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Abstract: Substances that can modify the androgen receptor pathway in humans and animals are
entering the environment and food chain with the proven ability to disrupt hormonal systems and
leading to toxicity and adverse effects on reproduction, brain development, and prostate cancer,
among others. State-of-the-art databases with experimental data of human, chimp, and rat effects by
chemicals have been used to build machine-learning classifiers and regressors and to evaluate these on
independent sets. Different featurizations, algorithms, and protein structures lead to different results,
with deep neural networks (DNNs) on user-defined physicochemically relevant features developed
for this work outperforming graph convolutional, random forest, and large featurizations. The results
show that these user-provided structure-, ligand-, and statistically based features and specific DNNs
provided the best results as determined by AUC (0.87), MCC (0.47), and other metrics and by their
interpretability and chemical meaning of the descriptors/features. In addition, the same features in
the DNN method performed better than in a multivariate logistic model: validation MCC = 0.468 and
training MCC = 0.868 for the present work compared to evaluation set MCC = 0.2036 and training
set MCC = 0.5364 for the multivariate logistic regression on the full, unbalanced set. Techniques of
this type may improve AR and toxicity description and prediction, improving assessment and design
of compounds. Source code and data are available on github.

Keywords: machine learning; artificial intelligence; androgen receptor; random forest; deep neu-
ral network

1. Introduction

Concerns are rising over endocrine disruptors entering the environment and food
chain [1–4]. The Androgen Receptor (AR) is a protein involved in reproduction, brain de-
velopment, prostate cancer, androgen insensitivity syndromes, spinal and bulbar muscular
atrophy, acne, and alopecia [5]. Androgen receptor pathway modulators are compounds
that can have an effect on tumors and reproductive systems [1–4]. The CoMPARA chal-
lenge was a collaborative modeling effort to predict possible AR modulators based on a
wide collection of state-of-the-art experimental data [6]. Different modeling techniques
have been attempted, including molecular docking [7], support vector machines (SVMs),
combined structure-based, ligand-based fingerprint distances to known compounds, and
Naïve Bayesians [8], among others [6].

Toxicity modeling of compounds is important in several ways: compounds that are
used in pharmaceutical and industrial applications need to be assessed for possible adverse
effects on humans and other organisms, as well as being an important development barrier
for new drugs and useful compounds [1–4]. Difficulties include the lack of experimental
tests, including chronic and different exposure effects, as well as those of metabolites of
compounds [1–4].

Machine learning (ML) and artificial intelligence (AI) are transforming many fields,
including the computational chemistry and medicinal chemistry fields [9–14]. Particular
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advantages may be realized by ML methods in classification techniques for drug com-
pound analysis and design [10,15]. A common criticism of ML methods is the potential to
include a high number of variables that can have little insight into their physicochemical
meaning [10]. Some ML and AI models are being developed with the aim of being “ex-
plainable” [16] and afford interpretability to chemical groups responsible for positive or
negative contributions to a prediction.

The present work shows that different modeling techniques can have their advan-
tages and disadvantages for modeling AR modulating compounds. Deep neural networks
(DNNs) and graph convolutional neural networks (CNNs) have been used in other model-
ing studies, usually using featurization included in widely available packages [17]. Here,
an effort was made to build Random Forest (RF) and DNNs with a given set of features
that are chemically important based on calculated protein–ligand binding to several targets,
chemical fingerprint distances, and other results from statistical techniques. The aim of
the present work is to generate AR binding classification models by DNNs with different
featurizations and compare them to other methods such as RF, CNN, multivariate logistic
regression, regressors, and experimental data. Improving the predicted categorization of
chemical compounds as AR binders using physicochemically and biologically relevant
features can help in flagging molecules that may have the potential to disrupt AR pathways,
and thus, may have the potential of toxic effects. In silico prediction of these effects is
important given the reduction of animal testing, and the expense of testing, as well as a
first, fast complement to testing.

