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Abstract: Applied datasets can vary from a few hundred to thousands of samples in typical quantita-
tive structure-activity/property (QSAR/QSPR) relationships and classification. However, the size of
the datasets and the train/test split ratios can greatly affect the outcome of the models, and thus the
classification performance itself. We compared several combinations of dataset sizes and split ratios
with five different machine learning algorithms to find the differences or similarities and to select the
best parameter settings in nonbinary (multiclass) classification. It is also known that the models are
ranked differently according to the performance merit(s) used. Here, 25 performance parameters
were calculated for each model, then factorial ANOVA was applied to compare the results. The
results clearly show the differences not just between the applied machine learning algorithms but
also between the dataset sizes and to a lesser extent the train/test split ratios. The XGBoost algorithm
could outperform the others, even in multiclass modeling. The performance parameters reacted
differently to the change of the sample set size; some of them were much more sensitive to this factor
than the others. Moreover, significant differences could be detected between train/test split ratios as
well, exerting a great effect on the test validation of our models.

Keywords: machine learning; XGBoost; validation; training/test split ratio; multiclass classifica-
tion; imbalanced

1. Introduction

In the new century, the emphasis has shifted from mechanistic (explanatory) modeling
to the widespread use of machine learning algorithms in QSAR and related fields as well.
In statistics, the long-term commitment to data models only (i.e., with the assumption
of a stochastic model) “led to irrelevant theory, questionable conclusions, and has kept
statisticians from working on a large range of interesting current problems” [1]. In the
meantime, algorithmic modeling has developed rapidly and found its way to application
domains formerly employing classic statistical tools, such as QSAR or drug design in
general. Especially for larger dataset sizes, machine learning tools present much more
suitable alternatives for classification than conventional statistics.

While drug design applications routinely employ two-class classification tasks (i.e.,
machine learning models for predicting active/inactive compounds), multiclass classifi-
cation scenarios are somewhat less common and, accordingly, less studied. This is also
reflected in the number of available performance parameters for two- vs. multiclass classifi-
cation, although some of the performance metrics naturally extend to the multiclass case [2].
Nonetheless, specific multiclass alternatives were also developed, e.g., by Kautz et al.: their
multiclass performance score (MPS) was proven to be superior to eight performance met-
rics, including balanced accuracy, Cohen’s kappa, ACC (accuracy, correct classification
rate), MCC (Matthews correlation coefficient), and F1 (see the abbreviations in Section 4.3
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of this paper) on six real datasets, with the use of the k-nearest neighbor algorithm as the
classifier [3].

An important factor that affects the performance of classification models is the balance
(or imbalance) of the classes, i.e., the diversity in the number of samples belonging to
each class. This is especially relevant in multiclass scenarios, where there can even be
more than one minority class. The past decade has seen the development of several
approaches to deal with class imbalance. Synthetic minority over sampling (SMOTE) [4]
and its related methods are widely used to avoid biased results toward the majority
class [5,6]. While oversampling can lead to overfitting in “classical” machine learning
models, convolutional neural networks (CNNs) are less prone to overfitting [7]. Robust
QSAR models can be developed for imbalanced high-throughput screening datasets using
multiple undersampling as well [8]. Undersampling can also be achieved by clustering
the majority class into the same number of clusters as the number of samples in the
minority class: this approach proved to be efficient on small and large datasets as well [9].
The aggregated conformal prediction procedure has a promising potential for severely
imbalanced datasets “to retrieve a large majority of active minority class compounds”, i.e.,
in a binary class situation [10]. An asymmetric entropy measure was recommended for
classifying imbalanced data by Guermazi et al. They adapted the decision-tree algorithm
to imbalanced situations, with a split criterion that discriminates the minority-class items
on a binary-classification problem. They propose the ensemble approach for imbalanced
learning [11,12].

