δ 5.97 ppm of the start 1a and the appearance of ethyl
protons at position 6 in pyridopyrimidines 3a–d as triplet at δ 1.09–0.96 ppm for CH3 and quartet at δ
4.18–3.94 for CH2. A singlet signal occurred at δ 2.90 ppm for CH3 protons of acetyl group at position 6
in pyridopyrimidine 3e and a singlet signal at δ 7.88 ppm for NH (8). On the other hand, the IR spectra
of these pyridopyrimidines, which displayed the stretching band of the two C=O groups (Amide I),
was red-shifted within the range υ 1745–1723, 1684–1697 cm−1. We noted the strong asymmetric and
symmetric NO2 stretching bands of the nitro group at υ 1551 and 1374 cm−1, respectively, in compound
3d. 13C-NMR spectra proves without doubt the formation of compounds 3a–d through the appearance
of the upfield signals of ethyl group of ester at δ 14.02–13.43 ppm for CH3 and at δ 61.81–59.55 ppm for
CH2, in addition to the presence of a signal at δ 18.13–17.52 ppm for CH3(7). While in comparison with
the 13C-NMR spectra of compound 3e, it was observed that the signal of CH3 of acetyl group was δ
17.53 ppm.
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Scheme 1. Formation of pyridopyrimidines from 6-amino-1-benzyluracil. 
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Scheme 1. Formation of pyridopyrimidines from 6-amino-1-benzyluracil.

The mechanism outlined in Scheme 2 seems to be the most plausible pathway through the Michael
addition reaction via the formation of non-isolated Michael adduct intermediate that underwent
intramolecular cyclization in protic solvent affording the corresponding 3a–d. On the other hand,
Scheme 3 illustrates the mechanistic pathway for the formations of compound 3e via the formation of
Michael adduct intermediate followed by cyclocondensation in aprotic solvent.
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8-Aryl xanthines have been reported [36,38]. Herein, condensation of 5,6-diaminouracil 4 with
different aromatic aldehydes in DMF under reflux for two to three hours afforded 8-aryl xanthine
derivatives 6a–f (Scheme 4). The reaction proceeded through the nucleophilic attack of the amino group
at position 5 of uracil 1b to the electrophilic center of the carbonyl group of the aromatic aldehydes
followed by dehydration to form the intermediate Schiff base which undergoes intramolecular
cyclization to afford 6a–f in good to excellent yield. The intrinsic significance of the IR spectra is that
the presence of the stretching band of the 2 C=O groups (Amide I) within the range υ 1684, 1643 cm−1.



Molecules 2020, 25, 5205 5 of 21

1H-NMR spectra prove the suggested xanthines 6a–f by the presence of both characteristic singlet
signals for NH(9) at δ 14.46–13.23 ppm and NH(1) at δ 1139–10.94 ppm. The phenyl group protons
appeared at δ 8.60–6.81 ppm. The clearance of the spectra from the signals at δ 6.78 ppm and at δ
5.79 ppm, characteristic for 2 NH2 protons of uracil 4 at position 5 and 6, respectively, supported the
previous observation. Also, the 13C-NMR spectra and Mass spectra supported the previous expectation.
With these results in hand, xanthines 6a–f became confirmed without a doubt.
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Scheme 4. Formation of xanthines and lumazines from 6-aminouracils.

Moreover, heating of 5,6-diaminouracil 4 with various aromatic aldehydes in triethyl orthoformate
under reflux for 7–8 h afforded 6-aryllumazines 7a–d (Scheme 4). Structures 7a–d were inferred from
their spectral data, and elemental analyses. 1H-NMR data for compound 7a–d showed a singlet signal
at δ 12.01–11.29 ppm for NH-3 and a singlet signal at δ 8.71–8.70 ppm for CH-7 in lumazine ring.
The IR spectrum revealed bands at the range of υ 3141–3127 cm−1 characteristic for NH. Compound 7b
showed a characteristic band for OH at υ 3480 cm−1. The mechanistic pathway is illustrated via
the reaction of the intermediate Schiff base 5 with triethyl orthoformate followed by intramolecular
cycloaddition accompanied by elimination of EtOH (Scheme 5). The plausible mechanism was proved
by isolating the intermediate Schiff base 5 with its interesting spectral data. Otherwise, compound 5
was refluxed with DMF afforded xanthine 6c, while refluxing with triethyl orthoformate afforded the
lumazine 7b.
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2.2. Biological Activity

Anticancer Evaluation

During initial cytotoxic screening for the tested compounds, we tested the activity of the compounds
against two cell lines, which were lung (A549 cell line) and breast cancer (MCF7). The cytotoxic activity
against lung cancer was potentially more promising than breast cancer. Therefore, we have selected
the lung cancer cell line.

All the newly synthesized compounds were screened for their cytotoxic effects on the human cell
lung adenocarcinoma A549 cell line. The obtained IC50 values of the synthesized compounds were
compared to well-known reference anticancer drug methotrexate under the same conditions using
a colorimetric viability assay. IC50 values were determined from plots of a dose response curve of the
concentration of test compounds required to kill 50% of cell population. The in vitro growth inhibition
results showed that all the tested compounds have an inhibitory effect on the tumor cell line A549 in
a concentration dependent manner. All the results are represented in Table 1 and Figure 2.

Table 1. In vitro inhibitory activity of tested compounds against the human Lung carcinoma cell line
(A549) expressed as IC50 values µM ± standard deviation.

Tested Compounds IC50 Values (µM)

3a 237 ± 6.3
3b 10.3 ± 0.2
3c 349 ± 7.8
3d 59.5 ± 2.5
3e 246 ± 7.1
5 62.0 ± 2.4

6a 54.0 ± 1.8
6b 58.5 ± 1.7
6c 27.0 ± 1.1
6d 23.1 ± 0.6
6e 26.3 ± 1.3
6f 141 ± 3.9
7a 86.1 ± 2.8
7b 84.8 ± 3.4
7c 24.9 ± 1.2
7d 12.2 ± 0.3

Methotrexate 36.3 ± 3.9
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It was noticed that compounds 3b and 7d exhibited the highest inhibitory activity against the
Lung carcinoma cell line (A549) in comparison with the reference drug methotrexate with IC50 values
of 10.3 and 12.2 µM, respectively. Also, compounds 6c–6e and 7c showed potent antitumor activity
against the Lung carcinoma cell line (A549) with IC50 values of 23.1, 26.3, 27 and 24.9 µM, respectively.
The other compounds have less antitumor activity (Table 1 and Figure 2).