2. Results
2.1. Balancing and Initial Separations

The provided training dataset in the CoMPARA challenge was highly unbalanced
with a large number of nonbinders (N = 1 468) compared to binders (N = 205). Bias in
datasets can affect strongly the results of ML algorithms and so addressing these issues is
recommended [18]. Balancing of the training set was thus performed to provide an equal
amount of binders and nonbinders.

Another effect was also apparent after docking calculations for the chimp protein
(Figure 1), where distributions of docking scores for chimp androgen receptor for binders
and nonbinders show that, for those compounds that have a nonzero docking score
(N = 1310), the docking scores are stronger for binders than for nonbinders. However,
for the smaller amount of those compounds with a docking score of zero (N = 363), the
simple docking score on its own cannot separate both distributions.
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Figure 1. Violin plots of the distributions of docking scores (kcal/mol) with the chimp androgen
receptor for binders (blue) and nonbinders (orange).

A similar effect is seen for the calculated Bayesian probabilities (Figure 2), where
the distribution for binders is higher in probability to belong to the normal distribution
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of known binders and vice versa for nonbinders. Bayesians constructed on the dock-
ing scores for both groups showed this separation with means and standard deviations
of µ = −8.91 kcal/mol and σ = 1.94 for binders, and µ = −5.97 kcal/mol and σ = 2.01
for nonbinders.
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The distribution of Tanimoto distances to average values for ECFP fingerprints of
binders and nonbinders (Figure 3) shows skews in the distributions with nonbinders
tending to have a tail skewed towards larger distances to the average of known binders,
whilst the binding compounds have slightly larger distances to the average of known
nonbinding compounds.
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Figure 3. Violin plots of the distributions of average Tanimoto distances of binders (blue) and nonbinders (orange) to:
(a) known binders (avgD_Act); and to: (b) known nonbinders (avgD_Inact).

After balancing, the total numbers for both sets of compounds were: Number of com-
pounds in train set: 410, composed of 205 binders and 205 nonbinders. No balancing was
made for the evaluation set, where the number of compounds in validation set was 3882.

2.2. Comparison to RF and CNN

Classifier and regression ML models were built and evaluated (Table 1). For the
Random Forest (RF) Classifier (I), the best results obtained after eightfold cross-validation
were: Best hyperparameters: (100, ‘sqrt’), giving AUC values of train_score: 1.000000,
validation_score: 0.7564. The Graph Convolutional Neural Network Classifier (CNN, VII)
using hyperparameters: {‘learning_rate’: 0.0001403, ‘weight_decay_penalty’: 2.95 × 10−6,
‘nb_epoch’: 40}, gave AUC values of: train_score: 0.827864, validation_score: 0.739908.
There is clearly overfitting occurring in RF and CNN methods given the high ROC-AUC
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values for the training set (Figure 4), with the best metrics for the evaluation score being
around 19 runs.

Table 1. Best methods obtained for different algorithms and featurizations. Standard deviations (s.d.) included for the
best methods.

Method Train ± s.d. Valid ± s.d. Best Hyperparameters

RF classifier
myfeats (I)

AUC 0.9999 ± 0.0009;
MCC 0.9951 ± 0.0153;

F1 0.9963 ± 0.0153;
Prec. 0.9976 ± 0.011;

Recall 0.9951 ± 0.0198

AUC 0.7564 ± 0.0105;
MCC 0.297435 ± 0.0478;

F1 0.5805 ± 0.1041 (3 × 106

epochs);
Prec. 0.8856 ± 0.0148(1.5 × 105

epochs);
Recall 0.4481 ± 0.0866 (3 × 106

epochs)

eightfold cross-validation, (19
runs, ‘sqrt’), 2.25 × 106 epochs

DNN classifier
myfeats (II)

AUC 0.9424 ± 0.0655;
MCC 0.7472 ± 0.1283;

F1 0.8608 ± 0.0754;
Prec. 0.8732 ± 0.063;

Recall 0.8585 ± 0.1092
(4.5 × 106 epochs)

AUC 0.8686 ± 0.0398;
MCC 0.4685 ± 0.0892;

