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Abstract: Water-in-oil-in-water (W1/O/W2) emulsions are emulsion-based systems where the dis-
persed phase is an emulsion itself, offering great potential for the encapsulation of hydrophilic
bioactive compounds. However, their formation and stabilization is still a challenge mainly due to
water migration, which could be reduced by lipid phase gelation. This study aimed to assess the
impact of lipid phase state being liquid or gelled using glyceryl stearate (GS) at 1% (w/w) as well as
the hydrophilic emulsifier (T80: Tween 80 or lecithin) and the oil type (MCT:medium chain triglyc-
eride or corn oil (CO) as long chain triglyceride) on the formation and stabilization of chlorophyllin
W1/O/W2 emulsions. Their colloidal stability against temperature and light exposure conditions
was evaluated. Gelling both lipid phases (MCT and CO) rendered smaller W1 droplets during the
first emulsification step, followed by formation of W1/O/W2 emulsions with smaller W1/O droplet
size and more stable against clarification. The stability of W1/O/W2 emulsions was sensitive to a
temperature increase, which might be related to the lower gelling degree of the lipid phase at higher
temperatures. This study provides valuable insight for the formation and stabilization of W1/O/W2

emulsions with gelled lipid phases as delivery systems of hydrophilic bioactive compounds under
common food storage conditions.

Keywords: W1/O/W2 emulsions; lipid phase gelation; chlorophyllin; clarification; encapsulation
efficiently; storage conditions

1. Introduction

Water-in-oil-in-water (W1/O/W2) emulsions consist of a water-in-oil (W1/O) emul-
sion dispersed in an outer aqueous phase. The most common method to fabricate W1/O/W2
emulsions consist of a two-step process in which an initial step of making the W1/O emul-
sion is followed by its dispersion in another aqueous phase [1]. Due to the compartmental-
ized internal structure, W1/O/W2 emulsions offer great potential for the encapsulation and
controlled release of hydrophilic bioactive compounds [2,3]. However, in these systems,
multiple instability mechanisms can occur during their production and storage, such as
coalescence of the lipid droplets and/or inner water droplets, and the coalescence of the
inner water droplets with the outer water phase, which leads to water migration between
both water phases. Also, inner water droplets may shrink or swell as a result of the water
transfer between the inner and the outer water phases [4]. In addition, it is well known that
the temperature and light during storage can also affect the stability of emulsion-based
systems [5–7]. However, there is still scarce scientific evidence about the impact of the
storage conditions on the stability of W1/O/W2 emulsions [8]. In principle, in order to
form a W1/O/W2 emulsion, an initial lipophilic emulsifier is used for the stabilization of
the inner interface. Polyglycerol ester of polyricinoleic acid (PGPR) has been demonstrated
to be highly effective as W1/O stabilizer, due to its ability to form small W1 droplets, and
because it forms a physical barrier around these droplets preventing their coalescence [3,9].
To stabilize the second interface, it is necessary to use a hydrophilic emulsifier. In this case,
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it has been reported that polysorbates, lecithin and proteins can be effective stabilizers of
this secondary interface [4,10,11]. In W1/O/W2 emulsions, the lipid phase is filled with
nanometric inner water droplets, implying that the size of the lipid droplets is typically
larger than 1 µm, which in turn renders highly unstable emulsions [12]. Therefore, strate-
gies for improving the colloidal stability of W1/O/W2 emulsions are necessary, which
require modifying the properties of both the lipid and aqueous phases. On the one hand,
through adding biopolymers in the outer aqueous phase to increase its viscosity, the oil
droplet mobility can be reduced and subsequently the colloidal stability of W1/O/W2
emulsions may be enhanced [4]. On the other hand, increasing the viscosity of the lipid
phase by formulating solid, semi-solid or gelled lipid phases, as well as decreasing its
polarity, may minimize the diffusion rates between the two aqueous phases avoiding the
destabilization of the inner water phase both during the emulsion formation and during
their storage [8,13]. For instance, glyceryl monostearate (GS), a monoacylglycerol mainly
composed of stearic acid (C18:0), has been recently used as an ingredient to gel lipid phases
of O/W nanoemulsions through the formation of a crystal network [14,15]. However, to the
best of our knowledge, the use of GS to formulate gelled lipid phases in order to improve
the colloidal stability of W1/O/W2 emulsions has not been studied.

Therefore, the aim of the present work was to study the impact of the lipid phase
composition and lipid phase state (liquid vs. gelled) on the formation and stabilization
of W1/O/W2 emulsions. Specifically, they were formulated with two oil types with
different triglyceride chain lengths, being medium chain triglyceride (MCT) and a long
chain triglyceride oil being corn oil (CO). In addition, the formulation of gelled lipid phases
of both oils was conducted by adding 1% (w/w) of GS in the lipid phase. Moreover, the use
of different hydrophilic emulsifiers (Tween 80, T80; or lecithin) was also studied for the
formation of W1/O/W2 emulsions. Droplet size and microscopy characterization of the
inner W1 droplets and the W1/O droplets was measured. The stability of the formulated
W1/O/W2 emulsions against storage under different environmental stresses, namely
temperature (4, 25 or 35 ◦C) or light exposure, were also evaluated. Finally, chlorophyllin
(CHL) was used as model hydrophilic compound for the evaluation of the formulated
W1/O/W2 emulsions as delivery systems. Encapsulation efficiency (EE) immediately after
the formulation of W1/O/W2 emulsions and during storage was determined.