2.3. Computer-Aided Docking

To take one step further to determine the mode of action of the tested compounds, a molecular
docking study was employed to determine the binding modes against series of proteins such as CDK2,
BCL2, Jak2, P53 binding site in MDM2, and DHFR that are implicated significantly in cancer disease
(Figures S1–S5). These targets were selected based on their potential roles in apoptosis regulation and
limiting lung cancer progression, therefore, targeting these macromolecules provides potential benefits
in lung cancer therapy. The co-crystal ligands were re-docked to assure the validity of the docking
parameters and methods used to represent the position and orientation of the ligand detected in the
crystal structure. The difference of RMSD value between co-crystal ligands to the original co-crystal
ligand was <2 Å which approved the accuracy of the docking protocols and parameters [39].

The docking results depicted that all tested compounds showed poor binding affinity with
BCL-2 protein, as the binding free energy of all tested compounds was higher than the binding
free energy of co-crystalized ligands (∆Gb = −10.6 kcal/mol). In the same line, all tested
compounds had low binding affinity with MDM2-P53 protein, except compounds 6d and 7c,
as they had lower binding free energy (−8.3 kcal/mol, and −8.4 kcal/mol, respectively) compared to
[(3R,5R,6S)-5-(3-chlorophenyl)-6-(4-chlorophenyl)-1-(cyclopropylmethyl)-2-oxopiperidin-3-yl] acetic
acid which is abbreviated as 13Q the co-crystalized ligand (∆Gb = −8.2 kcal/mol) (Table 2)
(Supplementary Figures S2 and S4). Based on these results, the mode of action of the tested compound
might not be related to both BCL-2 and MDM2-P53 proteins. All tested compounds showed high
binding affinity against CDK2 proteins, as all tested compounds showed low binding free energies
compared to both reference drug (∆Gb = −8.3 kcal/mol) and methotrexate (∆Gb = −7.6 kcal/mol),
which implies a potential inhibitory effect of the tested compounds against the cyclin dependent
kinase enzyme.
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Table 2. Binding Free energy for the tested compounds against docked proteins (CDK2, BCL2, Jak2,
MDM2-P53, and DHFR) binding pockets in comparison to the co-crystallized ligands and methotrexate.

Comp. No

CDK2 BCL2 Jak2 MDM2-P53 DHFR

PDB: 1DI8 PDB: 2O2F PDB: 5AEP PDB: 2LZG PDB: 4DFR

∆Gb
a ∆Gb

a ∆Gb
a ∆Gb

a ∆Gb
a

3a −8.5 −7.8 −7.6 −7.6 −8.7
3b −8.7 −7.7 −7.7 −7.0 −8.8
3c −8.9 −7.8 −7.7 −7.0 −8.6
3d −9.3 −7.1 −8.1 −7.0 −8.5
3e −8.6 −7.7 −8.7 −7.7 −8.7
5 −8.8 −8.5 −9.5 −7.8 −8.2
6a -9.7 -8.5 -9.3 -7.8 -8.5
6b −9.6 −8.5 −9.6 −7.9 −8.6
6c −9.3 −8.9 −9.6 −7.9 −8.8
6d −10.1 −8.5 −9.4 −8.4 −8.6
6e −9.8 −8.9 −9.7 −7.8 −9.1
6f −9.0 −8.9 −9.6 −8.0 −8.6
7a −9.7 −8.5 −9.8 −8.1 −8.8
7b −9.2 −8.5 −9.7 −7.8 −8.6
7c −9.2 −8.5 −9.7 −8.3 −9.2
7d −9.5 −8.8 −9.8 −7.6 −8.7

Methotrexate −7.6 −8.0 −9.0 −6.9 −7.8
Reference ligand −8.3 −10.6 −9.1 −8.2 −7.8

a ∆Gb: binding Free energy (kcal/mol).

Based on the molecular docking study, we tested the proposed activity of the tested compounds
against DHFR protein, which is the main target for MTX. Compounds 3b, 6c, 6d, 6e, 7c and 7d were the
best docked compounds against CDK2, Jak2, and DHFR proteins, which are displayed by low binding
free energy (Table 2), hydrogen bond formation (Tables 3–5), and hydrophobic interaction (Figures 3
and 4, Figures S6–S8) compared to reference ligand and methotrexate. These results are in agreement
with the cytotoxicity assay as compounds 3b, 6c, 6d, 6e, 7c and 7d showed lower IC50s (10.3 ± 0.2,
27.0 ± 1.1, 23.1 ± 0.6, 26.3 ± 1.3, 24.9 ± 1.2, 12.2 ± 0.3 µM, respectively) compared to methotrexate as
a reference drug (36.3 ± 3.9 µM).

Table 3. Hydrogen bond and hydrophobic interaction for the most promising tested compounds into
CDK2 binding pocket in comparison to the co-crystallized ligand.

Comp. No
Types of Interactions

Hydrogen Bonding Hydrophobic

No Length Å AA a AA a

3b 1 2.040 ASP86 ILE10, VAL18, VAL64, LEU298, LEU134, LEU83, LEU133, PHE80, PHE82

6c 1
2.129 LEU83 ILE10, VAL18, VAL64, LEU134, LEU83, LEU148, PHE80, PHE82
3.137 LEU83

6d 2
3.245 LYS33 ILE10, VAL18, VAL64, LEU134, LEU83, LEU148, PHE80, PHE82
2.329 ASP145

6e 1 2.802 LYS33 ILE10, VAL18, VAL64, LEU134, LEU83, PHE80, PHE82

7c 2
3.350 LEU83 ILE10, VAL18, VAL64, LEU134, LEU83, LEU148, PHE80, PHE82
1.998 LEU83

7d 1 2.499 GLU12 ILE10, VAL18, VAL64, LEU134, LEU83, LEU298, PHE80, PHE82

RL b 2
2.831 LYS33 ILE10, VAL18, VAL64, LEU148, LEU83, LEU134, PHE82
2.803 LEU83

a AA: amino acids; b RL: Reference ligand.



Molecules 2020, 25, 5205 10 of 21

Table 4. Hydrogen bond and hydrophobic interaction for the most promising tested compounds into
Jak2 binding pocket in comparison to the co-crystallized ligand.

