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Abstract: A framework for the stochastic description of relaxation processes in flexible macro-
molecules including dissipative effects has been recently introduced, starting from an atomistic view,
describing the joint relaxation of internal coordinates and global degrees of freedom, and depending
on parameters recoverable from classic force fields (energetics) and medium modelling at the contin-
uum level (friction tensors). The new approach provides a rational context for the interpretation of
magnetic resonance relaxation experiments. In its simplest formulation, the semi-flexible Brownian
(SFB) model has been until now shown to reproduce correctly correlation functions and spectral
densities related to orientational properties obtained by direct molecular dynamics simulations of
peptides. Here, for the first time, we applied directly the SFB approach to the practical evaluation of
high-quality 13C nuclear magnetic resonance relaxation parameters, T1 and T2, and the heteronuclear
NOE of several oligosaccharides, which were previously interpreted on the basis of refined ad hoc
modelling. The calculated NMR relaxation parameters were in agreement with the experimental
data, showing that this general approach can be applied to diverse classes of molecular systems, with
the minimal usage of adjustable parameters.

Keywords: NMR spin relaxation; stochastic modelling; oligosaccharides

1. Introduction

Monitoring and describing molecular dynamics are an important area of investigation in
modern physical chemistry. Internal and global motions in solution affect directly or indirectly
most spectroscopic methods aimed at the characterization of non-rigid molecules such as
Nuclear Magnetic Resonance (NMR) relaxation [1–3], fluorescence anisotropy decay [4], time-
resolved X-ray [5] and in single-molecule experiments such as site-directed spin-labelled
electron spin resonance [6,7], Förster fluorescence resonance energy transfer [8] and atomic
force microscopy [9].

In particular, Nuclear Magnetic Resonance (NMR) spectroscopy is known to be an im-
portant and powerful experimental technique for the observation of the dynamic properties
of macromolecules. Some of the macroscopic physical observables are the relaxation times
T1, T2 and the heteronuclear Overhauser Effect (NOE) of 15N, 2H and 13C nuclei, which
are extremely sensitive to molecular motions, leading to the possibility to understand
localized dynamics (e.g., studying conformational motions specifically in the active site of a
protein) and to build a spatially distributed map of the macromolecule flexibility. However,
interpretative tools can be complex due to several factors such as (i) the necessity to take
into account diverse kinds of interactions, e.g., dipolar 15N and 13C and quadrupolar 2H
interactions, (ii) the coupling between global reorientation and large amplitude motions of
entire domains, as well as limited local readjustments and restricted single-residue motions.
In general, different spectroscopic techniques probe different physical observables, which,
in addition, provide information on motions taking place at different time-scales. It seems
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therefore particularly important to introduce relevant sets of coordinates that are adapted
to the observable involved in a particular experimental approach. This consideration is
especially relevant in the case of NMR relaxation [1,10], for which interpretative methods
for internal relaxation processes were introduced early on in the form of adaptable simple
spectral densities, as in the Lipari–Szabo (LS) approach [11,12], or later, in the form of
explicit dynamic models, as for instance in the Slowly Relaxing Local Structure (SRLS)
model [13,14].

A rational approach to the in silico interpretation of the relaxation data of flexible
molecules needs two distinct elements. First, a precise geometrical analysis is needed in
order to relate properly the dynamic model to a set of experimentally observable quantities.
In particular, care should be taken to account for the tensorial nature of the spectroscopic
interactions, by defining proper local frames of reference. Next, the relaxation times or other
observables are linked to time correlation functions/spectral densities of a specific nature
that can be evaluated on the basis of the dynamic model itself. The latter can range from
a full atomistic molecular dynamics (MD) simulation-based approach to simplified semi-
analytical expressions for the correlation functions. At an intermediate level of complexity,
several approaches have been devised based on various approximations. For instance, one
can make the simplifying assumption that local motions are due, at least for semi-rigid
systems, to a network of dynamically coupled neighbours (network model) [15,16] or
caused by partial diffusive reorientation within a local potential (SRLS) [14]. One can
also assume specific statistical characteristics (diffusive or Brownian dynamics, fractional
Brownian dynamics [17], etc.).