2. Materials and Methods
2.1. Materials

MCT (Myglyol, Oxi-med expres) (99.9% of purity) and CO (Koipesol Asua, Deoleo,
Spain) were used as a lipid phase. Sunflower oil, which was kindly donated by Borges
(Lleida, Spain), was the dispersant in droplet size measurements. GS (Imwitor® 491) with
a purity of 96.7% (0.8% free glycerol and 95.9% monoglycerides) was used to formulate
the gelled lipid phases. PGPR from castor oil (Grinsted®, DuPont Danisco NHIB Iberica
S. L, Barcelona, Spain) was utilized as lipophilic emulsifier. Tween 80 (Lab Scharlab,
Barcelona, Spain) and L-α-soybean lecithin, acquired from Alfa Aesar (Thermo Fisher
Scientific, GmbH, Karlsruhe, Germany), were used as food-grade hydrophilic emulsifiers.
CHL (coppered trisodium salt) with a molecular weight of 724.15 g/mol, copper contain of
3.5–6.5% and a purity of ≥95% was purchased from Alfa Aesar (Thermo Fisher Scientific,
GmbH, Karlsruhe, Germany). Sodium alginate (MANUCOL®DH) was obtained from
FMC Biopolymer Ltd. (Scotland, UK). NaCl POCH S.A. (Gliwice, Poland) was added to
both of the inner and outer aqueous phases of the system, in order to adjust the osmotic
pressure balance between the aqueous phases. Ultrapure Milli-Q water obtained from a
Millipore filtration system (Merck, Darmstadt, Germany) was used for the preparation of
all W1/O/W2 and solutions.
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2.2. Formation of W1/O/W2 Emulsions

W1/O/W2 were prepared according to a two-step emulsification method previously
used by Artiga-Artigas et al. [3] with some modifications, consisting on the formation of
the W1/O emulsion followed by its dispersion in an outer aqueous phase.

2.2.1. Formation of the W1/O Emulsions

W1/O emulsions with liquid and gelled lipid phases were formulated using pure
MCT or CO as the lipid phase and GS (1% w/w) as oleogelator. The lipid phase of the
W1/O emulsions was prepared by dissolving PGPR in the lipid phase (MCT or CO) using
a magnetic stirrer (450 rpm) for 5 min at 50 ◦C. To form the gelled lipid W1/O emulsions,
GS was firstly melted by increasing the temperature at 50 ◦C and subsequently mixed with
each of the previously prepared lipid phase containing PGPR. The visual appearance of the
lipid phases being liquid or gelled at 4, 25 or 35 ◦C is presented in Table 1. Emulsion were
formed by mixing the lipid phase with an aqueous phase consisting on 112.5 ppm CHL,
0.05 M NaCl and 2% (w/w) sodium alginate by using a laboratory T25 digital Ultra-Turrax
mixer (IKA, Staufen, Germany) working at 11,000 rpm for 5 min. The temperature during
the first emulsification step was kept at 50 ◦C in order to maintain the lipid phase in liquid
state. Once the W1/O emulsions were formed, their temperature was reduced down to
4 ◦C for 2 h in order to allow lipid gelation in those emulsions with GS.

Table 1. Visual appearance at 4, 25 and 35 ◦C of the gelled lipid phases consisting on blends of
medium chain triglyceride (MCT) or corn oil (CO), GS (1% w/w) and PGPR.

Lipid Type 4 ◦C 25 ◦C 35 ◦C

MCT
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The second step was the dispersion of the previously prepared W1/O emulsions in 

the outer aqueous phase using a laboratory T25 digital Ultra-Turrax mixer (IKA, Staufen, 
Germany) working at 4000 rpm for 2 min. From each W1/O emulsion, two different 
W1/O/W2 emulsions were formed. On the one hand, the W1/O emulsion was dispersed in 
an outer aqueous phase containing NaCl 0.05 M, sodium alginate (2% w/w) and T80 (2% 
w/w). On the other hand, a percentage of 2% w/w of lecithin was previously mixed with 
the W1/O emulsion (18% w/w) using a magnetic stirrer at 750 rpm during 5 min followed 
by its dispersion in an outer aqueous phase containing NaCl 0.05 M and sodium alginate 
(2% w/w). 

2.3. Initial Characterization of W1/O Emulsions and W1/O/W2 Emulsions 
2.3.1. Droplet Size 

The mean droplet diameter (nm) of the W1/O emulsions were measured by dynamic 
light scattering (DLS) using a Zetasizer Nano-ZS laser diffractometer (Malvern Instru-
ments Ltd., Worcestershire, UK) working at 633 nm and 25 °C, equipped with a back scat-
ter detector (173°). Refractive indexes (RIs) of MCT and CO were 1.48 and 1.47, respec-
tively. Samples were prior diluted in hexane, whose RI was 1.38, using a dilution factor of 
1:9 sample-to-solvent. The inner W1 droplet size was characterized by average droplet size 
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2.2.2. Formation of the W1/O/W2 Emulsions

The second step was the dispersion of the previously prepared W1/O emulsions in
the outer aqueous phase using a laboratory T25 digital Ultra-Turrax mixer (IKA, Staufen,
Germany) working at 4000 rpm for 2 min. From each W1/O emulsion, two different
W1/O/W2 emulsions were formed. On the one hand, the W1/O emulsion was dispersed
in an outer aqueous phase containing NaCl 0.05 M, sodium alginate (2% w/w) and T80 (2%
w/w). On the other hand, a percentage of 2% w/w of lecithin was previously mixed with
the W1/O emulsion (18% w/w) using a magnetic stirrer at 750 rpm during 5 min followed
by its dispersion in an outer aqueous phase containing NaCl 0.05 M and sodium alginate
(2% w/w).