Comp. No
Types of Interactions

Hydrogen Bonding Hydrophobic

No Length Å AA a AA a

3b 0 - - LEU855, LEU983, LEU932, VAL863, VAL911, PHE860, ILE982
6c 1 2.940 ARG980 LEU855, LEU997, LEU983, LEU932, VAL863, PHE860
6d 1 3.179 LEU932 LEU855, LEU997, LEU982, LEU932, VAL863, VAL 911, ILE982
6e 1 2.849 ARG980 LEU855, LEU997, LEU983, LEU932, VAL863, VAL 911, ILE982

7c 2
3.181 PHE860 LEU884, LEU997, LEU983, LEU932, VAL863, VAL911, PHE860, PHE

895, ILE9822.264 ASP976
7d 1 2.228 ARG980 LEU855, LEU997, LEU983, LEU932, VAL863, VAL911, PHE860, ILE982

RL b 2
3.631 ARG980 LEU855, LEU997, LEU983, LEU932, VAL863, VAL911, PHE860, ILE982
3.142 LEU932

a AA: amino acids; b RL: Reference ligand.

Table 5. Hydrogen bond and hydrophobic interaction for the most promising tested compounds into
DHFR binding pocket in comparison to the co-crystallized ligand.

Comp. No
Types of Interactions

Hydrogen Bonding Hydrophobic

No Length Å AA a AA a

3b 1 1.950 ILE94 ILE14, ILE5, ILE94, ILE50, LEU24, LEU28, LEU54, PHE31
6c 1 2.482 TRP22 ILE14, ILE5, ILE94, ILE50, LEU24, LEU28, LEU54, LEU8, PHE31

6d 2
2.482 MET20 ILE115, ILE14, ILE5, ILE94, ILE50, LEU24, LEU28, LEU54, LEU8, PHE31
2.200 SER49

6e 1 2.476 SER49 ILE14, ILE5, ILE94, ILE50, LEU24, LEU28, LEU54, LEU8, PHE31
7c 1 2.098 TRY100 ILE115, ILE14, ILE5, ILE94, ILE50, LEU24, LEU28, LEU54, LEU8, PHE31
7d 0 - - ILE14, ILE5, ILE94, ILE50, LEU24, LEU28, LEU54, LEU8, PHE31

Methotrexate 3
2.066 SER49

ILE115, ILE14, ILE5, ILE94, ILE50, LEU24, LEU28, LEU54, LEU8,
VAL13, PHE312.135 SER49

2.002 THR46
a AA: amino acids.
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3. Experimental Part

3.1. Chemistry

All melting points were determined with an Electrothermal Mel.-Temp. II apparatus and
were uncorrected. Element analyses were performed at the Regional Center for Mycology and
Biotechnology at Al-Azhar University. IR spectra were obtained in the solid state in the form
of KBr discs using a Perkin-Elmer Model 1430 spectrometer (Perkin-Elmer, Akron, OH, USA)
and carried out in Taif University, Taif, Saudi Arabia. The proton nuclear magnetic resonance
(1H-NMR) spectra were recorded on Varian Gemini 400 MHz Spectrometer using DMSO-d6 as
a solvent (Chemical shift in δ, ppm), Faculty of Science, Chemistry Department, Zagazig University,
Zagazig, Egypt. Mass spectra were recorded on a DI-50 unit of Shimadzu GC/MS-QP 5050A (Kyoto,
Japan) at the Regional Center for Mycology and Biotechnology at Al-Azhar University, Cairo, Egypt.
All reactions were monitored by TLC using precoated plastic sheets silica gel (Merck 60 F254) and
spots were visualized by irradiation with UV light (254 nm). The used solvent system was chloroform:
Methanol (9:1) & ethyl acetate: Toluene (1:1). 6-amino-1-benzyluracil 1a was prepared as the reported
method [35], 6-diamino-1-(2-chlorobenzyl)uracil 1b was prepared as the reported method [36] and
5,6-diamino-1-(2-chlorobenzyl)uracil 4 was prepared as the reported method [36].