F1 0.7943 ± 0.1617 (4.5 × 106

epochs);
Prec. 0.9052 ± 0.1988;

Recall 0.8585 ± 0.2054 (4.5 × 106

epochs)

Learning rate: 0.00047, weight
decay penalty: 2.637 × 106,

2.5 × 106 epochs

GraphConv CNN
(VII) AUC 1.0 AUC 0.7264 −(50 runs, ‘sqrt’)

RF classifier
CDDD features (V) AUC 0.9997 AUC 0.7308 (18, ‘sqrt’)

DNN classifier
CDDD features (VI) AUC 0.8498 AUC 0.7563

Learning rate: 0.00067, weight
decay penalty: 4.073 × 106,

2.5 × 106 epochs

RF
regression

myfeats (III)
R2 = 0.8817 R2 = −0.0520 (10 runs, ‘log2’)

DNN
regression

myfeats (IV)
R2 = 0.2721 R2 = −0.1926

fourfold cross-validation,
learning rate: 0.000359 weight
decay penalty: 8.831 × 106, nb.

epochs: 20

2.3. DNN with Different Featurizations

The best result for the training and validation sets based on the ROC-AUC metric was
the DNN using the supplied 12 features (Table 1, model II), and this model also showed
less overfitting.

The models for regression did not achieve good R2 values, which is logical due to
the awkwardness of fitting a regression to a binary outcome value. For RF in regression
mode: Best hyperparameters: (10, ‘log2’), giving R2 values of train_score: 0.8817, valida-
tion_score: −0.0520. For CNN in regression mode, after fourfold cross-validation, with the
best hyperparameters: {‘learning_rate’: 0.000359206871754689, ‘weight_decay_penalty’:
8.830664294504987 × 10−6, ‘nb_epoch’: 20}, R2 values were: train_score: 0.2721: valida-
tion_score: −0.1926.

Increasing the number of estimators for RF results in increasing the degree of overfit-
ting for the balanced training set (Figure 4). Tests on the full (unbalanced) initial training
set show less overfitting, as well as using DNN (Figure 5).
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DNN were better predictors than RF models for a variety of metrics (Figure 5).
The results obtained are good for ROC-AUC, accuracy, F1-scores, and precision met-
rics for training (balanced), validation, as well as full training set (Table 1 and out.txt at
https://github.com/AlfonsoTGarcia-Sosa/ML (accessed on 26 February 2021)). The
Matthews correlation coefficients (MCC) scores obtained are reasonable, considering the
lack of balance in the datasets, as well as the lack of distinction in features between binders
and nonbinders in the evaluation set. This lack of feature distinction can be seen in
Figures 6 and 7, where t-maps, histograms, and density maps for calculated descriptors

https://github.com/AlfonsoTGarcia-Sosa/ML
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show a highly overlapping distribution for binders as well as nonbinders in the evaluation
set, highlighting the difficulty of classification for this dataset (octanol/water partition
(clogP), topological polar surface area (TPSA, Å2), number of heterocycles, molecular
weight (MW, g/mol), number of rotational bonds (nRotB), number of hydrogen bond
donors (nHBDon), number of hydrogen bond acceptors (nHBAcc), and AlogP).
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(i,j) number of hydrogen bond donors (nHBDon); (k,l) number of hydrogen bond acceptors (nHBAcc); and (m,n) AlogP.

2.4. Validation of Docking and Comparison to Other Methods

Decoys were generated for the androgen receptor using the DUD-E database
(http://wiki.bkslab.org/index.php/DUDE (accessed on 14 February 2021)) and Receiver-
Operator Curves (ROCs) and Area Under the Curves (AUCs) for the Human, Chimp, and
Rat androgen receptor docking scores were calculated and plotted (Figure 8), showing a
good separation of true positive from false positives in the most important, i.e., initial parts
of the curves. Their values are high, and the chimp protein again shows that it is the most
suited with an AUC of 0.832, and an enrichment factor at 1% of 68.92. AUC for human was
0.797, and AUC for rat was 0.744.