Ensemble learning algorithms seem to be the solution for the classification of high-
dimensional imbalanced data: König et al. have used mixtures of experts as a natural
choice for the prediction of environmental toxicity [13]. According to Oza and Tumer,
“classifier ensembles provide an extra degree of freedom in the classical bias/variance
tradeoff, allowing solutions that would be difficult (if not impossible) to reach with only a
single classifier” [14]. Fernandes et al. investigated twenty imbalanced multiclass datasets;
they found that Ensemble of Classifiers based on MultiObjective Genetic Sampling for
Imbalanced Classification (E-MOSAIC) provided the best predictive performance according
to multiclass AUC (area under the receiver operating characteristic curve) and geometric
mean [15]. Žuvela et al. also favor ensemble learning approaches for competing objectives
and imbalanced situations [16]. Ensemble learning approaches constitute a current field of
development, e.g., a new algorithm (HIBoost) applies a discount factor, which restricts the
updating of weights, and hence the risk of overfitting is reduced [17]. Sets of simultaneous
classifiers are also suitable to generate separation frontiers of classes naturally present in
bioinformatics. The crucial step is to select metrics that measure performance of algorithms
realistically [18].

Multiclass classification is employed for diverse applications in drug design and other
fields; a few examples are listed here. Mandal and Jana have evaluated two machine
learning algorithms, naïve Bayes (NB) classifier and k-nearest neighbors (kNN), to classify
multiclass drug molecules. The kNN method shows higher accuracy and higher precision
compared to NB. Furthermore, recall and F1 score of kNN are higher than that of NB [19].
Sokolova and Lapalme examined twenty-four performance measures for multiclass text
classification from the point of view of invariance, identifying different sets of performance
measures for the classification of human communication vs. documents [20]. (A measure is
invariant if its value does not change when a confusion matrix changes; it can be beneficial
or adverse, depending on the objective.) Idakwo et al. predicted androgen receptor activity
(agonist, antagonist, inactive, and inconclusive) for 10,000 compounds, highlighting the
use of deep neural networks (DNN), which significantly outperformed random forests (RF)
according to four metrics (positive predictive value –PPV, true positive rate–TPR, F1, and
area of PPV vs. TPR curve–AUprC) [21]. Multiple approaches for predictive QSAR models
for classifying androgen receptor ligands were compared by Piir et al. using random
forests [22].
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Several authors have contributed with comparative studies for the better understand-
ing of the various factors, choices, and alternatives in classification modeling. Chen et al.
studied the effects of the decision threshold on three performance parameters (sensitivity,
specificity, and concordance coefficient) for four classical classifiers: linear discriminant
analysis (LDA), logistic regression, classification tree, and a weighted variant of k-nearest
neighbor (kNN). A threshold of 0.5 can be used for balanced datasets; the change of decision
threshold simply makes a tradeoff between the number of true positive and the number of
true negative predictions, whereas the concordance coefficient does not vary much [23]. An
ensemble classification approach is suggested for different class sizes in the case of binary
classifier systems [24]. Two alternative thresholding strategies that maximize the geometric
mean (GM) are suggested by Johnson and Khoshgoftaar [25]. Škuta et al. have studied
QSAR-derived affinity fingerprints and established various AUC thresholds for different
types of fingerprints [26]. Huang et al. have compared the performance of extreme learning
machine (ELM) with that of least square support vector machine (LS-SVM) and proximal
support vector machine (PSVM). Both LS-SVM and PSVM achieved suboptimal solutions,
whereas ELM produced similar results for binary classification, but much better for the
multiclass situation [27].

In spite of the widespread use of multiclass classification and the literature resources
listed, a comparative study on the effects of dataset size and train/test split ratios is still
lacking. Here, we address these questions on three case studies of absorption/distribution/
metabolism/excretion (ADME) and toxicity-related data. Our approach involved a detailed,
systematic analysis of variance (ANOVA) and multicriteria analyses to show the effect
of the mentioned factors on the performance of multiclass classification. Additionally,
we compared the applied 25 performance parameters in terms of their variances across
different dataset sizes and split ratios. This work is an organic continuation of a previous
study, where we compared machine learning algorithms and performance parameters for
both two-class and multiclass problems [2].

2. Results and Discussion

We selected three case studies for studying the effects of dataset size and training/test
split ratios on various machine learning classification models. To that end, modeling was
repeated many times, with different versions of the starting datasets (leaving out different
molecules from the majority group(s) to produce a balanced dataset), different numbers of
samples (NS) and train/test split ratios (SR), and with five iterations for each combination
of these parameters. After the iterative modeling process, 25 performance parameters were
calculated: these constituted the columns of the input matrix for the statistical analyses
(with the rows corresponding to the different parameter combinations). The performance
parameters were calculated for the cross-validation and test validation as well. An example
of the data structure is shown in Table 1. Principal component analysis (PCA) score plots
were produced out for the visual description of the three datasets (see Figure S1). The
original data matrices were compared with the balanced versions.