3.1.1. Ethyl 5-Aryl-1-benzyl-7-methyl-2,4-dioxo-1,2,3,4-tetrahydropyrido[2,3-d]pyrimidine-6-carboxylate 3a–d

General method: A mixture of 6-amino-1-benzyluracil (0.3 g, 1.38 mmol), ethyl acetoacetate
(1.38 mmol) and appropriate benzaldehyde derivatives (1.38 mmol) in ethanol (5 mL) in the presence
of TEA (1.0 mL). The reaction mixture was heated under reflux for 12 h. The formed precipitate was
filtered off, washed with ethanol and recrystallized from DMF/ethanol (2:1) and dried to give the
desired compounds 3a–d (Scheme 1).
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Ethyl 1-benzyl-5-phenyl-7-methyl-2,4-dioxo-1,2,3,4-tetrahydropyrido[2,3-d]pyrimidine-6-carboxylate (3a):
Yield: 66%; m.p.: 201–203 ◦C; IR (KBr) νmax (cm−1): 3186 (NH), 3055 (CH arom), 2920, 2847 (CH aliph),
1730, 1682 (2C=O), 1595 (NH bending), 694,748 (monosubstituted phenyl); 1H-NMR (DMSO-d6):
δ 11.81 (s, 1H, NH), 7.47–7.43 (m, 5H, arom), 7.30–7.22 (m, 5H, arom), 5.39 (s, 2H, CH2), 4.15–4.09 (q, 2H,
CH2), 2.72 (s, 3H, CH3(7)), 0.99–0.96 (t, 3H, CH3); MS: m/z (%) = M+, 415 (100), 400 (11), 370 (9), 358 (8),
344 (10), 341 (7), 310 (14), 297 (3), 91 (14), 65 (3); Anal. calcd. for C24H21N3O4 (415.44): C, 69.39; H, 5.10;
N, 10.11. Found: C, 69.13; H, 5.28; N, 10.34.
Ethyl 1-benzyl-5-(2-chlorophenyl)-7-methyl-2,4-dioxo-1,2,3,4-tetrahydropyrido[2,3-d]pyrimidine-6-carboxylate
(3b): Yield: 60%; m.p.: 258–260 ◦C; IR (KBr) νmax (cm−1): 3165 (NH), 3034 (CH arom), 2920, 2840 (CH
aliph), 1745, 1697 (2C=O), 1603 (NH bending), 754 (o.substituted phenyl); 1H-NMR (DMSO-d6): δ 10.92
(s, 1H, NH), 7.25–7.22 (m, 4H, arom), 7.11–7.03 (m, 3H, arom), 6.87–6.85 (d, 2H, J = 7.2 Hz, arom.),
5.18 (s, 2H, CH2), 4.04–3.94 (q, 2H, J = 6.8, CH2), 2.64 (s, 3H, CH3(7)), 1.09–1.06 (t, 3H, J = 6.8, CH3);
13C-NMR (DMSO-d6): δ = 14.02, 17.52, 43.66, 59.55, 109.24, 125.82, 125.92, 126.97, 127.39, 128.17, 128.45,
129.57, 129.65, 131.32, 135.34, 137.72, 146.17, 149.76, 151.53, 151.56, 160.17, 165.20; MS: m/z (%) = M + 2,
452 (18), M+, 450 (76), 424 (34), 358 (2), 341 (7), 339 (7), 258 (3), 152 (2), 92 (5), 91 (100), 65 (11); Anal.
calcd. for C24H20ClN3O4 (449.88): C, 64.07; H, 4.48; N, 9.34. Found: C, 63.89; H, 4.62; N, 9.51.
Ethyl 1-benzyl-5-(4-bromophenyl)-7-methyl-2,4-dioxo-1,2,3,4-tetrahydropyrido[2,3-d]pyrimidine-6-carboxylate
(3c): Yield: 73%; m.p.: 217–219 ◦C; IR (KBr) νmax (cm−1): 3117 (NH), 3031 (CH arom), 2948, 2845 (CH
aliph), 1725, 1681 (2C=O), 1558 (NH bending), 838 (p.substituted phenyl); 1H-NMR (DMSO-d6): δ 11.82
(s, 1H, NH), 7.70–7.68 (d, 2H, J = 8.4 Hz, arom), 7.38–7.36 (d, 2H, J = 8.4 Hz, arom), 7.30–7.29 (d, 2H,
J = 4.4 Hz, arom.), 7.23–7.18 (m, 3H, arom), 5.3 (s, 2H, CH2), 4.19–4.13 (q, 2H, J = 6.8, CH2), 2.73 (s, 3H,
CH3(7)), 1.05–1.02 (t, 3H, J = 6.8, CH3); 13C-NMR (DMSO-d6): δ = 13.43, 18.03, 44.62, 61.78, 108.26,
123.65, 125.39, 126.95, 127.14, 128.29, 130.01, 131.61, 137.26, 137.44, 150.30, 150.92, 151.87, 156.08, 161.53,
167.32; MS: m/z (%) = M + 2, 496 (12), M+, 494 (32), 490 (23), 387 (34), 341 (11), 292 (59), 265 (62), 129 (58),
72 (100), 69 (92); Anal. calcd. for C24H20ClN3O4 (494.33): C, 58.31; H, 4.08; N, 8.50. Found: C, 58.57;
H, 4.23; N, 8.69.
Ethyl 1-benzyl-7-methyl-5-(3-nitrophenyl)-2,4-dioxo-1,2,3,4-tetrahydropyrido[2,3-d]pyrimidine-6-carboxylate
(3d): Yield: 84%; m.p.: 190–192 ◦C; IR (KBr) νmax (cm−1): 3215 (NH), 3050 (CH arom), 2965, 2869 (CH
aliph), 1723, 1684 (2C=O), 1614 (C=C), 1551, 1374 (NO2), 755 (m.substituted phenyl); 1H-NMR
(DMSO-d6): δ 11.90 (bs, 1H, NH), 8.25 (s, 1H, arom), 7.94–7.39 (m, 3H, arom), 7.32–7.16 (m, 5H,
arom), 5.24 (s, 2H, CH2), 4.18–4.14 (q, 2H, J = 7.2 Hz, CH2), 2.88 (s, 3H, CH3(7)), 1.04–1.01 (t, 3H,
J = 7.2 Hz, CH3); 13C-NMR (DMSO-d6): δ = 13.41, 18.13, 44.78, 61.81, 107.90, 123.18, 125.23, 126.94,
127.03, 127.22, 127.59, 128.29, 131.61, 136.43, 137.26, 137.44, 150.50, 150.98, 151.84, 156.12, 161.60, 167.45;
MS: m/z (%) = M+, 460 (13), 430 (70), 391 (51), 360 (27), 345 (28), 343 (18), 234 (31), 209 (64), 182 (29),
173 (100), 172 (29), 69 (92); Anal. calcd. for C24H20N4O6 (460.43): C, 62.60; H, 4.38; N, 12.17. Found: C,
62.86; H, 4.54; N, 12.41.
6-Acetyl-1-benzyl-5-(2-hydroxyphenyl)pyrido[2,3-d]pyrimidine-2,4,7(1H,3H,8H)-trione (3e): A mixture of
6-amino-1-benzyluracil (0.5 g, 2.3 mmol), ethyl 2-(2-hydroxybenzylidene) acetoacetate (2.3 mmol) was
mixed in DMF (1.5 mL) in the presence of TEA (1.0 mL). The reaction mixture was heated under
reflux for 7 h. The mixture was evaporated in vacuo and the residue was treated with methanol
(10 mL). The formed precipitate was filtered off and recrystallized from DMF/ethanol (2:1) to afford
3e. Yield: 68%; m.p.: 260–262 ◦C; IR (KBr) νmax (cm−1): 3448 (OH), 3186 (NH), 3047 (CH arom), 2924,
2846 (CH aliph), 1681 (C=O), 1589 (NH bending), 763 (o.substituted phenyl); 1H-NMR (DMSO-d6):
δ13.98 (s, 1H, OH), 11.98 (s, 1H, NH), 8.19–8.17 (d, 1H, arom), 7.69 (s, 1H, NH 8), 7.67–7.61 (m, 3H,
arom), 7.43–7.21 (m, 5H, arom), 5.45 (s, 2H, CH2), 2.90 (s, 3H, CH3(6)); 13C-NMR (DMSO-d6): δ = 17.52,
43.66, 103.73, 112.40, 116.16, 122.65, 124.73, 127.10, 127.75, 128.33, 132.03, 133.62, 137.22, 146.90, 150.29,
151.89, 153.86, 158.19, 160.37, 167.14; MS: m/z (%) = M+, 403 (84), 361 (29), 315 (24), 268 (19), 250 (100),
228 (23), 186 (48), 125 (87), 76 (53), 56 (30); Anal. calcd. for C22H17N3O5 (403.38): C, 65.50; H, 4.25;
N, 10.42. Found: C, 65.89; H, 4.32; N, 10.51.
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6-Amino-1-(2-chlorobenzyl)-5-[(E)-(4-chlorobenzylidene)amino]pyrimidine-2,4(1H,3H)-dione (5): A mixture
of 5,6-diamino-1-(2-chlorobenzyl)uracil (0.8 g, 2.0 mmol), 4-chlorobenzaldehyde (0.2 mmol) in
DMF (3.0 mL) was heated under reflux for 45 min. After cooling, the formed precipitate was
collected by filtration, washed with ethanol and dried in an oven to give (1.01 g). Yield: 87%; m.p.:
283–285 ◦C; IR (KBr) νmax (cm−1): 3339, 3274 (NH2), 3184 (NH), 3078 (CH arom), 1691, 1643 (2 C=O),
822 (p.substituted phenyl), 748 (C-Cl); 1H-NMR (DMSO-d6): δ 10.92 (s, 1H, NH 3), 9.72 (s, 1H, CH),
7.52–7.50 (d, 2H, J = 8.4 Hz, arom.), 7.44–7.34 (m, 4H, arom), 7.27–7.25 (d, 2H, J = 8.4 Hz, arom),
6.99 (s, 2H, NH2 6), 5.24 (s, 2H, CH2); MS: m/z (%) = M + 2, 391 (4), M+, 389 (14), 375 (5), 263 (10),
246 (92), 216 (30), 190 (13), 125 (100), 89 (59), 63 (18); Anal. calcd. for C18H14Cl2N4O2 (389.23): C, 55.54;
H, 3.63; N, 14.39. Found: C, 55.62; H, 3.65; N, 14.53.