2.3. Initial Characterization of W1/O Emulsions and W1/O/W2 Emulsions
2.3.1. Droplet Size

The mean droplet diameter (nm) of the W1/O emulsions were measured by dynamic
light scattering (DLS) using a Zetasizer Nano-ZS laser diffractometer (Malvern Instruments
Ltd., Worcestershire, UK) working at 633 nm and 25 ◦C, equipped with a back scatter
detector (173◦). Refractive indexes (RIs) of MCT and CO were 1.48 and 1.47, respectively.
Samples were prior diluted in hexane, whose RI was 1.38, using a dilution factor of 1:9
sample-to-solvent. The inner W1 droplet size was characterized by average droplet size
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(nm). The droplet size of W1/O/W2 emulsions was measured by the static light scattering
(SLS) technique with a Mastersizer 3000™ (Malvern Instruments Ltd., Worcestershire, UK).
Samples were dispersed in distilled water (RI = 1.33) at 2200 rpm and the oil droplet size
was reported as volume-weighted average (D[4;3]).

2.3.2. Optical Microscopy Analysis

Phase contrast microscopy images of the W1/O/W2 emulsions were taken with an
optical microscope (BX41, Olympus, Göttingen, Germany) using a ×100 oil immersion
objective lens and equipped with UIS2 optical system. All images were processed using
the instrument software (Olympus cellSense, Barcelona, Spain).

2.3.3. ζ-potential

The ζ-potential (mV) of the oil droplets in W1/O/W2 emulsions was measured
by phase-analysis light scattering (PALS) with a Zetasizer NanoZS laser diffractometer
(Malvern Instruments Ltd., Worcestershire, UK). Samples were prior diluted in ultrapure
water using a dilution ratio of 1:9 sample-to-solvent.

2.3.4. Apparent Viscosity

Viscosity measurements (mPa·s) of the different lipid phases and W1/O were per-
formed by using a vibro-viscometer (SV-10, A&D Company, Tokyo, Japan) vibrating at
30 Hz, with constant amplitude (0.4 mm) and working at 50 ◦C. Aliquots of 10 mL of each
sample were used for determinations.

2.4. Colloidal Stability of W1/O/W2 Emulsions

The stability of the prepared W1/O/W2 emulsions was measured by SLS during
12 days of dark storage at 4 ◦C as explained in Section 2.3.1. In addition, their stability
was also performed by multiple light scattering with a Turbiscan ™Classic MA 2000
(Formulation, Toulouse, France). The turbidity measurement allows the detection of the
destabilization phenomenon by multiple light scattering. Stability analysis was carried
out as a variation of back scattering (BS) during storage of W1/O/W2 emulsions. The
following equation was applied in order to calculate the BS:

BS = 1/
√

λ∗ (1)

where λ was the photon transport mean free path in the analyzed dispersion. From the
physical point of view, the λ ∗ (Φ, d) value in the analyzed dispersion was evaluated by
using the following equation:

λ ∗ (Φ, d) =
[

2d
3Φ (1− g)Qs

]
(2)

where Φ is the volume fraction of particles, d is the mean diameter of particles and g(d) and
QS (d) are the optical parameters given by the Mie theory [16].

Each back scattering (BS) profile obtained can be split in three zones corresponding to
the bottom (on the left), the intermediate part (in the middle) and the top of the tube (on
the right) where an aliquot of approximately 7 mL of the sample was placed. Emulsions
destabilization mechanisms can be easily identified as BS variations in the different parts
of the BS profile. Variations in particle size (flocculation or coalescence) is shown as
displacement of the horizontal lines from the intermediate part of the BS profile. Whereas,
gravitational separation can show up peaks either on the left part (sedimentation) or on the
right (creaming). Both sedimentation and creaming can cause clarification of the emulsions.
In this study, all samples showed a decrease of the BS signal on the left part of the BS profile
(approx. from 0 to 50 mm), which means clarification due to gravitational movement of
oil droplets to the top of the sample. Therefore, focus will be put on the analysis of BS
variations on left zone of the graphs, which corresponds to the bottom of the tubes. Data
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analysis of the BS values are represented as BS variation (∆BS), which refers to the BS of
each storage day relative to the initial storage day.

The stability of the W1/O/W2 emulsions as determined by the BS variation was
also evaluated under common storage conditions, visible light (λ = 350–700 nm) and two
different storage temperatures (25 and 35 ◦C).

2.5. Encapsulation Efficiency of CHL in W1/O/W2 Emulsions

The percentage of CHL entrapped in the inner aqueous phase over 12 days of refriger-
ated storage (4 ◦C) was determined according to the methods described by Aditya et al.
and Teixé-Roig et al. [2,17] with modifications. Briefly, 10 mL of the W1/O/W2 emulsion
was placed in a Falcon™ tube and centrifuged (AVANTI J-25, Beckman Instruments Inc.,
Fullerton, CA, USA) at 4500 rpm for 10 min at 4 ◦C. The outer aqueous phase at the bottom
of the Falcon tube (which contained the unentrapped CHL) was collected using a syringe
and centrifuged at 7500 rpm for 15 min at 4 ◦C, prior dilution at 1:4 with methanol. The
process was repeated twice in order to extract all the unentrapped CHL. Encapsulation
efficiency was calculated using the following Equation (3):

EE(%) =
Nw1 − Nw2

Nw1
× 100 (3)

where NW2 is the amount of CHL seeping to the outer aqueous phase and NW1 is the
amount of CHL added to the inner aqueous phase.