Table 1. The structure of the summarized results of modeling. (ML: Machine learning algorithms,
SR: train/test split ratio, expressed as the percentage of compounds assigned to the training set, NS:
number of samples, NB: naïve Bayes, CV: cross-validation).

ML SR NS Split Performance Parameters

NB 50 100 CV x1,1, . . . , x1,j
NB 60 100 CV
NB 70 100 CV
NB 80 100 CV
NB 50 500 CV
. . . . . . . . . . . . . . .

XGBoost 80 total test xi,1, . . . , xi,j
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Factorial ANOVA was performed on the data matrix, where four factors were used:
(i) the split ratios for the train/test splits (SR), (ii) the number of samples (NS) or dataset size,
(iii) the applied machine learning algorithms (ML), and (iv) the performance parameters
(PP). The factor values are summarized in Table 2.

Table 2. Labels and levels of the different factors.

Code Name Values/Categories/Levels

PP Performance parameters 25 different parameters (see table from Section 4.3)

ML Machine learning algorithm

XGBoost, naïve Bayes, support vector machine (SVM), NN
(multi-layer feed-forward of resilient backpropagation

network or RPropMLP) and probabilistic neural
network (PNN)

NS Number of samples, dataset size 100, 500, 1000, and total (all samples of the
balanced dataset)

SR Split ratios for the train/test splits 50, 60, 70, 80

2.1. Case Study 1

The first case study is a dataset of cytochrome P450 (CYP) inhibitors from the Pubchem
Bioassay database (AID 1851), containing 2068 descriptors of 2710 molecules with reported
inhibitory activities against either the CYP 2C9, or 3A4 isoenzyme, or both (thus, corre-
sponding to a three-class classification). This case study therefore embodies a classification
problem of selective-, medium-, and non-selective molecules, or toxic-, medium-, or non-
toxic compounds, which is relevant in diverse subfields of drug design or the QSAR field.
Factorial ANOVA was carried out on the input matrix of scaled performance parameters.
Univariate tests showed that the ML, NS, and PP factors were significant in the analysis;
however, the split ratios for the train/test splits (SR) did not have a large effect on the
performance of the models. In Figure 1, the performance parameters combined with the
dataset sizes (NS) are plotted based on their average scaled values.

Figure 1. The average scaled values of the different performance parameters with the 95% confidence intervals for Case
study 1. Normalization of performance parameters was necessary to be comparable. Number of samples (NS) is 100 (blue
circles), 500 (green diamonds), 1000 (purple triangles), or total (2710, red squares). Abbreviations are explained in table
from Section 4.3.
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Based on Figure 1, some performance parameters—such as AUC, AUAC (area under
the accumulation curve), AP (average precision), TPR, TNR (true negative rate), PPV, or
NPV (negative predictive value)—are not sensitive to changes in the dataset size. The most
sensitive ones were the receiver operating characteristic (ROC) enrichment factors and the
LRp (positive likelihood ratio) and DOR (diagnostic odds ratio) parameters, where higher
performance values were detected with increasing dataset sizes.

A combination of the NS and SR factors are plotted in Figure 2: here, the results show
that the split ratios had a more significant effect on the modeling at bigger dataset sizes,
and the overall performance of the models increased with the size of the dataset. The effect
of the split ratio was not significant with 100 molecules in the data matrix, and generally,
increasing the number of molecules in the training set from 50% to 80% conveyed only
a small increase of the classification performance (Figure 2b). Since the comparison was
dedicated to multiclass classification, it is not surprising that the differences between the
split ratios were not significant at small sample sizes (where the model performances were
far from satisfactory anyway), but the 70% and 80% split ratios clearly performed better for
larger datasets. In these cases, the test sample was much smaller, but the performance of
the models in test validations was actually not far from that in cross-validation. Tukey’s
post hoc test was applied to establish the significance in the performances of different
split ratios: the difference was significant only between 50% and 60%. We wanted to
examine this effect in more detail; thus, we used sum of ranking differences (SRD) for the
comparison of the split ratios (see later).

