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Abstract: Industrial preparation of graphene has been a research hotspot in recent years. Finding an
economical and practical carbon source and reducing the cost of production and instrument is signifi-
cant in industrial graphene production. Coal is a common carbon source. Efficient improvement and
utilization in the cleaning of coal has recently been a popular research area. In this study, we devel-
oped a set of graphene preparation methods based on Anhui Huainan’s low-rank gas coal (HNGC).
Using self-built experimental equipment, benzene precursor was prepared from HNGC and used
as carbon source to realize graphene growth. The quality of the graphene was characterized by a
high-resolution microscope and Raman spectrometer. This study provides a new idea and method
for the preparation of low-rank coal-based graphene.

Keywords: refined benzene; distillation; graphene; low-rank coal; CVD; preparation

1. Introduction

Graphene, as a new type of two-dimensional material, has attracted wide attention
from the scientific research community because of its unique crystal structure and electronic
properties, which make it have unique electrical, mechanical and thermal properties.
Graphene has a good application prospect in various physical and engineering fields.
Therefore, obtaining cheap and controllable technology for the industrial preparation of
graphene has been widely pursued by the scientific research community. In this area,
obtaining a clean and pure carbon source from cheap and common matter to realize
graphene is one of the most popular research areas in recent years. Coal is a kind of carbon-
containing organic matter with polycyclic aromatic hydrocarbon as the main structural
unit, which exists widely in nature. As a big coal country, China is rich in coal resources.
Anhui, as a big coal province, has huge coal reserves, and Huainan gas coal is the main coal
resource. However, the conversion efficiency of coal is low because the coal is still limited
in practical applications of burning. Nowadays, coal, as the main fossil energy in China,
will inevitably pollute the environment during processing and utilization. When coal is
burned, most sulfur is oxidized to sulfur dioxide (SO2), which is discharged with flue gas,
polluting the atmosphere and endangering plant growth and human health. Coal mining
destroys groundwater resources and exacerbates water shortage in water-deficient areas.
Coal mining leads to the emission of waste gas (mainly toxic and harmful gases such as
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SO2, CO2 and CO), which harms the atmospheric environment. In addition, there are few
inorganic substances in coal, mainly water and minerals, which reduce the quality and
utilization value of coal. Therefore, the development of converting coal into clean and
efficient materials enhances the utilization value of coal and provides new ideas for tapping
the potential industrial value in materials. Among them, the preparation of graphene from
coal is a popular research area in this field in recent years [1–4]. It is of great significance for
promoting green energy, creating a series of major innovative products with graphene as the
core technology, effectively improving the traditional economic model of coal enterprises
and creating green high-tech industries.

As for the research of transforming graphene from coal, it has been reported in China
that anthracite and Shanxi lignite are used as carbon sources to prepare graphene. The steps
are graphitizing coal first, and then oxidizing and reducing graphite [5]. This method
has a low cost in the process of converting coal to graphite, but the graphene produced
is of poor quality. The precursor carbon sources of graphene preparation in China are
mainly lignite, with low metamorphism and high volatile matter, and anthracite, with high
metamorphism and a high degree of internal molecular ordering. For lignite, with low
metamorphism, its aromatic lamellar structure is open and disordered with small aromatic
lamellar and a large proportion of amorphous structure; for anthracite, it is character-
ized by a higher directional order of aromatic lamellae and larger aromatic lamellae [6].
Therefore, at present, the technologies are not suitable for Huainan gas coal as the main
coal resource in Anhui province. The structural characteristics of Huainan gas coal are
a low degree of internal molecular ordering and a loose carbon skeleton. Therefore, it is
necessary to treat coal with new technology and produce a new precursor carbon source to
prepare graphene. The preparation of graphene from Huainan gas coal can make a new
development and breakthrough in the innovative and efficient utilization mode of coal
resources in Anhui province.