2.6. Statistical Analysis

All experiments were assayed in duplicate and three replicate analyses were carried
out on each parameter in order to obtain mean values. An analysis of variance was carried
out and the Tukey HSD test was run to determine significant differences at a 5% significance
level (p < 0.05) with statistical software JMP Pro 14 (SAS Institute Inc., Cary, NC, USA).

3. Results and Discussion
3.1. Initial Characterization of the W1/O Emulsions

Within liquid lipid phases, the fatty acid chain length of the lipid phase had a sig-
nificant impact on the droplet size of the internal W1 droplets. CO-W1/O emulsions,
formulated with a lipid phase with long chain fatty acids, exhibited significantly smaller
average W1 droplet sizes in comparison with MCT-W1/O emulsions, which averaged
475.90 ± 63.22 and 587.47 ± 52.77 nm, respectively (Table 2). The differences in the W1
droplet size observed in the different lipid phases might be attributed to several reasons.
On the one hand, it has been reported that the efficiency of the droplet size reduction
during emulsification increases as the ratio of the dispersed phase to the continuous phase
viscosities decrease [18,19]. This might be attributed to higher mechanical forces created
during homogenization. Since the same aqueous phase composition (W1) was used for
all the formulated systems, the viscosity of the lipid continuous phase might be related
to the water droplet disruption efficiency. Accordingly, it was observed that CO had a
higher viscosity than MCT, being 20.5 and 9.8 mPa.s, respectively. On the other hand, the
oil hydrophobicity seems to also play an important role in the W1 droplet size of W1/O
emulsions stabilized with PGPR. Tabibiazar & Hamishehkar observed a more compact
molecular arrangement and a stronger interaction of PGPR at the water/oil interface of
W1/O emulsions formulated with CO, which is more lipophilic, in comparison to MCT,
which is less lipophilic [18]. Therefore, it is possible that the W1 droplet size in the present
work is both dependent on the viscosity and/or the hydrophobicity of the oil used as
continuous phase.
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Table 2. Droplet size (nm) and apparent viscosity (mPa·s) of chlorophyllin-loaded W1/O emulsions
formulated with different lipid phases consisting on medium chain triglyceride (MCT) or corn oil
(CO) and without or with glyceryl stearate (GS). Different upper case letters (A, B) indicate significant
differences between lipid type. Different lower case letters (a, b) indicate significant differences
between different lipid states.

W1/O Emulsions

Lipid Type Droplet Size (nm) Apparent Viscosity (mPa·s) 1

Liquid lipids MCT 587.47 ± 52.77 A,a 68.7 ± 1.5 A,a

CO 475.90 ± 63.22 B,a 150.3 ± 1.5 B,a

Solid lipids MCT-GS 447.10 ± 120.80 A,b 116.0 ± 2.6 A,b

CO-GS 433.53 ± 235.80 A,a 308.5 ± 14.4 B,b

1 Apparent viscosity values were mesured at 50 ± 1 ◦C.

Moreover, the lipid phase state, being liquid or gelled also determined the size of the
W1 droplets. The W1 droplet size in W1/O emulsions with a gelled lipid phase was smaller
than in the respective emulsions with liquid lipid phases. W1 droplets with a gelled lipid
phase formulated with MCT+GS presented significantly smaller W1 droplets, with values of
447.10 ± 120.80 nm, while in those formulated with MCT were 587.47 ± 52.77 nm (Table 2).
This might be attributed to a number of reasons. On the one hand, the addition of GS in the
lipid phase significantly increases its viscosity (Table 2), which might increase the emulsification
efficiency due to an increase of the mechanical forces during emulsification. On the other hand,
GS is a monoglyceride with interfacial activity that might present adsorption at the surface
of the W1 droplets, thus contributing to a certain extent to the droplet size reduction during
emulsification [20]. Nonetheless, this effect was less pronounced in the case of the lipid phases
containing CO, with and without GS. These results can be explained by the stronger interaction
of CO with the surfactant to stabilize the inner W1 droplets, which might favor the total
covering of the water/oil interface by PGPR. As a result, GS would remain in the bulk lipid
phase forming a network of crystals rather than to adsorb at the water/oil interface [21]. In
fact, this hypothesis is supported by the results reported by Weiss & Muschiolik, who observed
differences in the interfacial tension of MCT/fat–crystallized W1/O emulsions depending on
the interaction between the lipid components and PGPR [19].

In concordance with the droplet size results measured by DLS, it was also possible
to identify homogeneous nanometric droplets in all W1/O emulsions in the microscopy
images (Table 3). Nevertheless, due to the limit of detection of the optic microscopy, it was
not possible to visually observe differences in their droplet size when varying the lipid
phase formulation.
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Table 3. Optical microscopy images of chlorophyllin-loaded W1/O emulsions (day 0) and W1/O/W2 (day 0 and 12)
formulated with different lipid phases consisting on medium chain triglyceride (MCT) or corn oil (CO) and without or with
glyceryl stearate (GS) as well as different hydrophilic surfactants (Tween 80 (T80) or Lecithin). Scale bar: 10 µm.

Lipid Type W1/O Emulsions W1/O/W2 Emulsions—Day 0 W1/O/W2 Emulsions—Day 12

PGPR T80 Lecithin T80 Lecithin

MCT
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The influence of the surfactant type (T80 or lecithin) and the state (liquid vs. gelled)
of the lipid phase on the formation of W1/O/W2 emulsions will be addressed in terms of
their structure as determined by optical microscopy as well as droplet size and ζ-potential.