Figure 2. The effect of: (a) the number of samples (NS) at different split ratios, and (b) the split ratios (SR) on the performance
of the models.

In Figure 3, we present a bubble plot to visualize the differences between the dataset
sizes and the applied machine learning algorithms. Both the colors and the radii of the
circles correspond to the average of the 25 normalized performance parameter values.

Based on Figure 3, it is clear that the naïve Bayes (NB) algorithm had a lower perfor-
mance compared to the other algorithms, even for bigger datasets. The most size-dependent
methods were PNN (probabilistic neural network) and XGBoost, but these two algorithms
could perform much better above 100 samples. XGBoost could achieve the best perfor-
mance at the “total” level of the dataset size (2710 samples). The support vector machine
(SVM) method, while performing slightly worse, was less size-dependent.
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Figure 3. Bubble plot of the performances of the machine learning algorithms at different dataset
sizes. Both the colors and the radii of the circles correspond to the average of the 25 normalized
performance parameter values. (The bigger (and brighter) the better.).

2.2. Case Study 2

The same workflow was carried out for Case Study 2, which contained 2070 descriptors
of 1542 molecules with measured acute oral toxicities (from the TOXNET database [28], down-
loadable here: https://www.epa.gov/chemical-research/toxicity-estimation-software-tool-
test, last accessed on 18 February 2021) that were classified into six categories (from highly
toxic to nontoxic [29]), thereby corresponding to a six-class classification into gradual
categories. The 25 performance parameters were normalized and used for the ANOVA
evaluation of both the cross-validation (CV) and test validation results. The univariate
test showed that all of the four factors (PP, SR, NS, and ML) had a significant effect on the
performance of the models. Figure 4 shows the average normalized values of the different
performance parameters in combination with the NS factor (dataset size).

It can be noticed that the pattern of the results is quite similar to Case Study 1, which
is not accidental: the dataset size had less effect on AUC, AP, TNR, and NPV. On the
other hand, enrichment factors, bookmaker informedness (BM), markedness (MK), MCC,
and Cohen’s kappa values are highly dependent on the size of the dataset (with higher
performance values at larger sample sizes).

A combination of the NS and SR factors is shown in Figure 5, similar to Case Study
1. Clearly, the performances improved with increasing dataset sizes. Moreover, the split
ratios had bigger differences compared to Case Study 1, especially at bigger dataset sizes.
This is further verified by Figure 5b and by Tukey’s post hoc test, which found significant
differences between the performances at each of the four split ratios.

The effects of the dataset sizes upon the different machine learning algorithms were
visualized in a bubble plot: Figure 6 shows that once again, the naïve Bayes (NB) method
provided the worst performances, while the NN (multi-layer feed-forward of resilient back-
propagation network), PNN, and libSVM (library for support vector machines) algorithms
are very close to each other at every dataset size. Only XGBoost can be highlighted, as
it performed better than the other algorithms in the case of the total number of samples
(1542). Noticeably, each method, except for NB, performed better at bigger dataset sizes.

https://www.epa.gov/chemical-research/toxicity-estimation-software-tool-test
https://www.epa.gov/chemical-research/toxicity-estimation-software-tool-test
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Figure 4. The average normalized values of the different performance parameters with the 95% confidence intervals for
Case Study 2. Normalization of performance parameters was necessary to be comparable. Number of samples (NS) is 100
(blue circles), 500 (green diamonds), 1000 (purple triangles), or total (1542, red squares).

Figure 5. The effect of: (a) the number of samples (NS) at different split ratios, and (b) the split ratios (SR) on the performance
of the models for Case Study 2.
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Figure 6. Bubble plot of the performances of the machine learning algorithms at different dataset
sizes for Case Study 2. Both the colors and the radii of the circles correspond to the average of the
25 normalized performance parameter values. (The bigger (and brighter) the better.).

2.3. Case Study 3

In this case study, 1834 descriptors were calculated for 1734 different molecules with
experimentally measured fraction unbound in plasma values (f u,p), based on the work of
Watanabe et al. [30]. The dataset was categorized by the f u,p values into three classes: low,
medium, and high. The low range was assigned to molecules with f u,p values below 0.05,
the medium between 0.05 and 0.2, and the high above 0.2. The modeling workflow was
the same as in the case of the two other case studies, and the 25 performance parameters
were used for the ANOVA analysis after the normalization process for both CV and
test validation.

