Direct amination of nitroquinoline derivatives via nucleophilic displacement of an aromatic hydrogen

Jakub Wantulok ¹, Daniel Swoboda ¹, Jacek E. Nycz ¹,*, Maria Książek ², Joachim Kusz ², Jan Grzegorz Malecki ¹ and Vladimír Kubíček ³

- ¹ Institute of Chemistry, Faculty of Science and Technology, University of Silesia in Katowice, ul. Szkolna 9; PL-40007 Katowice, Poland; jakub.wantulok1@gmail.com (J.W.); daniel.swoboda@us.edu.pl (D.S.); jan.malecki@us.edu.pl (J.G.M.)
- ² Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland; maria.ksiazek@us.edu.pl (M.K.); joachim.kusz@us.edu.pl (J.K.)
- ³ Charles University Prague, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic; kubicek@faf.cuni.cz (V.K)
- * Correspondence: jacek.nycz@us.edu.pl; Tel.: +48-32-359-1446 (J.N.)

Table of Contents

Table 1, 2 and 3	S2-S3
¹ H, ¹³ C and HMQC; and MS spectra of the compounds	S4-S31

Bond lengths [Å]					
4b			4	łc	
N2-C8	1.473(4)	N12-C15	1.464(3)	N22-C25	1.467(3)
C3–Cl1	1.733(3)	C18-C110	1.533(4)	C28-C210	1.542(2)
N2-O1	1.213(4)	N12-011	1.218(3)	N22-O22	1.233(3)
N2-O2	1.208(3)	N12-012	1.228(3)	N22-O21	1.213(3)
N1-C9	1.365(4)	N11-C12	1.316(3)	N21-C22	1.316(3)
N1-C1	1.316(4)	N11-C18A	1.368(2)	N21-C28A	1.371(3)
		Angles (°)		
4b			4	łc	
N2-C8-C9	119.0(2)	N12-C15-	117.4(2)	N22-C25-	121.3(2)
		C16		C24A	
N2-C8-C7	117.7(3)	C14A-C15-	121.8(2)	C26-C25-	116.6(2)
		N12		N22	
C2-C3-Cl1	120.1(3)	C210-C28-	122.4(2)	C18A-	122.4(2)
		C28A		C18-C110	
C4-C3-Cl1	119.3(2)	C27-C28-	120.2(2)	C17-C18-	120.9(2)
		C210		C110	
O2-N2-O1	123.7(3)	O12-N12-	123.5(2)	O21-N22-	123.5(2)
		O11		O22	

Table S1. Selected bond lengths (Å) and angles (°) for 4b and 4c.

Table S2. Selected bond lengths (Å) and angles (°) for 5a.

Bond lengths [Å]						
5a						
N120-C117	1.466(4)	N220-C217	1.472(5)	N320-C317	1.464(6)	
N316-C318	1.362(5)	N316-C315	1.318(5)	N39-C310	1.419(4)	
N216-C215	1.317(5)	N216-C219	1.359(4)	N29-C210	1.414(4)	
N116-C115	1.323(6)	N116-C118	1.362(4)	N19-C110	1.423(5)	
Angles (°)						
C118-C117-N120	118.5(3)	C110-C117-N120	119.3(3)	C110-N19-C19A	126.8(3)	
C210-C217-N220	120.4(3)	C219-C217-N220	116.6(3)	C110-N19-C18A	124.6(3)	
C310-C317-N320	119.7(3)	C210-N29-C28A	124.1(3)	C210-N29-C29B	124.2(3)	
C318-C317-N320	117.3(3)	C310-N39-C39B	126.4(3)	C310-N39-C38A	123.4(3)	

Bond lengths [Å]						
5b						
C110-N19	1.416(4)	C210-N29	1.413(4)			
N120-O11	1.355(4)	N220-O21	1.365(4)			
C117-N120	1.304(4)	C217-N220	1.297(4)			
C112-O12	1.228(4)	C212-O22	1.219(4)			
Angles (°)						
5b						
N120-C117-C110	115.2(3)	C218-C217-N220	127.2(3)	C110-N19-C19A	124.7(2)	
C118-C117-N120	127.3(3)	C210-C217-N220	115.4(3)	C110-N19-C18A	126.3(2)	
C119-C112-O12	121.1(3)	O22-C212-C211	122.2(3)	C210-N29-C28A	126.2(2)	
C111-C112-O12	121.2(3)	O22-C212-C219	120.9(3)	C210-N29-C29A	125.6(2)	

Table S3. Selected bond lengths (Å) and angles (°) for 5b.