3.2.1. Optical Microscopy

The capability of forming W1/O/W2 emulsions mainly depended on the type of
hydrophilic emulsifier used to disperse the W1/O droplets into the W2 phase (Table 3),
being T80 capable of forming double emulsions regardless the lipid type or state, while
lecithin did not form W1/O/W2 emulsions for all the lipid types. Nevertheless, gelling
the lipid phase allowed the formation of W1/O/W2 emulsions when lecithin was used as
surfactant, for both lipid types (MCT and CO).

In those emulsions with a liquid lipid phase, the use of T80 led to the formation
of W1/O/W2 emulsions with MCT or CO, since in both cases oil droplets filled with
water droplets were observed (Table 3). T80 has a high proportion of polar groups and
consequently it strongly adsorbs at the oil/water interface, which explains the results
obtained [11]. On the contrary, lecithin was only able to form initially stable W1/O/W2
emulsions when CO was used as a lipid phase, while single O/W emulsions were formed
when using MCT as lipid phase, evidencing a clear destabilization of the dispersed inner
W1 droplets when MCT was used. This might be related to the lower polarity of MCT in
comparison to CO [22], hence MCT being less efficient than CO in preventing the water
migration from the inner to the outer aqueous phase during the emulsification process. In
addition to this, lecithin presents a strong amphiphilic nature, and is preferably adsorbed
in highly lipophilic interfaces, such as in CO rather than in MCT. Hence, in those emulsions
formulated with MCT as lipid phase, lecithin would have been preferably located in the
bulk phase, causing an osmotic imbalance between the two aqueous phases, and ultimately
the destabilization of the W1 dispersed droplets.

When GS was used to gel the lipid phase, initially stable W1/O/W2 emulsions were
obtained irrespective of the hydrophilic emulsifier and oil used (Table 3). This might be
attributed to a decrease of water migration between aqueous phases due to the physical
barrier formed by the presence of a GS crystal network in the gelled lipid phase. These
results are consistent with recent studies on the impact of the lipid phase solidification on
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the resistance of W1/O/W2 emulsions to osmotic stress [23–25]. For instance, Liu et al.
reported that under an external applied osmotic gradient, W1/O/W2 emulsions containing
soybean oil experimented swelling or shrinkage, whereas semi-solid hydrogenated soybean
oil W1/O/W2 emulsions remained without changes and thereby retarded the leakage of
the W1 phase components [24].

3.2.2. Droplet Size

Since the objective of this work was to study the formation and stability of W1/O/W2
emulsions, in the following sections, only those formulations rendering the formation of
W1/O/W2 emulsions will be discussed, being liquid lipid W1/O/W2 emulsions formu-
lated with lipid phases consisting on MCT or CO and stabilized with T80, and CO stabilized
with lecithin. W1/O/W2 emulsions with gelled liquid phases formulated with MCT or CO
mixed with GS as lipid phases and stabilized with T80 or lecithin were also included.

On the one hand, the type of oil used in order to formulate W1/O/W2 emulsions
had a significant impact on the droplet size of the W1/O droplets stabilized with T80
(Table 4), being significantly smaller when using MCT (9.90 ± 0.15 µm) as compared to CO
(13.14 ± 1.51 µm).

Table 4. Droplet size (D[4;3]) and ζ-potential (mV) of chlorophyllin-loaded W1/O/W2 emulsions
formulated with different lipid phases consisting on medium chain triglyceride (MCT) or corn oil
(CO) and without or with glyceryl stearate (GS) as well as different hydrophilic surfactants (Tween
80 (T80) or Lecithin). A, B indicates significant differences between the lipid type. a, b indicates
significant differences between the used surfactants. x, y indicates significant differences between the
lipid phase state.

W1/O/W2 Emulsions

Lipid-Emulsifier Type D[4;3] (µm) ζ-Potential (mV)

Liquid lipids
MCT-T80 9.90 ± 0.15 A,a,x −24.65 ± 3.44 A,a,x

CO-T80 13.14 ± 1.51 B,a,x −26.92 ± 5.02 A,a,x

CO-Lecithin 14.54 ±0.14 B,a,x −70.95 ± 4.81 B,b,x

Solid lipids

MCT-GS-T80 11.09 ± 5.71 A,a,x −25.06 ± 1.64 A,a,x

CO-GS-T80 9.06 ± 1.96 A,a,y −30.01 ± 5.72 B,a,x

MCT-GS-Lecithin 7.35 ± 0.68 A,b,y −63.52 ± 2.90 A,b,y

CO-GS-Lecithin 7.64 ± 0.45 A,b,y −57.52 ± 7.61 B,b,y

Other authors have reported a relationship between the dispersed phase viscosity
and the final emulsion droplet size, obtaining smaller droplet sizes when using a low
viscosity dispersed phase [19,26]. This might be also applicable when the dispersed
phase is a water-in-oil emulsion, such as the case of the present work. In this regard, the
viscosity values of the W1/O emulsions formulated with MCT, were significantly lower
(68.7 ± 1.5 mPa·s) than the ones with CO (150.3 ± 1.5 mPa·s) (Table 2). Hence, it is
reasonable to assume a relationship between the dispersed phase viscosity and the oil
droplet size on the formation of W1/O/W2 emulsions. On the other hand, the surfactant
type (T80 or lecithin) used to stabilize the CO-W1/O droplets dispersed in the W2 phase did
not cause a significant effect on their droplet size, which ranged between 13.14 and 14.54 µm
(Table 4). Both emulsifiers are classified as small-molecule emulsifiers, thus occupying the
same space at the oil/water interface and consequently leading to the formation of droplets
with similar sizes [27].