All of the four factors—performance parameter, split ratio (SR), number of samples
(NS), and machine learning algorithm (ML)—had significant effects on the modeling, based
on the univariate test in the ANOVA evaluation. The average normalized performance
parameter values turned out to be similar to the other cases. Figure 7 shows the result of
the ANOVA analysis, with the combination of the performance parameters and the number
of samples as factors.

In Figure 7, it is clearly shown that TNR and NPV were less sensitive to the dataset
size, while the enrichment factors or DOR, MCC, and Cohen’s kappa depended more
strongly on the dataset size.

The combination of the NS and SR factors was also evaluated and is shown in Figure 8.
It is clear that the performance of the models increased with the dataset size. We can also
observe a slight performance increase with increasing split ratios in Figure 8a, even for
the smallest sample size (100). This increase can be seen in Figure 8b as well, with bigger
differences between the different split ratios (as compared to Case Study 1); however,
Tukey’s post hoc test still could not detect a significant difference between the 60 and
70 split ratios.

Figure 9 shows a bubble plot as the visualization of the ML and NS factors in combi-
nation. The results are very similar to the other two case studies: naïve Bayes (NB) models
performed the worse in every case, NN and libSVM were moderately good, especially in
the case of the total sample set (when all the 1734 molecules were used), and XGBoost had
the best performance. In the smallest dataset size (100), the differences were much smaller
between the methods. The findings are in good agreement with the previous case studies.
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Figure 7. The average normalized values of the different performance parameters with 95% confidence intervals for Case
Study 3. Normalization of performance parameters was necessary to be comparable. Number of samples (NS) is 100 (blue
circles), 500 (green diamonds), 1000 (pink triangles), or total (1734, red squares).

Figure 8. The effect of: (a) the number of samples (NS) at different split ratios, and (b) the split ratios (SR) on the performance
of the models for Case Study 3.

Finally, SRD analysis was carried out to compare the different split ratios. Here, the
three case studies were merged, and the performance parameters were normalized together
for the three case studies. In the input matrix, the performance metrics (25) were in rows
and the split ratios (four) in the columns. Row-maximum was used as the reference for the
analysis (corresponding to an ideal model that maximizes each performance parameter),
with five-fold cross-validation. All of the four split ratios provided better results than
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random ranking. The cross-validated SRD results were evaluated with a one-way ANOVA,
where the only factor was the split ratio (SR). The ANOVA results are presented in Figure 10:
the univariate test identified significant differences between each of the split ratios; thus,
the SRD results provided a more sensitive analysis of the mentioned factor. The split
ratios were farther from each other in terms of the SRD values, but still the 80% split ratio
achieved the best result (smallest SRD value) by far: in fact, it was identical to the reference
values, meaning that the performance was better than the other settings according to each
performance parameter.

Figure 9. Bubble plot of the performances of the machine learning algorithms at different dataset
sizes for Case Study 3. Both the colors and the radii of the circles correspond to the average of the
25 normalized performance parameter values. (The bigger (and brighter) the better.).

Figure 10. Sum of ranking differences (SRD) (%) values, plotted against the split ratio settings.
Average values are marked with blue circles and 95% confidence intervals are also plotted.
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As a summary of our results, we could show that the performance of the multiclass
classification models can greatly depend on all the examined parameters. As for perfor-
mance parameters, there was a smaller group (such as AUC, AP, TNR and NPV), which
was relatively independent from the dataset sizes. The machine learning algorithms also
differed from each other in the sense of performance: in comparison with current alter-
natives, the naïve Bayes algorithm was not a good option for multiclass modeling. On
the other hand, XGBoost was a viable one, especially for large sample sizes. The ANOVA
results showed that the split ratios had a stronger effect on performance at larger dataset
sizes. Moreover, the SRD analysis was sensitive enough to find smaller differences in the
dataset, and we could select the most prominent factor combinations to achieve better
predictive models. Based on our findings, we can suggest the use of the 80%/20% train-
ing/test split ratio, especially for larger datasets, to provide enough training samples even
for multiclass classification.