Comparing our results to a structure-based approach by Trisciuzzi et al. [7], they
obtained the highest AUC of 0.76 for structures 2pnu and 2hvc, compared to 0.83 for the
Chimp AUC in this work.

Using 20 gold-standard reference androgen receptor probe compounds as used by
Kleinstreuer et al. [19] (Table 2) shows that there was a good result for predictions of
16/20, i.e., 80% were predicted correct for being a binder to AR (very weak binders were
considered as nonbinders).

With respect to well-known compounds that are frequently misclassified [20], the
results provided here (Table 3) show that four out of 11 compounds correctly predicted
compared to three out of 11 reported elsewhere [20], the difference being the correct
prediction of finasteride [20]. Chemical structures in Tables 2 and 3 show several steroid
core structures that may be difficult for algorithms to distinguish between actives and
inactives, given the strong chemical similarity between them.

http://wiki.bkslab.org/index.php/DUDE
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The approach of using physicochemically and biochemically relevant user-defined
features (12 features, II) is seen in the better metrics performed by the DNN trained
and validated on these features rather than DNN trained on cddd descriptors (around
500 features, VI), as well as the closely performing RF on the user-defined features (I), and
also being better than the CNN using vector featurization of the molecular graph (VII).
In addition, the use of ML is warranted in this case, since the same features used in a
multivariate logistic regression fashion produced metrics that were not as good, evaluation
set MCC = 0.468 and training MCC = 0.868 for the present work compared to evaluation
set MCC = 0.2036 and training set MCC = 0.5364 for the multivariate logistic regression on
the full, unbalanced set [8].

3. Discussion

Toxicity classification problems can benefit from using DL and specific features that
have rationalization on the biochemically and chemically relevant features of the com-
pounds. In this case, the best results were provided by predicted binding category to
chimp, rat, and human androgen receptor structures, in addition to average Tanimoto
distances to known binders and nonbinders, as well as Naïve Bayesians as user-provided
features to a DNN,. Unbalanced datasets can be transformed to balanced sets by unbiased
case dropping and thus perform better in training and evaluation metrics. In particular,
it is hard to produce toxicity data, especially chronic data, for chemicals with animals
and humans, and this lack of data can translate into unbalanced datasets and difficulties
for classification and regression techniques. Bias in datasets can be treated with different
approaches, such as undersampling [21], as well as distribution following [18]. However,
it is clear that the availability of more data is beneficial for methods and interpretations
of androgen receptor pathway modulators and their toxicity potential. In addition, the
most relevant biological assay, be that chimp, rat or human, or their use in consensus, may
provide the best experimental setup for classification data.

Evidently, there are considerations to be taken about how to classify kinetic data [22,23]
in many cases of biological interest, e.g., in antibody interactions, complex formation
steady-state is not reached [22]; to distinguish between binding sites; and that analyzing
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interaction data from biosensor instruments is based on the simplified assumption that
larger biomolecules interactions are homogeneous [23]. Also, that for the CoMPARA
challenge [6], the organizers (EPA) used the thresholds determined in the CERAPP project
and applied them to AR concentration-response values (AC50) from the literature, using
the following scheme among several possible:

• Strong: Activity concentration < 0.09 µM
• Moderate: Activity concentration 0.09–0.18 µM
• Weak: Activity concentration 0.18–20 µM
• Very Weak: Activity concentration 20–800 µM
• Inactive: Activity concentration > 800 µM

The use of ML in the form of DNN with relevant, user-specified features on a balanced
set provides better results as compared to the same features in a multivariate logistic
fashion, as well as purely structure- or ligand-based approaches, as seen by better AUC,
MCC, and other values.

4. Materials and Methods
4.1. Training Set

The training set of compounds was provided during the CoMPARA challenge for
predicting androgen receptor activity for chemicals [6], and included curated data with
SMILES strings. This training set was composed of state-of-the-art experimental data
from ToxCast [24], Tox21 [25], and DrugBank [26] databases, amounting to 1673 chemical
compounds with 205 positives (binders), and 1468 negatives (nonbinders). Binders were
coded as actives (“1”), nonbinders were coded as inactives (“0”). The SMILES strings were
used as present in the files. Given that the training set was heavily unbalanced, the training
set was balanced using pandas tools v. 0.25.3 [27].