Regarding the lipid phase state, non-significant differences in the average oil droplet size
of the W1/O/W2 emulsions formulated with MCT and GS were observed in comparison to
their respective liquid emulsions (Table 4). On the contrary, CO-W1/O/W2 emulsions showed
a significantly smaller average oil droplet size with a gelled (7.64–9.06 µm) than with a liquid
(13.14–14.54 µm) lipid phase, regardless the emulsifier used. In a previous study of O/W
emulsions, it was also observed that when the lipid phase was crystallized with GS, there
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was a reduction in the average oil droplet size, which was attributed to the GS surface-active
properties and adsorption to the oil/water interface [15].

3.2.3. ζ-potential

The ζ-potential of the W1/O/W2 emulsions is detailed in Table 4. There were no signifi-
cant differences between the electrical charge (ζ-potential) of the T80-stabilized W1/O/W2
emulsions formulated with MCT or CO oil, with values ranging between −24.65 and
−26.92 mV. On the contrary, the emulsifier type affected the electrical charge of the oil droplets,
presenting more negative values when lecithin was used as emulsifier (−70.95 ± 4.81 mV)
in comparison to T80. The lower ζ-potential values of W1/O/W2 emulsions stabilized with
lecithin might be due to the anionic nature of this emulsifier, which is rich in phosphate
groups

(
PO3−

4

)
[28,29]. On the contrary, T80 is a non-ionic emulsifier, meaning it does not

give a charge when adsorbed at the interface. However, it is known that anionic hydroxyl
groups (OH−) present in the water or oil used to prepare the W1/O/W2 emulsion can give
small negative charges [30]. On the one hand, lecithin led to less negatively charged dispersed
droplets when the lipid phase was gelled in comparison to the respective liquid phase. In this
regard, ζ-potential values were−70.95± 4.81 and−57.52± 7.61 mV for CO-W1/O/W2 emul-
sions with liquid and gelled lipid phases, respectively (Table 4). This might be attributed to
the ability of GS to displace a certain amount of anionic lecithin molecules from the oil droplet
surface [31], thus contributing to the overall increase in the ζ-potential values becoming less
negatively charged. On the other hand, W1/O/W2 emulsions stabilized with T80, showed
similar ζ-potential values when formulated with either MCT or CO, regardless the lipid state
(Table 4). This might be due to the fact that T80 strongly adsorbs at the oil/water inter-
face, which prevents its displacement by GS molecules, hence maintaining its interfacial
electrostatic characteristics [32].

3.3. Colloidal Stability of W1/O/W2 Emulsions

The colloidal stability of W1/O/W2 emulsions was characterized in terms of optical
microscopy, as well as static and multiple light scattering during 12 days of dark storage at
4 ◦C in order to simulate common storage conditions.

As visually observed by phase contrast optical microscopy (Table 3), gelling the lipid
phase with GS rendered W1/O/W2 emulsions with smaller droplet sizes after 12 days
of storage regardless the type of lipid (MCT or CO) or emulsifier (T80 or lecithin) used.
Nonetheless, gelling the lipid phase led to higher droplet size variations of the W1/O
droplets dispersed in the W2 phase during storage time as indicated by the large droplet
size deviations as measured by SLS, while the droplet size of the W1/O/W2 emulsions with
liquid lipid phases remained constant with small standard deviations (Figure 1). It has been
reported that O/W nanoemulsions with a liquid lipid phase have spherical shape, while
solid lipid tend to be non-spherical due to the formation of crystals on the lipid phase [33].
If we consider that in the present study the droplet size was expressed as volume mean
diameter, which assumes spherical droplets, a possible non-spherical shape of the W1/O
droplets with GS may be detected as bigger oil droplets [15]. In addition, the increase
on droplet size may also be attributed to oil droplets aggregation due to changes in the
crystal morphology [15]. Numerous studies have observed that lipid crystals rearrange in
a more stable form (from α to β) after emulsion formation [34–36]. As a consequence, these
β-form crystals could lead to an increase in the surface-area of the oil droplets, enhancing
the attraction forces between them. In the case of lecithin, droplet aggregation might have
been inhibited by the high electrostatic repulsion between oil droplets (see Section 3.2.3).

Clarification, measured as ∆BS at the bottom of the tube, was also influenced by the
lipid phase state. In general, W1/O/W2 emulsions with a liquid lipid phase showed a
significant increase in BS values during storage time, whereas their respective W1/O/W2
emulsions with a gelled lipid phase remained without changes, which evidenced their
higher stability against clarification (Figure 2). According to Fernández-Martín et al. [37],
the crystallization of a lipid phase would increase its viscosity offering a higher resistance
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to a viscous flow. Regarding the BS changes in the W1/O/W2 emulsions with liquid lipid
phases, they presented ∆BS values below 5 during the first 2 days of storage, but experi-
mented an increase after 5 days (Figure 2A). At that point, clarification rather depended
on the type of hydrophilic emulsifier used to disperse the W1/O droplets into the W2
phase, than on the lipid phase composition, with ∆BS values of around 20 and below 15 for
lecithin and T80, respectively. Nevertheless, at the end of the storage time, differences in
the ∆BS were predominantly due to the lipid phase composition.
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Figure 1. Droplet size (D[4;3]) during 12 days of dark storage at 4 ◦C of chlorophyllin-loaded W1/O/W2 emulsions
formulated with different lipid phases consisting on medium chain triglyceride (MCT) or corn oil (CO) and without (A) or
with (B) glyceryl stearate (GS) as well as different hydrophilic surfactants (Tween 80 (T80) or Lecithin).
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Figure 2. Clarification, expressed as variation of back scattering (∆BS), at 4 ◦C during 12 days of dark storage of chlorophyllin-
loaded W1/O/W2 emulsions formulated with different lipid phases consisting on medium chain triglyceride (MCT) or
corn oil (CO) and without (A) or with (B) glyceryl stearate (GS) as well as different hydrophilic surfactants (Tween 80 (T80)
or Lecithin).

