Slow relaxation of the magnetization in anilatobased Dy(III) 2D lattices

Benmansour Samia *, Hernández-Paredes Antonio, Bayona-Andrés María and Gómez-García Carlos J. *

Dpt. Química Inorgánica. ICMol. Universidad de Valencia. C/ Catedrático José Beltrán, 2. 46980 Paterna (Valencia) Spain.

* Correspondence: sam.ben@uv.es (S.B.); carlos.gomez@uv.es (C.J.G.G.)

SUPPORTING INFORMATION

Continuous Shape Analysis

Table S1. Continuous SHAPE measurement (CShM)[1-3] values of the 13 possiblecoordination geometries for the Dy(III) ion with coordination number eight[4] incompounds 1 and 2. The minimum values are indicated in bold.

Geometry	Symmetry	1	2
OP-8	D _{8h}	30.154	30.366
HPY-8	C _{7v}	22.635	23.156
HBPY-8	D_{6h}	15.212	15.039
CU-8	Oh	10.845	11.281
SAPR-8	D_{4d}	1.348	1.603
TDD-8	\mathbf{D}_{2d}	0.902	1.208
JGBF-8	D_{2d}	13.177	13.161
JETBPY-8	D_{3h}	29.264	28.647
JBTP-8	C_{2v}	2.502	2.267
BTPR-8	C_{2v}	1.908	1.806
JSD-8	D_{2d}	3.289	3.079
TT-8	Td	11.667	12.011
ETBPY-8	D _{3h}	24.588	23.622

OP-8 = Octagon; HPY-8 = Heptagonal pyramid; HBPY-8 = Hexagonal bipyramid; CU-8 = Cube; SAPR-8 = Square antiprism; **TDD-8 = Triangular dodecahedron**; JGBF-8 = Johnson-Gyrobifastigium (J26); JETBPY-8 = Johnson-Elongated triangular bipyramid (J14); JBTP-8 = Johnson-Biaugmentedtrigonal prism (J50); BTPR-8 = Biaugmentedtrigonal prism; JSD-8 = Snub disphenoid (J84); TT-8 = Triakis tetrahedron.

Figure S1. (a) Thermal variation of the $\chi_m T$ product for compounds 1–3; (b) Isothermal magnetization of compounds 1–3 at 2 K.

Figure S2. Frequency dependence of χ'_{m} for compound **1** with H_{dc} = 0 Oe (**a**) and 600 Oe (**b**) in the temperature range 1.9–4.0 K. Solid lines are the best fit to the Debye model.

Figure S3. Field dependence of χ''_{m} for compound **1** at different frequencies at 1.9 K.

Figure S4. Frequency dependence of χ''_m for compound **1** at 1.9 K with different applied DC fields. Solid lines are the best fit to the Debye model.

Figure S5. Field dependence of the relaxation time, τ , for compound **1** at 1.9 K. Solid line is the fit to the general model (equation 1 in the text) with: n = 4 (fixed value), A = 1.8(1) × 10⁸ s⁻¹ K⁻¹ T⁻⁴, B₁ = 4.8(4) × 10⁴ s⁻¹, B₂ = 3.8(9) × 10² T⁻² and D = 2.8(4) × 10⁴ s⁻¹.

Figure S6. Cole-Cole plot for compound **1** with $H_{dc} = 0$ Oe (**a**) and 600 Oe (**b**). Solid lines are the best fit to the Debye model.

Figure S7. Field dependence of χ''_m for compound **2** at different frequencies at 1.9 K.

Figure S8. Frequency dependence of χ''_m for compound **2** at 1.9 K with different applied DC fields. Solid lines are the best fit to the Debye model.

Figure S9. Field dependence of the relaxation time, τ , for compound **2** at 1.9 K. Solid line is the fit to the general model (equation 1 in the text) with n = 4 (fixed value), A = 2.1(1) × 10⁶ s⁻¹ K⁻¹ T⁻⁴, B₁ = 6.6(1) × 10³ s⁻¹, B₂ = 2(1) × 10³ T⁻² and D = 5.3(1) × 10³ s⁻¹.

Figure S10. Cole-Cole plot for compound **2** with H_{dc} = 1000 Oe. Solid lines are the best fit to the Debye model.

Figure S11. Field dependence of χ''_{m} for compound **3** at different frequencies at 1.9 K.

Figure S12. Cole-Cole plot for compound **3** with H_{dc} = 1000 Oe. Solid lines are the best fit to the Debye model with two relaxation processes.

Figure S13. Plot of the Ln τ_0 *vs.* the distortion parameter from the ideal TDD-8 geometry (lower scale) and the Pauling electronegativity of the X group (upper scale) in compounds **1**, **2** and **4**.

Figure S14. Plot of U_{eff} *vs.* the distortion parameter from the ideal TDD-8 geometry (lower scale) and the Pauling electronegativity of the X group (upper scale) in compounds **1**, **2** and **4**.

Figure S15. X-ray powder diffractogram of compound 2 and the simulated one from the single crystal structure.

Figure S16. X-ray powder diffractogram of compound **3** and the simulated one from the single crystal structure of compound XOYTUD reported by Mercuri *et al.* [5]

Infrared spectroscopy (FT-IR)

Compounds **1** and **2** show very similar IR spectra (Figure S17) with differences attributed to the different anilato ligand in each compound: 2,5-dihydroxy-1,4-benzoquinone for **1** and chlorananilato for **2**. The main bands and their assignments are shown in Table S2.

Band	1	2
	2990	2998
V(C-II)solvent	2910	2918
v (C=C) + v (C-O)	1522	1495
v (C-C) + v (C-O)	1374	1381
v(S=O) _{dmso}	1022	1000
$\rho(C-S)_{dmso}$	955	959
δ (C-Cl)	-	846
ρ (C-Cl)	-	579

Table S2. Selected vibrational frequencies (cm⁻¹) for compounds 1 and 2.

Figure S17. IR spectra in the 4000–400 cm⁻¹ region of compounds 1 (a) and 2 (b).

References

- 1 Llunell, M.; Casanova, D.; Cirera, J.; Bofill, J. M.; Alemany, P.; Álvarez, S.; Pinsky, M.; Avnir, D. Shape. **2013**, 2.3.
- 2 Alvarez, S.; Alemany, P.; Casanova, D.; Cirera, J.; Llunell, M. Shape Maps and Polyhedral Interconversion Paths in Transition Metal Chemistry. *Coord. Chem. Rev.* **2005**, *249*, 1693-1708.
- 3 Álvarez, S. Distortion Pathways of Transition Metal Coordination Polyhedra Induced by Chelating Topology. *Chem. Rev.* **2015**, *115*, 13447-13483.
- 4 Casanova, D.; Llunell, M.; Alemany, P.; Alvarez, S. The Rich Stereochemistry of Eight-Vertex Polyhedra: A Continuous Shape Measures Study. *Chem. Eur. J.* **2005**, *11*, 1479-1494.
- 5 Sahadevan, S. A.; Monni, N.; Abhervé, A.; Cosquer, G.; Oggianu, M.; Ennas, G.; Yamashita, M.; Avarvari, N.; Mercuri, M. L. Dysprosium Chlorocyanoanilate-Based 2D-Layered Coordination Polymers. *Inorg. Chem.* 2019, 58, 13988-13998.