Fig. S1b. $^{13}C\{^{1}H\}$ NMR (CDCl₃; 100.6 MHz) spectrum of the 4a.

Fig. S2a. 1 H NMR (CDCl₃; 400.2 MHz) spectrum of the 4b.

Fig. S2b. $^{13}C\{^{1}H\}$ NMR (CDCl₃; 100.6 MHz) spectrum of the 4b.

Fig. S2c. MS spectrum of the 4b.

Fig. S3a. ¹H NMR (CDCl₃; 500.2 MHz) spectrum of the 4c.

Fig. S3b. $^{13}C\{^{1}H\}$ NMR (CDCl_3; 125.8 MHz) spectrum of the 4c.

Fig. S3c. 1 H - 13 C HMQC spectrum of the 4c.

Fig. S3d. $^{1}H - ^{13}C$ HMQC spectrum (aromatic range) of the 4c.

Fig. S4a. 1 H NMR (CDCl₃; 400.2 MHz) spectrum of the 4d.

Fig. S4b. $^{13}C\{^{1}H\}$ NMR (CDCl₃; 125.8 MHz) spectrum of the 4d.

Fig. S4c. ^{1}H - ^{13}C HMQC spectrum of the 4d.

Fig. S4d. ¹H - ¹³C HMQC spectrum (aromatic range) of the **4d**.

Fig. S5a. ¹H NMR (CDCl₃; 500.2 MHz) spectrum of the 5a.

Fig. S5b. $^{13}C\{^{1}H\}$ NMR (CDCl₃; 125.8 MHz) spectrum of the 5a.

Fig. S5c. ^{1}H - ^{13}C HMQC spectrum of the 5a.

Fig. S5d. ^{1}H - ^{13}C HMQC spectrum (aromatic range) of the 5a.

Fig. S5e. MS spectrum of the 5a.

Fig. S6a. ¹H NMR (CDCl₃; 500.2 MHz) spectrum of the 5b.

Fig. S6b. ¹H NMR (DMSO-d₆; 500.2 MHz) spectrum of the 5b.

Fig. S6d. $^{13}C\{^{1}H\}$ NMR (CDCl₃; 125.8 MHz) spectrum of the 5b.

Fig. S6e. ^{1}H - ^{13}C HMQC spectrum of the 5b.

Fig. S6f. ¹H - ¹³C HMQC spectrum (aromatic range) of the 5b.

Fig. S6g. MS spectrum of the 5b.

Fig. S7a. Chromatogram of the structure similar to molecule 5c.

Fig. S7b. MS of the structure similar to molecule 5c.

Fig. S8a. ¹H NMR (CDCl₃; 500.2 MHz) spectrum of the 5d.

Fig. S8b. $^{13}C\{^{1}H\}$ NMR (CDCl₃; 125.8 MHz) spectrum of the 5d.

Fig. S8c. $^{1}H - ^{1}H COSY$ spectrum of the 5d.

Fig. S8d. $^{1}H - {}^{1}H COSY$ spectrum (aromatic range) of the 5d.

Fig. S8e. ^{1}H - ^{13}C HMQC spectrum of the 5d.

Fig. S8f. ¹H - ¹³C HMQC spectrum (aromatic range) of the 5d.

Fig. S8g. MS (ES-TOF) spectrum of the 5d.

Fig. S8e. MS (AP-TOF) spectrum of the 5d.

Fig. S9. ¹H NMR (CDCl₃; 400.2 MHz) spectrum of the 6a.

Fig. S10b. $^{13}C\{^{1}H\}$ NMR (CDCl₃; 100.6 MHz) spectrum of the 6b.

Fig. S10c. MS spectrum of the 6b.

Fig. S11a. ¹H NMR (CDCl₃; 400.2 MHz) spectrum of the 6c.

Fig. S11b. ${}^{13}C{}^{1}H$ NMR (CDCl₃; 100.6 MHz) spectrum of the 6c.

Fig. S11c. 1 H - 13 C HMQC spectrum of the 6c.

Fig. S11d. ¹H - ¹³C HMQC spectrum (aromatic range) of the **6c**.

Fig. S11e. MS spectrum of the 6c.

Fig. S12a. 1 H NMR (CDCl₃; 500.2 MHz) spectrum of the 6d.

Fig. S12b. $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (CDCl₃; 125.8 MHz) spectrum of the 6d.

Fig. S12c. 1 H - 13 C HMQC spectrum of the **6d**.

Fig. S12d. ¹H - ¹³C HMQC spectrum (aromatic range) of the **6d**.

Fig. S12e. MS spectrum of the 6d.