4.2. Independent Evaluation Set

The evaluation data set was also provided in the CoMPARA challenge [6] from
different databases being completely independent from the training set: EPA’s NCCT
collected and curated PubChem data (64 sources) [6,28]. After including only binding data,
there were 3882 compounds in the evaluation data set, composed of 446 positives (binders)
and 3437 negatives (nonbinders). No balancing was performed for the evaluation set for
an unbiased evaluation of the models.

4.3. Features

The structures for the human, chimp, and rat androgen receptor were downloaded
from the PDB [29] (codes 3v49, 1t7r, and 3g0w) based on their resolution (1.4, 1.7, and
1.95 Å, resp.), completeness of sequence, and relevance of the complex. Protein X-ray crystal
structures were preprocessed with the Protein Preparation Wizard from Schrödinger v.
2019 [30]. Docking scores were generated with Glide XP v. 2019 [31] centered on the
orthosteric site of AR using 15 Å inner box and 40 Å outer search boxes, that differ
from default settings. The results of each docking run were used as structure-based
features: ‘HumDockScore’, ‘ChimpDockScore’, and ‘RatDockScore’ for the docking scores
in kcal/mol of the human, chimp, and rat AR structures, respectively. The average of
the docking scores for the three protein targets was also computed and stored as feature
‘AVG’ [32–34].

For ligand-based features, Extended connectivity fingerprints (ECFP), circular topology-
based representations of compounds, were calculated with ChemAxon v. 2010 [35]. Dis-
tances between compound fingerprints were calculated by Tanimoto similarity using
OpenBabel v. 2019 [36], giving ligand-based features named ‘avgD_Act’ and ‘avgD_Inact’,
respectively, for the calculated distance to the average of known active and inactive com-
pounds of the ECFP fingerprint for each compound.

Naïve Bayesians (NBs) were constructed using the means and standard deviations of
the docking scores of actives to the chimp receptor, and the probability P given for each
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group ‘P_Act_dockChimp’, and ‘P_Inact’, respectively, were used as statistical features,
as well as their ratio and Bayesian prediction (feature ‘PredBayes’) corresponding to which
value of P calculated to each distribution was greater, with binding = 1, and nonbinding = 0,
corresponding to ratio > 0.5 and ratio < 0.5, respectively.

Another feature created was ‘predMLogR’, the probability from a multivariate logistic
classifier using these variables, as calculated in [8]. ‘PredBindingClass’ is also a feature,
defined as the binary value for this predicted probability, i.e., ‘PredBindingClass’ = 1 if
‘predMLogR’ > 0.5, or else ‘PredBindingClass’ = 0. This is a distinct feature from the NB
prediction above.

For comparison, the cddd group of latent-space encoded ligand-based descriptors
was also used as described in the original publication [37].

4.4. Models

Three types of model were run: Deep Neural Networks (DNN), and for comparison,
Random Forest (RF), and Graph Convolutional Neural Networks (CNN). Two types of
featurization were used for DNN and RF: the cddd groups of ligand-based descriptors; and
our own, user-specified features from structure-based (docking), ligand-based (fingerprint
distances), and statistically based features. RF and DNN were run both as Classifiers
(models I and II, respectively), and for comparison, as Regressors too (III and IV) with
deepchem v. 2.3.0 [17]. Two types of featurizations were used: (1) user-specified fea-
tures calculated for the compounds (‘HumDockScore’, ‘RatDockScore’, ‘ChimpDockScore’,
‘AVG’, ‘P_Act_dockChimp’, ‘P_Inact’, ‘PredBayes’, ‘ratio’, ‘avgD_Act’, ‘avgD_Inact’, ‘Pred-
BindingClass’, ‘predMLogR’; see Section 4.3 Features, above); and (2) the cddd groups
of ligand-based descriptors [37] (RF_cddd V, DNN_cddd, VI). The cddd featurization
(512 features exploring the continuous descriptor space) have been reported to give good
results for ML models for prediction of compound properties such as solubility and quanti-
tative structure–activity relationships, as well as ligand-based virtual screening tasks [37].
CNN were also employed using atom-based featurization (VII). CNN models tend to be
largely used for graphical data, with pixels or vector representations, for example. They
have also been reported to give good results on compound property predictions; a study
found that CNNs where atom properties are used instead of pixels are more accurate
than DNN for predicting quantum chemical energies [10]. Batch size was 128 and 10-fold
cross-validation was used, as well as the ROC-AUC as guiding metric. The models I and II
probed features “max_features”: [“auto”, “sqrt”, “log2”, None]. Number of epochs was
also varied for the DNN models, from 1 to 30,000,000.