For instance, W1/O/W2 emulsions stabilized with T80 presented ∆BS values of
11.64 ± 1.08 and 23.88 ± 0.74 for MCT and CO, respectively (Figure 2A). This might be due
to the reduced initial oil droplet size of the W1/O/W2 emulsions formulated with MCT as
compared to CO, which is known to cause droplets to be closely packed, retarding their
migration to the upper part of the tube [38].
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3.3.1. Effect of Temperature

The stability of the W1/O/W2 emulsions with liquid or gelled lipid phases stored
at different temperatures (4 ◦C, 25 and 35 ◦C) against clarification is shown in Figure 3.
In general, when they were stored at 25 and 35 ◦C, the ∆BS values obtained were higher
compared to those at 4 ◦C, which evidenced a decrease in W1/O/W2 emulsions stability.
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Figure 3. Clarification, expressed as variation of back scattering (∆BS), at 25 ◦C (A,C) and 35 ◦C (B,D) during 12 days of dark
storage of chlorophyllin-loaded W1/O/W2 emulsions formulated with different lipid phases consisting on medium chain
triglyceride (MCT) or corn oil (CO) and without (A,B) or with (C,D) glyceryl stearate (GS) as well as different hydrophilic
emulsifiers (Tween 80 (T80) or Lecithin).

The extent of the liquid lipid W1/O/W2 emulsions instability stored at 25 and 35 ◦C
was mainly dependent on the type of hydrophilic emulsifier used. After 2 days of storage,
W1/O/W2 emulsions stabilized with T80 presented a noticeable increase of the ∆BS values
when stored at 25 ◦C (∆BS > 18) and 35 ◦C (∆BS > 25) in comparison with those at 4 ◦C
(∆BS < 4) (Figures 2A and 3A,B). This might be attributed to an increase on the free energy
of the system due to the higher temperature which might result in a higher number of oil
droplet collisions ultimately leading to destabilization.

In contrast, lecithin-stabilized W1/O/W2 emulsions showed no significant differences
in the ∆BS values at 4 and 25 ◦C, remaining stable against clarification (Figures 2A and 3A).
As mentioned before, lecithin-stabilized W1/O/W2 emulsions showed highly negative
initial ζ-potential values (Table 4), suggesting that even at 25 ◦C, the electrostatic repulsion
between the droplets may be high enough to inhibit droplet aggregation [39]. Nevertheless,
when the storage temperature was 35 ◦C, an increase of ∆BS values up to 17.12 ± 3.96 was
observed after 2 days of storage, suggesting that the electrostatic forces might not have
been enough to overcome the attraction between the oil droplets (Figure 3B).
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At the end of the storage time, all liquid lipid W1/O/W2 emulsions stored at 25 and
35 ◦C showed phase separation due to clarification phenomenon (Figure 3A,B).

Clarification phenomenon of the W1/O/W2 emulsions with gelled lipid phase at
25 and 35 ◦C was more pronounced than in their respective emulsions with liquid lipid
phases. Indeed, they presented ∆BS values above 8 already from day 2 of storage at
both 25 and 35 ◦C, regardless the type of lipid or emulsifier (Figure 3C,D). This might be
attributed to changes in the lipid phase state when increasing the storage temperature from
4 to 25 and 35 ◦C [40,41] (Table 1). At 4 ◦C, gelation and/or partial crystallization of the
dispersed phase significantly increases its viscosity, and consequently the stability of the
W1/O/W2 emulsions (Section 3.3). At higher storage temperatures, especially at 35 ◦C,
visual observations of the lipid phase showed a loss of structural consistency, which might
be caused by its lower gelling and or crystallization degree (Table 1). As a consequence,
W1/O/W2 emulsions with gelled lipid phase at 25 and 35 ◦C, would behave as liquid lipid
emulsions, explaining the observed instabilities.

Interestingly, gelling the MCT lipid phase allowed the formation of highly stable
W1/O/W2 emulsions at all the studied temperatures, in fact, they had no significant
differences in the ∆BS values during the first 5 days of storage (Figures 2B and 3C,D).
Instead, their respective liquid lipid W1/O/W2 emulsions could not even been formed
(Section 3.2.1).

3.3.2. Effect of Light Exposure

W1/O/W2 emulsions stability against clarification was also evaluated when subjected
to light exposure during 12 days of storage at 25 ◦C (Figure 4). At the end of the storage time,
all W1/O/W2 emulsions (gelled and liquid lipid phase) showed no significant changes on
the ∆BS values when exposed to light (Figure 4A,B) as compared to those stored in the
dark (Figure 3A,C). Based on a previous research, where the effect of light exposure on
the stability of emulsions with a lipid solidified phase was studied, it would have been
expected to observe an increase in clarification due to an accelerated droplet growth [42].
These authors reported that high energetic radiations caused droplet collisions, leading to
droplet aggregation and destabilization of the emulsion systems. However, in the present
study a low intensity light was used, which has been reported to have no negative effects
on emulsion stability [43].