3. Discussion

Several machine learning algorithms were evaluated by Valsecchi et al. [31], comparing
multitask deep (FFNL3) and shallow (FFNL1) neural networks with single-task benchmark
models such as n-nearest neighbor (N3), k-nearest neighbor (kNN), naïve Bayes (NB), and
random forest (RF) techniques, evaluated with three performance parameters: sensitivity,
specificity, and non-error rate (or accuracy). The multitask scenario presents an alternative
approach to the multiclass situation in our Case Study 1, i.e., when the classification
is based on multiple properties that are—theoretically—independent (here, inhibitory
activities of two isoenzymes), with multitask models providing separate predictions for
each property. In the work of Valsecchi et al., no approach outperformed the others
consistently: task-specific differences were found, but in general, less represented classes
are better described using FFNL3. Perhaps their most striking conclusion is that single task
models might outperform the more complex deep learning algorithms, e.g., surprisingly,
naïve Bayes is superior to FFNL3 in certain situations. There is no doubt that N3 is the best,
while NB is the worst single-task algorithm, but even this limited number of performance
parameters reveals the dataset-size dependence. Our present work clearly manifests the
overall inferiority of NB compared to the other machine learning algorithms examined and
highlights XGBoost as the best option among those that were considered.

The impact of class imbalance on binary classification was studied by Luque et al. [32].
Ten performance metrics were evaluated based on binary confusion matrices, with the au-
thors favoring the Matthews correlation coefficient for error consideration. For imbalanced
data, the performance metrics can be distributed into three clusters considering the bias
measure: zero (TPR, TNR, BM, and the geometric mean of sensitivity and specificity, GM),
medium (ACC, MCC, MK), and high bias (PPV, NPV, and F1). While we worked with
balanced datasets, it is interesting to observe that some of the low-bias measures—BM,
MK, and MCC—exhibit a strong dataset size dependence, see Figure 4 (Case Studies 2
and 3, high variance), when a complex interplay of various factors is considered: machine
learning algorithms, training/test split ratios, number of compounds were varied.

Lin and Chen addressed the fundamental issues of class-imbalanced classification:
imbalance ratio, small disjoints, overlap complexity, lack of data, and feature selection [33].
They claim that the SVM-ensemble classifier performs the best when the class imbalance is
not too severe. This is in agreement with our work: here, SVM is identified as a competitive
approach (although still somewhat inferior to XGBoost).

To summarize, our 25 performance measures were exhaustive and provided a more
sophisticated consensus about performance. The number of samples and the train/test
split ratio exerted a significant effect on multiclass classification performance. Of course,
all comparative studies are influenced by the specific structure of the datasets, but overall
tendencies and optimal solutions can be identified.
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4. Materials and Methods
4.1. Datasets

Three datasets (Case Studies 1, 2, and 3) from the ADME and toxicity area were
selected carefully. The first dataset corresponded to a case study of selectivity: here,
cytochrome P450 inhibitors were classified based on their inhibitory activity against either
the 2C9 or 3A4 isoenzyme, or both (presenting a three-class classification scenario). The
datasets assembled 4570 molecules with measured inhibitory levels on cytochrome P450
2C9 and 3A4 isoenzymes from the publicly available PubChem Bioassay (NCBI) database
(AID1851) [34]. Molecules without SMILES codes, duplicates, and inconclusive class
memberships were excluded from the dataset. Classical 1D and 2D descriptors were
calculated by Dragon 7.0 (Kode Cheminformatics, Pisa, Italy) [35] with an intercorrelation
limit of 0.997 [36]. Near-constant descriptors were also omitted. The dataset was balanced in
order to improve the performance of the models [2]. Balanced design is important especially
in the case of multiclass classifications. Finally, the dataset consisted of 2710 molecules and
2068 descriptors.

The second case study was an acute oral toxicity dataset, corresponding to a case
study of gradual levels: the dataset contained molecules with 50% oral lethal dose (LD50)
values measured on rats (from the TOXNET database, downloadable from: https://www.
epa.gov/chemical-research/toxicity-estimation-software-tool-test, accessed on February
18, 2021) [28], which were categorized into six toxicity classes, according to the Globally
Harmonized System of Classification and Labelling of Chemicals (GHS) [29]. After the
data curation process and balancing, 1542 molecules remained in total. The descriptor
calculation was carried out in the same way as for the first case study. Finally, the dataset
consisted of 1542 molecules and 2070 descriptors.