4.5. Metrics

In all cases, the task classification or regressor was the “binding Class” status of the
compounds, that is, coded 1 for binders and 0 for nonbinders that represented experimental
actives and inactives for androgen receptor. Validation metrics included Area-Under-the
Curve (AUC) measurements of the Receiver-Operator Curve of true positive and false
positive rates, that range from 0 (complete misclassification) to 1.0 (complete classifica-
tion), precision, recall, Matthews correlation coefficient (MCC), F1-score, and accuracy as
determined by sklearn [38].

A confusion matrix has four fields: true positives (TP), true negatives (TN), false posi-
tives (FP), and false negatives (FN). Specificity (SP) is calculated as: TN/(TN+FP), Precision:
TP/(TP+FP), Recall (sensitivity, SE): TP/(TP+FN), Accuracy (Acc.): (TP+TN)/(TP+FP+FN+TN),
and MCC. MCC is calculated as:

MCC = (TP·TN − FP·FN)/
√

((TN + FN)·(TN + FP)·(TP + FN)·(TP + FP)) (1)

F1 score is calculated as:

F1 = 2 ((Precision × Recall))/((Precision + Recall)) (2)
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Dataset diversity analysis and visualization were performed with PUMA: Platform
for Unified Molecular Analysis, Version 1.0 (Mexico City, Mexico, 2020) [39], as well as
with t-map [40] that uses MHFP6 fingerprints [41].

All data and code were run on jupyter notebooks and python, deposited, and made avail-
able on github at: https://github.com/AlfonsoTGarcia-Sosa (accessed on 14 February 2021).

5. Conclusions

The aim of the present work was to generate androgen receptor (AR) binding classifi-
cation models by deep neural networks (DNNs) with different featurizations and compare
them to other methods such as random forests (RF), graph convolutional neural networks
(CNN), multivariate logistic regression, regressors, and experimental data. DNNs with
12 user-specified structure-, ligand- and statistically based features were found to perform
best at categorizing AR binders and nonbinders. They outperformed DNN with cddd
features, as well as RF, and CNN methods, and regressors (expectedly, given the sharp
category bins), as well as the same features in a multivariate logistical fashion, as well as
simple docking. Implications are that explainability in machine learning (ML) features is
important, as physicochemically and biologically relevant descriptors can perform best
at the categorization for this particular AR dataset. In addition, different ML techniques
may be best suited for different application tasks, with DNN performing better than RF
given the overtraining seen in the RF models. CNN models may require more information,
such as the protein-ligand binding pose or trajectories. The cddd featurizations may well
perform better for property prediction and virtual screening. In the present work, the
Chimp structure-based features performed better than other protein-derived features in
this work and others published elsewhere. Improvement is still possible, given that the
Matthews correlation coefficient (MCC) can be higher for the evaluation compounds even
if the predictions obtained were good and improved on predictions for a golden standard
of AR reference compounds. Better data, that is, less unbalanced and with better struc-
tural diversity, may help improve future predictions, as could be combining the present
features with other ML and non-ML techniques, such as boosting or molecular dynamics
simulations, respectively.
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