Recently, a systematic approach [18,19] has been proposed that tries to combine a
detailed definition of the molecular geometry and a correct description of the associated
dynamical features. The method attempts to include the information on the molecule
geometry, topology and interactions into a general stochastic model, which can be tailored
at different levels of accuracy introducing specific approximations based on time-scale
separation arguments. A master equation can be obtained and, with suitable approxima-
tions, numerically solved. In particular, a basic implementation, named the Semi-Flexible
Brownian (SFB) model, has been developed for the description of partially flexible macro-
molecules in solution. Until now, the SFB model has been applied only to model cases,
and no examples have been shown of calculations of directly measurable observables. In
this paper, we present a full investigation of the SFB performance for the evaluation of
13C nuclear magnetic resonance relaxation parameters, T1 and T2, and the heteronuclear
NOE of several oligosaccharides, which were previously interpreted on the basis of ad hoc
stochastic modelling. In particular, we discuss the computational strategy and implementa-
tion of the method and detailed results, which confirm how the calculated NMR relaxation
parameters are in satisfactory agreement with the experimental data, and we suggest that
this general approach can be safely applied to diverse classes of molecular systems, with a
minimal usage of adjustable parameters.

The paper is organized as follows. Section 2 summarizes the basic features of the SFB
model and its implementation. The main results are shown in Section 3. A discussion is
provided in Section 4.

2. Methods
2.1. Observable and Geometric Setup

A spectroscopic observable is written usually in terms of suitable time correlation
functions or spectral densities, and their fast and accurate evaluation are the main objective
of a dynamic modelling approach. The distinction between the description of the dynamics
of the molecular system and the definition of the physico-chemical observable is often
skipped over. We review here some salient points useful for the general comprehension of
the topic.

Magnetic relaxation times T1, T2 and the NOE of 15N, 13C and 2H nuclei depend on
dipolar (15N and 13C) and quadrupolar (2H) interactions, on chemical shift anisotropy
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and cross-correlation effects. In general, we define the following set of reference frames:
(i) a Laboratory Frame (LF), i.e., a fixed external frame; (ii) an “Attached” Frame (AF),
i.e., a frame attached to the molecule, where the exact way of defining the AF is actually
model-dependent and is left temporarily undefined, noting that the choice of the AF while
straightforward for a rigid molecule is not trivial for a flexible system; (iii) an interaction
frame (µF), i.e., a local frame linked to the AF where some specific second-rank tensor
spectroscopic property µ is well represented. Depending on the problem at hand, this could
be for instance the frame where the 13C-1H dipolar or 13C chemical shift (CSA) tensors
are diagonal [20,21]. In Figure 1, an example is shown of the frame choice to compute the
NMR relaxation data of a 13C-1H probe. The set of Euler angles Ω or other orientational
coordinates transforming from the Laboratory Frame (LF) to the AF is time dependent and
linked to the local restricted motions, large amplitude conformational motion and global
orientation of the molecule. The dipolar and CSA frames are usually supposed to be rigidly
attached to the AF. Here, only the Dipolar Frame (DF) is shown as an example.

Figure 1. (a) Choice of the reference atoms in the calculation of NMR relaxation observables.
(b) Relevant reference frames: Laboratory (LF), Molecular (AF) and Dipolar Frames (DF). The sets of
Euler angles to transform among the frames are also shown. The sets Ω and ΩD are time dependent,
while ΩAD is time independent.

Let us briefly describe the evaluation of the dipolar contribution, as an example, to
clarify the relation between the dynamical model and the physical observable. As is shown
in Appendix A, the NMR relaxation observables are functions of the spectral densities of
the correlation functions:

Gk,k′(t) = CD2 ∗
k,0 (ΩD(0))D2

k′ ,0(ΩD(t)) (1)

Here, C is a constant depending on the interaction type and geometry (cf. Appendix A).
Using the properties of Wigner rotation matrices [22], the correlation functions can be
rewritten as:

Gk,k′(t) = C
2

∑
m,m′=−2

D2 ∗
m,0(ΩAD)D2

m′ ,0(ΩAD)D2 ∗
k,m(Ω(0))D2

k′ ,m′(Ω(t)) (2)

Here, ΩAD = (0, π/2, 0). Thus, the expression for the correlation functions simplifies to:

Gk,k′(t) = C
2

∑
m,m′=−2

d2
m,0(π/2)d2

m′ ,0(π/2)D2 ∗
k,m(Ω(0))D2

k′ ,m′(Ω(t)) (3)
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with d2
0,0(π/2) = −1/2, d2

±1,0(π/2) = 0 and d2
±2,0(π/2) =

√
3/8.