The third case study was the fraction unbound in plasma (f u,p) dataset, which is an
important parameter of drug efficacy [30]. The experimental values were categorized
into three classes: low, medium, and high. The dataset was balanced as in the other two
cases. After balancing, 1734 molecules in total remained, out of 2319. After the same
descriptor calculation process as in the previous cases, 1834 descriptors were applied for
the modeling process.

It is worth to note that Case Study 1 exhibited small variances, whereas Case Studies
2 and 3 were of high variance. Hopefully, joint conclusions apply generally.

4.2. Machine Learning Algorithms

Five different machine learning algorithms were apt for model building: XGBoost,
RPropMLP, PNN, libSVM, and naïve Bayes (NB). XGBoost is a well-known tree-based
algorithm, which is the “upgraded” form of the boosted tree method [37]. RPropMLP is
the multi-layer feed-forward of resilient backpropagation network, which is a variant of
artificial neural networks. Here, local adaptation of the weight updates was included, which
is similar to the error function [38]. Throughout this article, RPropMLP is shortened to NN.
The other neural network based algorithm was PNN [39], which is a probabilistic neural
network with dynamic decay adjustment, and it generates rules with a high-dimensional
Gaussian function based on the numerical data. LibSVM is a support vector machine
(SVM) algorithm [40] implemented in the Weka package and the KNIME platform, with
sequential minimization and a radial basis function. The naïve Bayes classifier was also
applied, which is a simple and well-known probabilistic classifier based on Bayes’ theorem
and the assumption of the independence of all attributes [2,41].

It is important to note that we had no intention to produce optimized models (the
models reported here can be outperformed easily) but rather to make the modeling repro-
ducible, comparable, and consistent for the evaluation of the different modeling parameters
in the three case studies. Thus, for the sake of being comparable across the five algorithms,
there were no additional feature selection and parameter optimization steps carried out.
For all five algorithms, the default parameter settings were used for model building, as
implemented in KNIME Analytics Platform v4.2.0 (KNIME AG, Zurich, Switzerland).

https://www.epa.gov/chemical-research/toxicity-estimation-software-tool-test
https://www.epa.gov/chemical-research/toxicity-estimation-software-tool-test
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4.3. Modeling

A full modeling workflow was assembled in KNIME Analytics Platform 4.2.0 (Figure 11).
The modeling workflow had six major steps from descriptor generation to the analysis
of the performance parameters. First, the descriptor set was standardized with z-scores.
Then, an equal balance sampling was carried out, where the number of the molecules in the
smallest group was kept from the other groups as well. In this process, an iterative random
selection of the molecules was implemented with five iterations. In the third step, we
randomly selected 100, 500, or 1000 molecules from the dataset (or kept all of them) in five
iterations (number of samples, NS), except—naturally—when the total number of samples
were kept. Next, the selected molecules were split to training and test sets, keeping 50%,
60%, 70%, or 80% of molecules in the training set (split ratio, SR); this was also repeated
five times for each split ratio. The actual modeling was started for each of the resulting
combinations and iterations, where a five-fold cross-validation on the training set (with
a fixed random seed to ensure reproducibility) and a test validation on the test part was
carried out. Altogether, 125 different models were developed for each dataset size and split
ratio combination. Finally, 25 performance parameters were calculated for every model,
which were normalized and averaged for each combination before the statistical analysis
part of the results.

Figure 11. Workflow of the modeling process: for each case study, balanced set selection was
performed in five repetitions (to account for all available molecules during modeling). Sample
selection was then carried out in five repetitions for three samples sizes, and train/test splitting
was performed in five repetitions for four split ratios, resulting in altogether 125 models for each
combination of settings. Then, 25 performance parameters were calculated for each model (both for
cross-validation and test validation), which were used to compare the models with factorial ANOVA
and sum of ranking differences (SRD).

The applied modeling workflow can be found in the Supplementary Materials. Mod-
eling was carried out on a PC with Intel-Core i7 CPU, 3.40 GHz, and 16 GB RAM (with
Windows 7 OS). The compute time of a full workflow for one algorithm (which included
1500 models) was 16.9 h in average. The fastest algorithm was the naïve Bayes, while the
calculation was more time-consuming for the libSVM and XGBoost algorithms.