3.1.2. 8-Aryl-3-(2-chlorobenzyl)-xanthine

8-Aryl-3-(2-chlorobenzyl)-3,9-dihydro-1H-purine-2,6-dione 6a–f

General method: Method A: To 5,6-diamino-1-(2-chlorobenzyl)uracil 4 (0.5 mmol), was added
different aromatic aldehydes (0.5 mmol) in DMF (3.0 mL). The reaction mixture was heated under
reflux for 2–3 h. After cooling, the formed precipitate was filtered off, washed with methanol and
recrystallized from DMF/H2O 3:1) to give the desired compounds 6a–f in good yields. Method B:
Compound 5 (0.2 g, 0.5 mmol) in DMF (3 mL) was heated under reflux for 90 min. After cooling,
the formed precipitate was collected by filtration, washed with methanol and dried in an oven to afford
6c in a good yield.

3.1.3. 3-(2-Chlorobenzyl)-8-phenylxanthine

3-(2-chlorobenzyl)-8-phenyl-3,9-dihydro-1H-purine-2,6-dione (6a): Yield 83%; m.p.: >300 ◦C; IR (KBr) νmax

(cm−1): 3334, 3224 (2NH), 3078 (CH arom), 2970, 2831 (CH aliph,), 1667 (C=O), 748 (C-Cl); 1H-NMR
(DMSO-d6): δ 13.23 (s, 1H, NH 9), 10.94 (s, 1H, NH 1), 7.95–7.61 (m, 2H, arom.), 7.51–7.48 (m, 3H, arom),
7.35–7.32 (m, 3H, arom), 6.88–6.84 (m, 1H, arom), 5.07 (s, 2H, CH2); 13C-NMR (DMSO-d6): δ = 43.0,
107.80, 125.39, 127.49, 127.50, 128.60, 128.69, 129.38, 131.46, 131.61, 133.31, 133.69, 149.78, 149.99, 154.62,
162.29; MS: m/z (%) = M + 2, 354 (4), M+, 352 (16), 331 (26), 312 (29), 286 (30), 239 (29), 110 (28), 98 (31),
84 (35), 83 (100); Anal. calcd. for C18H13ClN4O2 (352.78): C, 61.28; H, 3.71; N, 15.88. Found: C, 61.47;
H, 3.87; N, 15.74.

3-[(2-Chlorophenyl)methyl]-8-(4-hydroxyphenyl)-3,9-dihydro-1H-purine-2,6-dione

3-(2-Chlorobenzyl)-8-(4-hydroxyphenyl)xanthine (6b):Yield: 57%; m.p.: >300 ◦C; IR (KBr) νmax (cm−1):
3450 (OH), 3330, 3142 (2NH), 3027 (CH arom), 2922, 2819 (CH aliph.), 1667 (C=O), 1599 (NH bending),
841 (p. substituted phenyl), 766. (C–Cl); 1H-NMR (DMSO-d6): δ 13.55 (s, 1H, NH 9), 11.21 (s, 1H,
NH 1), 9.96 (s, 1H, OH), 7.89–7.87 (d, 2H, J = 6.8 Hz, arom.), 7.31–7.25 (m, 3H, arom), 7.04–7.02 (m, 1H,
arom), 6.83–6.81 (d, 2H, J = 6.8, arom), 5.23 (s, 2H, CH2); 13C-NMR (DMSO-d6): δ = 43.0, 107.6, 115.7,
119.57, 127.06, 127.48, 128.21, 128.78, 129.34, 131.51, 134.15, 149.87, 150.95, 154.62, 159.45, 163,29; MS:
m/z (%) = M + 2, 370 (2), M+, 368 (4), 333 (22), 259 (24), 216 (12), 125 (100), 89 (26), 77 (3); Anal. calcd.
for C18H13ClN4O3 (368.77): C, 58.62; H, 3.55; N, 15.19. Found: C, 58.74; H, 3.58; N, 15.34.

3-[(2-Chlorophenyl)methyl]-8-(4-chlorophenyl)-3,9-dihydro-1H-purine-2,6-dione

3-(2-Chlorobenzyl)-8-(4-chlorophenyl)xanthine (6c): Method A: Yield: 67% Method B: Yield: 85%; m.p.:
>300 ◦C; IR (KBr) νmax (cm−1): 3311, 3142 (2NH), 3022 (CH arom), 2987, 2838 (CH aliph), 1682 (C=O),
1583 (NH bending), 830 (p.substituted phenyl), 740 (C-Cl); 1H-NMR (DMSO-d6): δ 13.99 (s, 1H, NH 9),
11.33 (s, 1H, NH 1), 8.06–8.04 (d, 2H, J = 6.8 Hz, arom), 7.55–7.53 (d, 2H, J = 6.8 Hz, arom), 7.30–7.07
(m, 3H, arom.), 7.06–7.05 (d, 1H, J = 1.6 Hz, arom), 5.24 (s, 2H, CH2); 13C-NMR (DMSO-d6): δ = 43.06,
108.6, 127.11, 127.46, 128.02, 128.79, 129.08, 129.33, 131.49, 134.00, 134.83, 149.65, 150.89, 150.98, 154.69,
163.20; MS: m/z (%) = M + 4, 391 (0.25), M+2, 389 (0.75), M+, 387 (2), 353 (13), 351 (45), 175 (4), 138 (11),



Molecules 2020, 25, 5205 15 of 21

127 (26), 125 (100), 89 (24); Anal. calcd. for C18H12Cl2N4O2 (387.21): C, 55.83; H, 3.12; N, 14.47. Found:
C, 56.01; H, 3.19; N, 14.62.