The spectral densities for the dipolar interaction are thus calculated as:

Jk,k′(ω) =
∫ ∞

0
dteiωtGk,k′(t) = C

2

∑
m,m′=−2

d2
m,0(π/2)d2

m′ ,0(π/2)j(k,k′)
m,m′ (ω) (4)

The spectral densities j(k,k′)
m,m′ (ω) are directly recoverable from the description of the

molecular motion, which can be now discussed independently of the specific interaction,
described at the desired level of accuracy (from an all-atom molecular dynamics treatment
at one extreme to a description based on a rigid diffusive model at the opposite extreme).

2.2. Dynamic Model

In this work, we used the semi-flexible Brownian (SFB) model that was developed
for the description of partially flexible macromolecules in solution, introduced in [18,19].
The SFB approach describes, in essence, the case of a flexible rotating molecule, assum-
ing a generic energy function defined by harmonic coordinates and their conjugate mo-
menta. The model neglects large-amplitude activated torsional kinetics and/or crankshaft
motions [23,24], as well as second-order precession effects. Internal motions are described
as a harmonic or boson bath, which retains full coupling with external motion and includes
dissipative/stochastic effects. The SFB has been derived as a simple tool to describe molec-
ular relaxation processes based on the Fokker–Planck (FP) [25] equations, which is suitable
and computationally efficient even in problems of large dimensions and is solidly founded
on structural information comparable to a standard molecular dynamics simulation, but
amenable to a semi-analytical solution. Details of the model and the proposed methods
for the numerical solution were presented in [19], and we limited ourselves here to a brief
summary. The SFB model is based on the Fokker–Planck equation for the probability
density ρ(Q, t):

∂ρ(Q, t)
∂t

= −Γ̂ρ(Q, t)

Γ̂ = Γ̂0 + Γ̂int = −
N

∑
i,j=1

ωio
ij

∂

∂xi
p(x)

∂

∂xj
p(x)−1 +

N

∑
i=1

3

∑
p=1

ωint
ip xi M̂p (5)

Here, Q = (Ω, x), where Ω denotes the set of Euler angles describing the orientation
of the molecular frame AF (vide supra) with respect to the LF and x = (x1, . . . , xi, . . . , xN)
is a set of dimensionless harmonic degrees of freedom, obtained as linear combinations of
internal coordinates, their conjugate momenta and external (angular) momentum compo-
nents. M̂p, p = 1, 2, 3, are the components of the infinitesimal rotation operator in the AF.
As discussed in [18], this is the simplest description, recoverable from an initially atom-
istic model, of the Brownian dynamics of a non-rigid body, accounting for inertial effects
and coupling between rotation and change of shape. Indeed, it describes the semi-rigid
macromolecule of n atoms (or extended atoms, when a coarse-grained representation of
the molecule is used), as a rotator coupled to N = 6n− 9 (i.e., 3n− 6 internal coordinates,
3n− 6 internal momenta and 3 components of the angular momentum L vector) harmonic
degrees of freedom, in a fashion quite similar to standard spin-boson quantum mechanical
approaches. Here, p(x) = exp(−x2/2)/(2π)N/2 is the Gaussian distribution of the N
modes, and the equilibrium distribution is ρ(Q) = p(x)/8π2; ωio

ij is a (non-symmetric)

matrix describing the relaxation of the internal coordinates, while ωint
ip dictates the coupling

between rotation and internal coordinates. Both ωio
ij and ωint

ip can be derived from the
molecular geometry and the generalized friction tensor obtained from a hydrodynamic
description, which defines the dissipative forces acting on the molecule [18]. Approximate,
but accurate semi-analytical solutions for correlation functions/spectral densities of inter-
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est, e.g., as given by Equation (4), have been presented based on extended perturbation
treatments, which take advantage of the spin-boson structure of the time evolution operator
to tackle the system dimensionality and devise a fast way of evaluating spectral densities
of interest for the interpretation of nuclear magnetic resonance relaxation experiments [19].