At present, the method of converting coal into graphene is basically to change large-
particle coal into a precursor carbon source before preparing graphene, and the precursor
carbon source can be in the form of molecules, or gas. The preparation method of a
precursor carbon source includes the preliminary screening of raw coal, impurity removal,
pyrolysis (dry distillation), gasification and liquefaction of coal [7,8]. The usual preparation
methods of graphene fabrication from precursor carbon sources include chemical synthesis,
mechanical exfoliation, pyrolysis of silicon carbide and chemical vapor deposition [9–14].
The chemical synthesis method is synthesized by utilizing specific chemical reagents,
which is simple to prepare, but the quality of graphene is poor. The mechanical exfoliation
method is used to separate graphene layers from highly oriented pyrolytic graphite by
special adhesive tape, and finally obtain monolayer graphene because of the weak van der
Waals interaction between graphene layers. Graphene obtained by this method has good
quality and is suitable to study the physical properties (such as electrical properties) of
graphene. However, the amount of graphene generally obtained is small. It is not suitable
in the application of industrial production. The pyrolysis method is used to pyrolyze
silicon carbide at high temperature, the approach is to sublimate the silicon layer and
leave a carbon layer as graphene, but the huge preparation temperature and the high price
of silicon carbide single crystal is not suitable for industrial production. The chemical
vapor deposition (CVD) method is used to synthesize graphene by chemical reaction
and employs a cheap and stabilized catalytic substrate. Following this method, the large
area and high-quality graphene can be obtained from the rapid preparation process and
inexpensive instrument, which is suitable for industrial production with the prospect in
application of converting coal into graphene.

Generally, from the basic principle of chemical vapor deposition (CVD) growth of
graphene, polycrystalline copper foil is applied as an economical and efficient catalyst
to reduce the decomposition barrier of carbon precursors, and the most common carbon
precursor is gaseous methane [10–14]. When the methane molecules are adsorbed on the
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copper surface, the dehydrogenation is realized by the catalysis of the copper, then the
carbon atoms nucleate and finally realize the graphene synthesis.

However, methane is a flammable and explosive gas produced during the coal mining
process, which makes the current process complicated and increases the cost of fabrica-
tion. In recent years, in order to realize the large-scale industrial production of graphene,
more and more new precursor carbon sources have appeared. It is found that graphene
can be prepared via some solid and liquid precursor molecules [15–17]. This method
can greatly reduce the temperature of graphene chemical synthetization and obtain high-
quality graphene. When applied to industry, a liquid source is more convenient to store
and use than a gaseous source, and the growth mechanism determines that it can grow
at a low temperature [18]. Therefore, in terms of energy consumption and convenience,
using benzene as carbon source is far more advantageous than using methane as carbon
source to prepare graphene, as it can greatly reduce the cost of material preparation. Dif-
ferent from the principle of preparing graphene from methane, when graphene is grown
from liquid benzene at high temperature (~1000 ◦C), benzene molecules are completely
decomposed into carbon atoms. The fractured carbon atoms participate in the nucleation
of graphene and form uniform monolayer of graphene with high quality. In addition,
at a lower growth temperature (300 ◦C–500 ◦C), benzene does not need to be completely
decomposed, but only undergoes simple dehydrogenation and then bonding. As benzene
does not need to break all its chemical bonds in carbon atoms in this process, the absorption
energy is low and high-quality graphene is formed, which has considerable potential in
the graphene fabrication in a more convenient and economical way [19].

Our study will explore the technology of producing graphene from gas coal to
graphene based on the technical route process: from gas coal to coal tar to benzene.
That is,

1. Pyrolyzing gas coal in high temperature and oxygen-free environment to produce
coal tar;

2. Separating crude benzene and other fractions by distillation;
3. Refining industrial-grade benzene as carbon source to grow graphene.

In view of the mature industrial foundation of the preparation of refined benzene,
we focused on the CVD growth of monolayer graphene with benzene as carbon source.
For the graphene samples obtained, we used an optical microscope, a scanning electron
microscope and Raman spectroscopy to characterize the graphene. In addition, we exam-
ined the number of layers and the morphology features of graphene grown under different
growth conditions, such as benzene flow rates and growth temperature, in order to explore
the possibility of the low-temperature preparation of the graphene in the future.