Molecules 2021, 26, x FOR PEER REVIEW 13 of 16 
 

 

 
 

Figure 4. Clarification, expressed as variation of back scattering (ΔBS), at 25 °C during 12 days of 
light exposure of chlorophyllin-loaded W1/O/W2 emulsions formulated with different lipid phases 
consisting on medium chain triglyceride (MCT) or corn oil (CO) and without (A) or with (B) glyc-
eryl stearate (GS) as well as different hydrophilic surfactants (Tween 80 (T80) or Lecithin). 

3.4. Encapsulation Efficiency of CHL in W1/O/W2 Emulsions 
Finally, the ability of the fresh W1/O/W2 emulsions to encapsulate CHL in the inner 

aqueous phase was evaluated (Figure 5). W1/O/W2 emulsions both with gelled and liquid 
lipid phases showed CHL EE values higher than 98%. Our results are in agreement with 
a previous study where the CHL EE values in liquid lipid W1/O/W2 emulsions were 
around 91% [3]. Interestingly, in this study, emulsions containing lecithin had the highest 
CHL EE, which might be due to a possible interaction between the phosphate ions of lec-
ithin and the hydroxyl groups of the encapsulated compound, being capable of forming 
H-bonds with the CHL. It is worth mentioning that this is the first study in which W1/O/W2 
emulsions with a gelled lipid phase are used for CHL encapsulation. 

 

Figure 5. Encapsulation efficiency (%) during 12 days of dark storage at 4 °C of chlororphyllin-
loaded W1/O/W2 emulsions formulated with different lipid phases consisting on medium chain 
triglyceride (MCT) or corn oil (CO) and without (A) or with (B) glyceryl stearate (GS) as well as 
different hydrophilic surfactants (Tween 80 (T80) or Lecithin). 

Storage time (days)

0 2 4 6 8 10 12

ΔB
ac

k 
sc

at
te

rin
g

0

10

20

30

40

50
MCT-T80 
CO-T80 
CO-Lecithin 

Storage time (days)

0 2 4 6 8 10 12
0

10

20

30

40

50
MCT-T80 
CO-T80 
MCT-Lecithin 
CO-Lec ithin 

A B 

Storage time (days)

0 2 5 9 12

En
ca

ps
ul

at
io

n 
ef

fic
ie

nc
y 

(%
)

90

95

100

105

110
MCT-T80 
CO-T80 
CO-Lec ithin 

A 

Storage time (days)

0 2 5 9 12
90

95

100

105

110
MCT-GS -T80 
CO-GS -T80 
CO-GS -Lecithin 

B 

Figure 4. Clarification, expressed as variation of back scattering (∆BS), at 25 ◦C during 12 days of light exposure of
chlorophyllin-loaded W1/O/W2 emulsions formulated with different lipid phases consisting on medium chain triglyceride
(MCT) or corn oil (CO) and without (A) or with (B) glyceryl stearate (GS) as well as different hydrophilic surfactants (Tween
80 (T80) or Lecithin).
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3.4. Encapsulation Efficiency of CHL in W1/O/W2 Emulsions

Finally, the ability of the fresh W1/O/W2 emulsions to encapsulate CHL in the inner
aqueous phase was evaluated (Figure 5). W1/O/W2 emulsions both with gelled and liquid
lipid phases showed CHL EE values higher than 98%. Our results are in agreement with a
previous study where the CHL EE values in liquid lipid W1/O/W2 emulsions were around
91% [3]. Interestingly, in this study, emulsions containing lecithin had the highest CHL EE,
which might be due to a possible interaction between the phosphate ions of lecithin and the
hydroxyl groups of the encapsulated compound, being capable of forming H-bonds with
the CHL. It is worth mentioning that this is the first study in which W1/O/W2 emulsions
with a gelled lipid phase are used for CHL encapsulation.
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Figure 5. Encapsulation efficiency (%) during 12 days of dark storage at 4 ◦C of chlororphyllin-loaded W1/O/W2 emulsions
formulated with different lipid phases consisting on medium chain triglyceride (MCT) or corn oil (CO) and without (A) or
with (B) glyceryl stearate (GS) as well as different hydrophilic surfactants (Tween 80 (T80) or Lecithin).

4. Conclusions

The present work evidences that the formation and stabilization of double W1/O/W2
emulsions can be enhanced with the use of gelled lipid phases. When liquid phases
were used, only T80 was able to form W1/O/W2 emulsions both with CO or MCT liquid
oils, while lecithin only rendered double emulsions with CO. With gelled lipid phases
containing 1% (w/w) GS, W1/O/W2 emulsions were successfully formed regardless the
lipid and surfactant type, showing also smaller inner water droplets (W1) and smaller lipid
(W1/O) droplets in comparison to the respective formulations with liquid oils. This may be
attributed to a decrease in the migration of water from the inner to the outer aqueous phase
by the gelled lipid phase. Additionally, it was evidenced that their long-term stability under
different storage temperatures was dependent on the lipid phase state. At 4 ◦C, the gelled
and/or crystallized lipid phase contributed to a higher W1/O/W2 emulsions stability
in comparison to liquid lipid emulsions. Hence this work contributes in elucidating the
role of the lipid phase state, being liquid or gelled, on the formation and stabilization of
W1/O/W2 emulsions that may act as carriers of hydrophilic bioactive compounds.
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