3-[(2-Chlorophenyl)methyl]-8-(2-hydroxyphenyl)-3,9-dihydro-1H-purine-2,6-dione

3-(2-Chlorobenzyl)-8-(2-hydroxyphenyl)xanthine (6d): Yield: 58%; m.p.: >300; IR (KBr) νmax (cm−1):
3480 (OH), 3320, 3168 (2NH), 3026 (CH arom), 2910, 2831 (CH aliph,), 1668, 1643 (2C=O), 1583 (NH
bending), 747 (o.substituted phenyl); 1H-NMR (DMSO-d6): δ 13.85 (s, 1H, NH 9), 11.41 (s, 1H, NH 1),
9.55 (s, 1H, OH), 8.01–7.99 (d, 1H, arom.), 7.52–7.50 (m, 2H, arom), 7.31–7.25 (m, 3H, arom), 7.17–6.90
(m, 2H, arom), 5.26 (s, 2H, CH2); 13C-NMR (DMSO-d6): δ = 42.30 (CH2), 108.10, 123.00, 125.20, 127.25,
127.55, 127.75, 128.16, 129.07, 129.38, 129.49, 131.30, 134.28, 149.79, 150.96, 154.21, 161.67, 162.33; MS:
m/z (%) = M + 2, 370 (2), M+, 368 (0.98), 290 (4), 259 (34), 172 (21), 152 (5), 125 (100), 107 (16), 89 (28),
77 (11); Anal. calcd. for C18H13ClN4O3 (368.77): C, 58.62; H, 3.55; N, 15.19. Found: C, 58.72; H, 3.59;
N, 15.31.

3-[(2-Chlorophenyl)methyl]-8-(4-nitrophenyl)-3,9-dihydro-1H-purine-2,6-dione

3-(2-Chlorobenzyl)-8-(4-nitrophenyl)xanthine (6e): Yield: 71%; m.p.: >300; IR (KBr) νmax (cm−1): 3329,
3155 (2NH), 3042 (CH arom), 2926, 2822 (CH aliph), 1685, 1664 (2C=O), 1573 (NH bending), 1518,
1338 (NO2), 854 (p.substituted phenyl), 745 (C-Cl); 1H-NMR (DMSO-d6): δ 14.36 (s, 1H, NH 9),
11.39 (s, 1H, NH), 8.32–8.30 (d, 2H, J = 8.4 Hz, arom), 7.52–7.50 (d, 2H, J = 8.4 Hz, arom), 7.33–7.25
(m, 3H, arom), 7.09–7.07 (d, 3H, J = 7.2, arom.), 5.25 (s, 2H, CH2); 13C-NMR (DMSO-d6): δ = 43.45,
107.90, 124.25, 127.12, 127.46, 128.06, 128.30, 128.90, 129.34, 131.50, 134.82, 149.50, 150.90, 152.0, 154.23,
162.21; MS: m/z (%) = M + 2, 399 (0.46), M+, 397 (0.7), 324 (29), 283 (6), 166 (30), 150 (10), 127 (100),
91 (18), 67 (17); Anal. calcd. for C18H12ClN5O4 (397.21): C, 54.35; H, 3.04; N, 17.61. Found: C, 54.52;
H, 3.12; N, 17.89.

8-(4-Bromophenyl)-3-[(2-chlorophenyl)methyl]-3,9-dihydro-1H-purine-2,6-dione

8-(4-Bromophenyl)-3-(2-Chlorobenzyl)xanthine (6f): Yield: 62%; m.p.: > 300 ◦C; IR (KBr) νmax (cm−1): 3280,
3170 (2NH), 3091 (CH arom), 2998, 2802 (CH aliph), 1678, (C=O), 1583 (NH bending), 824 (p.substituted),
741 (C-Cl), 660 (C-Br); 1H-NMR (DMSO-d6): δ 14.03 (s, 1H, NH 9), 11.35 (s, 1H, NH), 7.99–7.97 (d, 2H,
J = 8.4 Hz, arom), 7.69–7.67 (d, 2H, J = 8.4 Hz, arom), 7.32–7.23 (m, 3H, arom.), 7.07–7.05 (d, 1H,
J = 7.2 Hz, arom.), 5.23 (s, 2H, CH2); 13C-NMR (DMSO-d6): δ = 42.90, 108.60, 127.08, 127.44, 128.17,
128.77, 130.69, 131.48, 131.94, 134.03, 136.24, 149.70, 150.90, 154.72, 157.32, 162.30; MS: m/z (%) = M + 4,
435 (0.87), M + 2, 433 (0.79), M+, 431 (5), 394 (5), 308 (14), 216 (13), 169 (19), 73 (100), 43 (12); Anal. calcd.
for C18H12BrClN4O2 (431.67): C, 50.08; H, 2.80; N, 12.98. Found: C, 50.19; H, 2.77; N, 13.14.

6-Aryl-1-[(2-chlorophenyl)methyl]pteridine-2,4(1H,3H)-dione

6-Aryl-1-(2-chlorobenzyl)lumazine 7a–d: General method: Method A: A mixture of 5,6-diaminouracil 4
(0.5 mmol), appropriate aromatic aldehydes (0.5 mmol) and triethyl orthoformate (4.5 mL) was heated
under reflux for 7–8 h. After cooling, the formed precipitate was collected by filtration, recrystallized
from DMF/EtOH (2:1). Method B: Compound 5 (0.2 g, 0.5 mmol) in triethyl orthoformate (5 mL)
was heated under reflux for 4 h. After cooling, the formed precipitate was collected by filtration,
washed with methanol and dried in an oven to afford 7a–d.