2. Results and Discussion

Coal tar is pyrolyzed from collected gas coal at high temperature under oxygen-free
conditions, and then crude benzene is obtained by distillation, and refined benzene with
high concentration is obtained by refining. The method of producing graphene with refined
benzene as carbon source is as follows: introduce 50 sccm hydrogen gas and keep the
tube furnace at 1060 ◦C for three hours. The main purpose of heating for 3 h with added
hydrogen is to remove the oxide on the surface of copper foil, and to make the surface
smooth by the reconstruction of atoms within the annealing process. After that, reduce the
temperature to 500 ◦C and reduce the flow rate of hydrogen to 30 sccm (the hydrogen partial
pressure, in this case, is 55.6 Pa), meanwhile introduce benzene for 40 min. The flow rate of
benzene can be controlled by adjusting the trimming valve in order to avoid the influence
and waste caused by volatilization of benzene when the substrate is heated up. Generally,
after reaching the growth temperature, the needle valve should be adjusted properly to
make benzene fill in the furnace tube at a required rate continuously, which makes the
pressure in the tube maintain at the required vacuum condition. After finished the sequence,
the ball valve and trimming valve are required to be closed, then the temperature of the
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tube is cooled down to room temperature naturally. After that, graphene is transferred to
silicon oxide by standard wet transfer process.

We found that the growth condition of preparing monolayer and multilayer graphene
from benzene at high temperature generally has a large range. Since benzene is liquid, it
is hard to control the content of benzene with a traditional flow controller process, so the
amount of benzene used is supposed to be accurately adjusted by using a trimming valve.
The content of benzene can be controlled and monitored by a vacuum gauge. We control the
carbon flux in the growth process by different benzene partial pressures in order to study
the graphene quality at different benzene partial pressure. We found that at the partial
pressure of benzene of 1.1 Pa, the optical microscopic results show the nearly completely
monolayer graphene with a regular and uniform surface. From the image of optical
microscopy (Figure 1a), the high quality of samples was shown due to the few textures and
large area of the graphene domain. The red part represents monolayer graphene, and the
dark part represents the overlap of the graphene which is not completely removed on the
opposite side of the copper foil after the transferring process. The density of defects in the
material is also very low. The Raman results (Figure 1b) are completely consistent with
the Raman peaks of monolayer graphene. They are essentially free of the D peak that is
characterized by the quality of graphene following nano-defects [20]. And the intensity of
the G peak is close to 1:2 with that of the 2D peak, which also confirms that high-quality
monolayer graphene instead of multiple graphene has been obtained [21,22].

Figure 1. (a) Optical microscope diagram of graphene prepared by refined liquid benzene at high temperature of 1060 ◦C
with benzene partial pressure of 1.1 Pa; (b) corresponding Raman spectrum diagram of graphene in (a).

In order to examine the details of the graphene quality, we used the scanning electron
microscope (SEM) to show the detailed morphology and the material quality of graphene,
as shown in Figure 2a,b. SEM images also show that graphene has extremely high quality,
with few domains, defects and impurities. At the same time, the boundaries of graphene
are relatively uniform; the degree of the damaged parts and the curl at the graphene edge
is extremely low. The zoom-in SEM image also shows the excellent quality (Figure 3b) near
the boundary area, without much more domain structure and multilayer graphene on the
silicon oxide.

In order to realize the possibility of growing graphene at a low temperature in future,
we examined the number of layers and the morphologic features of graphene grown with
different growth conditions, such as benzene flow rates and growth temperature. In our
experiment, while the partial pressure of hydrogen with a flow rate of 30 sccm was 55.6 Pa,
the partial pressure of benzene ranged from 17.3 Pa to 1.1 Pa, and the growth temperature
ranged from 1060 ◦C to 500 ◦C. When the partial pressure of benzene is 17.3 Pa but the
growth temperature is still kept at 1060 ◦C, it is observed under an optical microscope
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(Figure 3a) that the prepared graphene has a relatively regular morphology. However,
because of the obvious difference in brightness and darkness, it is not difficult to find
that the brighter area is mono-layer graphene, while the darker area is the double-layer
or multi-layer graphene. We estimated the ratio and found that the ratio of bright area
to dark area is nearly 1:1, demonstrating that about half of the areas of the graphene are
multiple layer graphene. The detailed image and structure of the results can be observed
by SEM (Figure 3b) and there are obvious damaged areas on the surface. At the edge of the
graphene, because of this reason, the D peak caused by defects is very high, which indicates
that there are a large number of defects in this sample. Due to the large number of defects,
the domain wall of the grown graphene/graphite sheet is dense, which makes the graphene
seriously damaged at the edge in the transferred process (Figure 3c) with poor thickness
uniformity, but we found that the ratio of the intensity of G peak to 2D peak in the Raman
spectrum is also nearly 1:2, demonstrating that the monolayer graphene will be obtained at
the partial pressure of benzene of 17.3 Pa.