The applied 25 performance parameters are summarized in Table 3; their definitions
are included in our recent work [2].
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Table 3. Summary of the applied performance parameters.

Abbreviation Name

RIE20 Robust initial enhancement with α = 20
RIE1609 Robust initial enhancement with α = 160.9

BEDROC20 Boltzmann-enhanced discrimination of receiver operating characteristic with α = 20
BEDROC1609 Boltzmann-enhanced discrimination of receiver operating characteristic with α = 160.9

EF1 Enrichment factor at 1%
EF5 Enrichment factor at 5%

ROC_EF1 Receiver operating characteristic (ROC) enrichment at 1%
ROC_EF5 ROC enrichment at 5%

AUAC Area under the accumulation curve
AUC Area under the ROC curve
AP Average precision

TPR True positive rate, sensitivity, recall
TNR True negative rate, specificity, selectivity
PPV Positive predictive value, precision
NPV Negative predictive value
BM Bookmaker informedness
MK Markedness
LRp Positive likelihood ratio
DOR Diagnostic odds ratio
MCC Matthews correlation coefficient

Cohen Cohen’s kappa
ACC Accuracy, correct classification rate (CC)

BACC Balanced accuracy
Jaccard Jaccard score

F1 F1 score, F measure

4.4. Statistical Analysis

The results contained the calculated performance parameters for each factor combina-
tion (cross-validation and test validation as well). Euclidean normalization was applied
for the performance parameters. The results for Case Studies 1 and 2 were evaluated with
factorial variance analysis (ANOVA) and sum of ranking differences (SRD) [42]. Factorial
ANOVA analysis compares the averages of the different groups based on several categorical
factors. In our case, the analysis contained the following factors: (i) the split ratios for
the train/test splits (SR), four levels; (ii) the number of samples (size of the dataset) (NS),
four levels; (iii) the applied machine learning algorithms (ML), five levels, and (iv) the
performance parameters (PP), 25 levels. Tukey’s post hoc test was used to establish whether
the differences between the groups were statistically significant. SRD was used when the
results of ANOVA with post hoc analysis were not sufficient to explore the differences
between the groups. ANOVA analysis was performed in Statistica 13.5 software (TIBCO
Software Inc., Palo Alto, CA, USA).

In the case of SRD analysis, the columns (variables) of the dataset were compared to a
reference/gold standard. In our case, the performance parameters were in the rows; thus,
the row-maximum values were used as reference, corresponding to an ideal model that
maximizes each performance parameter. It means that the best method/selectivity ratio etc.
should be the closest one to the vector defined by the maximum values of the performance
parameters. SRD rank transformed the values in each column and in the reference as well,
and then the ranks were compared between each column and the reference. Finally, the
ranking differences were summed up for every column, which gave us the SRD value for
each variable (column). SRD analysis was validated in two steps: a randomization test and
five- to ten-fold cross-validation. A detailed summary of the SRD process (with animation)
can be found in the supplementary material of our earlier work [43].

5. Conclusions and Outlook

The present work was dedicated to study the effects of dataset size and training/test
split ratios on the performance of multiclass classification. Classification performances
were quantified by 25 performance parameters whose averages (after normalization) con-
stituted the basis for comparing different machine learning methods with different settings.
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The figures show the main results in a visually appealing way. The number of samples
(compounds) and split ratio of training and test sets exerted a significant effect on multi-
class classification performance. XGBoost provided the best overall performance, while
the standard naïve Bayes classifier was outperformed by all the other models in all the
situations studied.

As always, the performances depended on the data structure of the datasets investi-
gated. Still, the presented methodology can provide a more optimal factor combination
than any of the factors separately. A multicriteria analysis method called sum of ranking
differences (SRD) can easily be performed to eliminate suboptimal solutions. In addition to
the effects of dataset size and split ratios, we also compared the applied 25 performance
parameters in terms of size-dependence, identifying several (especially BM, MK, MCC,
Cohen’s kappa, and ROC enrichment factors) that were more sensitive to differences in the
size of the input dataset.

Supplementary Materials: The following are available online: The applied KNIME workflow is
provided and the PCA plots can be found as Figure S1.
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