6-(4-Chlorophenyl)-1-[(2-chlorophenyl)methyl]pteridine-2,4(1H,3H)-dione

6-(4-Chlorophenyl)-1-(2-chlorobenzyl)lumazine (7a): Method A: Yield: 74%, Method B: Yield: 82%; m.p.:
250–252 ◦C; IR (KBr) νmax (cm−1): 3141 (NH), 3070 (CH arom), 2976, 2860 (CH aliph), 1682, 1668 (2C=O),
1590 (NH bending), 898 (p.substituted phenyl), 748 (C-Cl); 1H-NMR (DMSO-d6): δ 11.99 (s, 1H, NH),
8.71 (s, 1H, CH-7), 7.28–7.26 (d, 2H, J = 8.0 Hz, arom), 7.11–6.96 (m, 4H, arom), 6.84–6.82 (d, 2H,
J = 8.0 Hz, arom), 5.10 (s, 2H, CH2); 13C-NMR (DMSO-d6): δ= 42.46, 107.28, 126.09, 127.45, 128.24, 128.58,
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129.21, 129.35, 131.09, 131.48, 133.90, 137.61, 150.39, 151.12, 154.11, 155.89, 162.33; MS: m/z (%) = M + 4,
403 (0.70), M + 2, 401, (1), M+, 399 (2.45), 328 (3), 190 (25), 122 (100), 93(46), 65 (48); Anal. calcd. for
C19H12Cl2N4O2 (399.23): C, 57.16; H, 3.03; N, 14.03. Found: C, 57.34; H, 3.11; N, 14.29.

1-[(2-Chlorophenyl)methyl]-6-(4-hydroxyphenyl)pteridine-2,4(1H,3H)-dione

1-(2-chlorobenzyl)-6-(4-hydroxyphenyl)lumazine (7b): Yield: 57%; m.p.: 280–282 ◦C; IR (KBr) νmax (cm−1):
3480 (OH), 3127 (NH), 3025 (CH arom), 2914, 2856 (CH aliph), 1697, 1654 (2C=O), 1609 (C=C),
827 (p.substituted phenyl), 749 (C-Cl); 1H-NMR (DMSO-d6): δ 12.01 (s, 1H, NH), 10.53 (s,1H, OH),
8.71 (s, 1H, CH-7), 7.34–7.27 (m, 3H, arom), 7.13–7.09 (t, 1H, arom), 6.99–6.95 (t, 1H, arom), 6.87–6.83
(m, 3H, arom.), 5.10 (s, 2H, CH2); 13C-NMR (DMSO-d6): δ = 42.97, 107.29, 125.35, 126.86, 127.45, 128.25,
128.94, 129.35, 131.49, 133.90, 137.62, 150.39, 151.12, 154.11, 155.89, 160.27, 162.34; MS: m/z (%) = M + 2,
382 (0.58), M+, 380 (0.18), 281 (4), 270 (3), 253 (4), 242 (16), 241 (100), 210 (8), 198 (16), 125 (98), 99 (14),
89 (31), 71 (19); Anal. calcd. for C19H13ClN4O3 (380.78): C, 59.93; H, 3.44; N, 14.71. Found: C, 60.12;
H, 3.49; N, 14.87.

1-(2-Chlorobenzyl)-6-(2-hydroxyphenyl)pteridine-2,4(1H,3H)-dione

1-(2-Chlorobenzyl)-6-(2-hydroxyphenyl)lumazine (7c): Yield: 61%; m.p.: 252–254 ◦C; IR (KBr) νmax (cm−1):
3423 (OH), 3179 (NH), 3051 (CH arom), 2911, 2850 (CH aliph), 1685 (C=O), 1583 (NH bending),
761 (o.substituted phenyl); 1H-NMR (DMSO-d6): δ 11.29 (s, 1H, NH), 10.25 (s,1H, OH), 8.70 (s, 1H,
CH-7), 7.66–7.64 (d, 1H, arom), 7.53–7.50 (t, 1H, arom), 7.31–7.22 (m, 3H, arom.), 7.18–7.00 (m, 1H,
arom), 6.98–6.82 (m, 2H, arom.), 5.09 (s, 2H, CH2); MS: m/z (%) = M + 2, 382 (17), M+, 380 (19), 359 (37),
354 (60), 229 (100), 217 (50), 177 (24), 83 (21), 60 (42); Anal. calcd. for C19H13ClN4O3 (380.78): C, 59.93;
H, 3.44; N, 14.71. Found: C, 60.19; H, 3.57; N, 14.95.

1-(2-Chlorobenzyl)-6-(4-nitrophenyl)pteridine-2,4(1H,3H)-dione

1-(2-Chlorobenzyl)-6-(4-nitrophenyl)lumazine (7d): Yield: 95%; m.p.: 276–278 ◦C; IR (KBr) νmax (cm−1):
3179 (NH), 3034 (CH arom), 2912, 2858 (CH aliph), 1693 (C=O), 1600 (NH bending), 1548, 1397 (NO2),
869 (p.substituted phenyl), 751 (C-Cl); 1H-NMR (DMSO-d6): δ 11.99 (s, 1H, NH), 8.70 (s, 1H, CH-7),
7.50–7.48 (d, 2H, arom), 7.31–7.22 (m, 4H, arom), 6.96–6.94 (d, 2H, arom), 5.09 (s, 2H, CH2); 13C-NMR
(DMSO-d6): δ = 43.00, 107.28, 126.08, 126.89, 127.39, 128.23, 128.72, 129.28, 131.41, 133.99, 140.70, 149.10,
150.38, 150.98, 154.09 (C=O), 154.75, 161.96 (C=O); MS: m/z (%) = M + 2, 411 (0.78), M+, 409 (1.5), 347 (2),
303 (3), 256 (24), 150 (79), 72 (33), 44 (100); Anal. calcd. for C19H12ClN5O4 (409.78): C, 55.69; H, 2.95; N,
17.09. Found: C, 55.84; H, 2.94; N, 17.34.

3.2. Biological Activity

3.2.1. Anticancer Evaluation

Evaluation of Cytotoxic Effects of the Prepared Compounds

Mammalian cell lines: A-549 cells (human Lung cancer cell line) were obtained from VACSERA
Tissue Culture Unit (Cairo, Egypt). Dimethyl sulfoxide (DMSO), crystal violet and trypan blue dye
were purchased from Sigma-Aldrich Chemie GmbH (Taufkirchen, Germany). Fetal Bovine serum,
DMEM, HEPES buffer solution, L-glutamine, gentamycin and 0.25% Trypsin-EDTA were purchased
from Lonza (Basel, Switzerland).

Crystal violet stain (1%) was composed of 0.5% (w/v) crystal violet and 50% methanol then made
up to volume with ddH2O.