While in order to decrease the amount of benzene, when the partial pressure of
benzene is reduced to 4.4 Pa, the quality of the material is obviously decreased and
there are some bi-layer/multi-layer graphene structures with the obvious brightness at
the edge because of the large thickness from the SEM image (Figure 3e) although the
domains in graphite/graphene in the material are greatly reduced. The results of Raman
characterization show that the intensity of the D peak is nearly the same and the 2D peak is
enhanced with the ratio of I(G):I(2D) = 1.21 (Figure 3f), demonstrating that the proportion
of monolayer graphene is lower in comparison with high flow rate benzene [23].

The way to grow graphene at high temperature is to break the benzene ring into
carbon atoms and obtain a large area of graphene through the catalytic reaction at copper
substrate. However, the benzene ring can directly remove hydrogen atoms and then re-
bonds each other to generate monolayer graphene at a low temperature. Following this
process, industrial production costs can be greatly reduced. We also prepared graphene at
a temperature of 500 ◦C and the partial pressure of benzene of 1.1 Pa. Under the optical
microscope, it was observed that the prepared graphene was very regular (Figure 3g) but
there were more textures and domains in the material than the graphene obtained at high
temperature. The magnified image of the SEM showed that there were some domain
walls and defects on the sample (Figure 3h). Combined with Raman spectroscopy [24],
we found that although the morphology characterization has obtained a relatively regular
graphene material (Figure 3i), the ratio of G peak to 2D peak is 1.11, indicating that a certain
amount of monolayer graphene with multilayer structure are mixed. However, the domain
structures are relatively small, and the detailed structure characterization is difficult. Weak
D peaks in the Raman spectrum confirmed that there are still some defects in the material.
Related experiments also found that when the temperature is between 600 ◦C and 900 ◦C,
it is difficult to grow into uniform monolayer graphene, for the benzene molecules are not
completely decomposed into atoms, but are cracked into some disordered macromolecular
chains. At the same time, these macromolecular chains are connected with each other
and form graphene films, due to the low migration and diffusion of benzene molecules at
a low temperature, thus reducing the quality of monolayer graphene. Since the growth
conditions of graphene are closely related to the experimental conditions, high-quality
graphene can be obtained by precise control of experiments. How to develop graphene
growth at low temperature and achieve good economic benefits will continue.
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Figure 2. (a) SEM image of graphene prepared by liquid benzene at high temperature of 1060 ◦C with benzene partial
pressure of 1.1 Pa. G refers to the parts covered by graphene; (b) enlarged SEM image of the graphene surface.

Figure 3. (a,d) are optical microscopic images of graphene at obtained 1060 ◦C by liquid benzene (at this time, the pressure
of benzene exclusion is 55.6 Pa), and the partial pressures of benzene are 17.3 Pa, 4.4 Pa, respectively. (b,c,e,f) are the
corresponding electron micrographs and Raman spectra of graphene. (g) is the optical microscopic image of graphene
obtained at 500 ◦C by liquid benzene while the partial pressure of benzene is 1.1 Pa, with (h,i) to be the correspondent
electron micrographs and Raman spectra of graphene.

3. Experimental Method

In this study, the coal samples analyzed were from the No. 13-1 coal seam of the
Upper Shihezi Formation in Huainan coalfield, northern China. In order to ensure the
freshness of the samples, groove sampling was carried out in the underground working
face. In the laboratory, vitrified coal strips (removing gangue) were obtained by a man-
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ual separation method and they were ground and sieved until the particle size reached
200 mesh. The ground powder sample was then dried and stored in a sealed bag for testing.

The ultimate analysis of Huainan gas coal (HNGC) samples was carried out on a Vario
EL element analyzer, German EA Company (Frankfurt, Germany). The contents of carbon
(Cdaf, %), hydrogen (Hdaf, %), nitrogen (Ndaf, %), and sulfur (Sdaf, %) were the average
of two parallel samples, and the oxygen (Odaf, %) content was obtained by difference
subtraction. According to the GB/T212-2008 standard, the moisture (Mad, %), ash (Aad, %)
and volatile matter (Vdaf, %) of HNGC samples were determined. The experimental results
are presented in Table 1.

Table 1. Basic properties of HNGC samples after demineralization.