Cell line Propagation: The cells were propagated in Dulbecco’s modified Eagle’s medium (DMEM)
supplemented with 10% heat-inactivated fetal bovine serum, 1% L-glutamine, HEPES buffer and
50 µM/mL gentamycin. All cells were maintained at 37 ◦C in a humidified atmosphere with 5% CO2

and were subcultured two times a week [40,41].
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Cytotoxicity evaluation using viability assay: For cytotoxicity assay, the cells were seeded
in a 96-well plate at a cell concentration of 1 × 104 cells per well in 100 µL of growth medium.
Fresh medium containing different concentrations of the test sample was added after 24 h of seeding.
Different concentrations of the tested chemical compound were added to 96-well, flat-bottomed
microtiter plates (Falcon, Somerset, NJ, USA) using a multichannel pipette. The microtiter plates
were incubated at 37 ◦C in a humidified incubator with 5% CO2 for of 24 h. Triplicates from each
concentration were conducted. Control cells were incubated without sample. After incubation of the
cells at 37 ◦C for 24 h, the viable cells yield was determined by a colorimetric method [42–44].

Briefly, media were aspirated and the crystal violet solution (1%) was added to each well for
30 min. The stain was removed, and the plates were rinsed using tap water to remove the excess stain.
Glacial acetic acid (30%) was added to the wells, mixed thoroughly, and the absorbance was measured
at 490 nm using a Microplate reader (SunRise, TECAN, Inc., Mannedorf, Switzerland). The results
were normalized to the background absorbance as baseline in wells without stain. Treated samples
were compared with the cell control in the absence of the tested compounds. The cell cytotoxic effect
of each tested compound was calculated. The viability of cells were determined from the formula
[(ODt/ODc)] × 100% where ODt is the mean optical density of wells treated with the tested sample
and ODc is the mean optical density of untreated cells. The relation between surviving cells and drug
concentration was plotted to get the survival curve of each tumor cell line for each compound. The 50%
inhibitory concentration (IC50) is the concentration of tested compound to stop the growth of 50% of
initial cells. The IC50 values were determined from the dose response curve of each compound with
the Graph pad Prism software package (San Diego, CA, USA).

3.2.2. Molecular Docking Study

The structures of all tested compounds including the co-crystalized ligands were modeled
using the Chemsketch software (Toronto, ON, Canada) (http://www.acdlabs.com/resources/freeware/).
The structures were optimized and energy minimized using VEGAZZ software (Milano, Italy),
and saved as PDB format. Using AutoDockTools 1.5.6 (La Jolla, CA, USA), all compounds were
converted to PDBQT format [45,46]. The optimized compounds were used to perform molecular
docking against five proteins that represent vital targets for chemotherapeutic drugs, including cyclin
dependent kinase-2 (CDK2), B-cell lymphoma 2 (BCL2), Janus kinase 2 (Jak2), p53 binding site in MDM2
(P53) and Dihydrofolate reductase (DHFR). The three-dimensional structure of the molecular target
was obtained from Protein Data Bank (PDB) from the website (www.rcsb.org): CDK2 (PDB:1DI8, https:
//www.rcsb.org/structure/1DI8), BCL2 (PDB: 2O2F, https://www.rcsb.org/structure/2O2F), Jak2 (PDB:
5AEP, https://www.rcsb.org/structure/5AEP), P53 (PDB: 2LZG, https://www.rcsb.org/structure/2LZG),
and DHFR (PDB: 4DFR, https://www.rcsb.org/structure/4DFR). The steps for receptor preparation
included the removal of heteroatoms (water and ions), the addition of polar hydrogen, and the
assignment of charge. The active sites were defined using grid boxes of appropriate sizes around
the bound cocrystal ligands. The docking study was performed using Autodock vina (La Jolla, CA,
USA) [47] and Chimera (San Francisco, CA, USA) for visualization [48]. All docking procedures and
scoring were recorded according to established protocols [46,49–51].

4. Conclusions

In summary, we have developed a new, simple and convenient route for a one pot
procedure or even a two or three component reaction. The reaction of 6-amino-1-benzyluracil
with benzylidene acetoacetate affords pyridopyrimidine. On the other hand, the reaction of
5,6-diamino-1-2-chlorobenzyl)uracil with different aromatic aldehydes in DMF gave xanthines while
the reaction of 5,6-diamino-1-(2-chlorobenzyl)uracil with different aromatic aldehydes and triethyl
orthoformate under reflux condition afforded new lumazine derivatives in good yields. The newly
synthesized compounds were evaluated for in vivo lung carcinoma inhibitory activity against cell
line A549. Compounds 3b, 6c, 6d, 6e, 7c and 7d exhibited the most lung carcinoma inhibitory effect

http://www.acdlabs.com/resources/freeware/
www.rcsb.org
https://www.rcsb.org/structure/1DI8
https://www.rcsb.org/structure/1DI8
https://www.rcsb.org/structure/2O2F
https://www.rcsb.org/structure/5AEP
https://www.rcsb.org/structure/2LZG
https://www.rcsb.org/structure/4DFR


Molecules 2020, 25, 5205 18 of 21

compared with the reference drug methotrexate. Molecular-docking analyses revealed that compounds
3b, 6c, 6d, 6e, 7c and 7d were the best docked ligands against most of the targeted proteins especially
CDK2, Jak2, and DHFR proteins, as they displayed the lowest binding energies, critical hydrogen
bonds and hydrophobic interactions compared to co-crystalized ligands and methotrexate.

Supplementary Materials: The following are available, Figure S1: Free binding of energy values for the tested
compounds docked against CDK2 protein binding site, Figure S2: Free binding of energy values for the tested
compounds docked against BCL2 protein binding site, Figure S3: Free binding of energy values for the tested
compounds docked against Jak2 protein binding site, Figure S4: Free binding of energy values for the tested
compounds docked against –MDM2-P53 protein binding site, Figure S5: Free binding of energy values for the
tested compounds docked against DHFR protein binding site, Figure S6: The interaction of the most promising
compounds with CDK2 protein, (A) 3D interaction, (B) hydrogen bond formation, and (C) hydrophobic interaction,
Figure S7: The interaction of the most promising compounds with Jak2 protein, (A) 3D interaction, (B) hydrogen
bond formation, and (C) hydrophobic interaction, Figure S8: The interaction of the most promising compounds
with DHFR protein, (A) 3D interaction, (B) hydrogen bond formation, and (C) hydrophobic interaction.
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