Proximate Analysis (%) Ultimate Analysis (%)

Mad Aad Vdaf Cdaf Hdaf Odaf Ndaf Sdaf
1.37 18.26 33.82 83.3 5.27 9.85 1.23 0.35

ad: air-dried basis; daf: dry ash-free basis.

The specific preparation process of this project is shown in Figure 4a, and the process
is divided into:

1. Drying distillation of pulverized coal to produce coal tar;
2. Continuously distilling coal tar to obtain crude benzene;
3. Distilling crude benzene continuously to obtain refined benzene;
4. Collecting refined benzene into a liquid pool;
5. Preparing graphene by chemical vapor deposition.

The method of obtaining high-temperature dry distillation coal tar by high-temperature
pyrolysis of coal annealing 200 g HNGC to 1000 ◦C by using a high-temperature pyrolysis
program analyzer. The instrument for the preparing of graphene using the CVD method
from coal consists of three parts: a tubular furnace of HF-Kejing with a vacuum gauge
monitoring the pressure inside, connected to a liquid/gas flow rate control system and
a vacuum pump unit (as shown in Figure 4b). The liquid/gas flow rate control system
includes a gas circuit connected to the gas mixing cabinet and a benzene container respec-
tively, and both the flow rate of hydrogen and benzene can be controlled in the whole
experiment. The gas mixing cabinet is used to control and monitor the flow rate of hydro-
gen during the CVD process. The liquid flux control system is employed for collecting and
controlling the refined benzene (the recovery rate of benzene reaches 99.99%) flow rate.
Copper foils are placed in quartz tubes and placed at different positions in a tube furnace
to obtain different growth temperatures. Polycrystalline copper with a thickness of 25 µm
is generally used as a substrate. For the benzene flow rate in the experiment, the trimming
valve and vacuum gauge are used to ensure a proper partial pressure of benzene and a
steady flow rate. The final condensing device is used to condense and collect residual liquid
benzene (melting point is about 5 ◦C) with ice for environmental and economic reasons.
After adding benzene into the container, it is necessary to solidify benzene with liquid
nitrogen and evacuate the air in the container in order to ensure the purity of benzene
in the whole experiment [25]. Graphene grown on copper foil needs to be transferred to
other substrates. By spin-coating photoresist onto the sample and immersing the sample
in 0.1 mol/L ammonium persulfate solution, the copper foil is dissolved, and graphene
is transferred to the silicon oxide substrate. Graphene samples are generally character-
ized by the Raman spectrum with an excitation wavelength of 532 nm, which is a rapid
and non-destructive characterization method and very sensitive to the lattice structure
of graphene [26]. G peak (1580 cm−1), D peak (1350 cm−1) and 2D peak (2680 cm−1) are
caused by defects or disorders that can be used to preliminarily determine the number of
graphene layers, the stacking order between layers and the defect and impurity density,
respectively. The light transmittance of the optical microscope and the interference of the
substrate can be used to directly characterize the graphene layers transferred to the silicon
oxide substrate. In addition, the overall roughness and uniformity of graphene can be
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preliminarily characterized. The scanning electron microscope can be used to characterize
the surface morphology details of graphene [27].

Figure 4. (a) Preparation process of graphene with coal as carbon source; (b) schematic diagram of the device for preparing
graphene from the benzene; (c) the photo of the instrument; (d) the photo of the benzene container immersed in liquid
nitrogen to solidate the benzene inside; (e) the photo of the device for controlling the benzene flow rate.

4. Conclusions

We used coal as a raw material to obtain refined benzene after repeated distillation and
refining, and then used it as the precursor of carbon source to obtain monolayer graphene
at high temperature (1060 ◦C) by chemical vapor deposition with different benzene flow
rates; the relatively uniform monolayer graphene structure was also obtained by low
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temperature CVD. Our results show that in future industrial applications, replacing the
traditional gas carbon source of methane gas from the Huainan coal with the liquid benzene
can produce high-quality monolayer graphene with an economic preparation cost, and has
the characteristics of high efficiency and good safety.

Our results also found that the layers and structure of graphene made with CVD
process are highly related to the flow rate of benzene. We are working on quantifying the
relationship and trying to control the structure and layers. We believe, in future, this method
can be used for convenient, flexible and economic growth control of monolayer/multi-
layer graphene, which can lay a foundation for the exploration and development of new
functions of coal.
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