2.3. Parameterization and Implementation

Matrix elements ωio
ij and ωint

ip are directly recoverable from an internal generic poten-
tial function defined with respect to natural coordinates, referred to as a local-minimum
(reference) structure, and the related Hessian matrix, i.e., the Force Field (FF), as well as the
friction tensor obtained for the local-minimum structure using a generalized hydrodynamic
model [18,26]. Notice that more sophisticate choices are possible: a collection of reference
molecular structures can be used, with or without the possibility of dynamical interconver-
sion, the evaluation of internal energy directly from a short molecular dynamics simulation
via a variance-covariance matrix evaluation for all the system internal coordinates and
more refined approaches to evaluate dissipative properties, beyond the hydrodynamic
limit. We focused on the most convenient choices from the computational point of view;
the method was implemented in the form of an integrated package, the Stochastic Aug-
mented Liouville Equation Method (SALEM), which operates from scratch reading the
single reference structure, evaluating all the internal parameters based on some assumed
FF and the basic macroscopic properties of the medium (e.g., viscosity) and estimating the
relaxation parameters, based on the procedure summarized in Appendix A, through the
calculation of the spectral densities defined in Equation (4). Following previous work [26],
we allow as the only free parameter of the model the hydrodynamic average radius of
atoms Reff, which is necessary for the calculation of the friction tensor.

Despite the high complexity of the basic theory, its application is relatively straight-
forward. As mentioned above, we planed to make SALEM made available soon as an
open-access tool to the scientific community. Presently, the code is in its beta test phase
of development, but it is already capable of (i) reading a PDB file together with very few
other data, part of which comes from the experimental setup (temperature, viscosity, type
of probe and its geometry, spectrometer frequency) and part from the physico-chemical
properties (FF, hydrodynamic boundary conditions and effective radius), (ii) performing,
currently invoking Tinker [27], a simple energy minimization, (iii) evaluating the friction
tensor, (iv) defining the parameters contained in Equation (5), (v) evaluating the spectral
densities defined in Equation (4), and finally, (vi) evaluating the relaxation times and
NOEs. The computational times for the systems considered here went from a fraction of a
second to a few minutes on a standard Nvidia GPU for gaming (larger molecules would
require GPUs equipped with additional RAM memory and CUDA processes). Before fully
publishing the code, at least in a pre-release phase useful for interested researchers, we
intend to streamline the various operations under a general intuitive GUI and simplify the
compilation procedures under common operating systems.

3. Results

We tested our method on a collection of oligosaccharides, for which previous analyses
based on specific stochastic models were presented. The following systems are considered:

• α-L-Rhap-α-(1→2)-α-L-Rhap-OMe (two residues, R2R); experimental data: Reference [28]
• β-D-Glcp-(1→6)-α-D-[6-13C]-Manp-OMe (two residues, BGL); experimental data:

Reference [29]
• β-D-Glcp-(1→3)[β-D-Glcp-(1→2)]-α-D-Manp-OMe (three residues, GGM); experimen-

tal data: Reference [30]
• α-D-Manp-(1→2)-α-D-Manp-(1→6)-α-D-[6-13C]-Manp-OMe (three residues, TRI); ex-

perimental data: Reference [31]
• α-L-Fucp-(1→2)-β-D-Galp-(1→3)-β-D-GlcpNAc-(1→3)-β-D-Galp-(1→4)-D-Glcp-

(five residues, LNF); experimental data: Reference [31]
• γ-cyclodextrin (eight residues, GCY); experimental data: Reference [32]
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Estimates of 13C-NMR parameters T1, T2 and the NOE for selected CH and CH2 probes
were calculated by SALEM starting from a local-minimum structure (Figures 2–7) and the
related Hessian matrix. These were obtained through the Tinker 8 program package [27]
using the popular MM3 FF [33–35] (see References [36,37] for a review of several FFs
for carbohydrates). Minimization was performed through the minimize tool of Tinker
with an “RMS gradient per atom criterion” of 0.01 Å. The Hessian matrix was calculated
through the Tinker utility testhess. In the hydrodynamic model used to evaluate the
friction tensor by SALEM, four quantities were required, namely: the temperature, the local
viscosity, the hydrodynamic boundary conditions and the effective radius of the atoms,
Reff. Temperature and viscosity were set by the experimental conditions. For sugars in
water or polar solvents, stick boundary conditions can be considered appropriate. The only
true free parameter was the effective radius.

Figure 2. Local-minimum structure of the R2R system. Atoms of the active probe are highlighted
as spheres.

Figure 3. Local-minimum structure of the BGL system. Atoms of the active probe are highlighted
as spheres.

Figure 4. Local-minimum structure of the GGM system. Atoms of the active probes are highlighted
as spheres.
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Figure 5. Local-minimum structure of the TRI system. Atoms of the active probe are highlighted
as spheres.

Figure 6. Local-minimum structure of the LNF system. Atoms of the active probes are highlighted
as spheres.

Figure 7. Local-minimum structure of the GCY system. Atoms of the active probe are highlighted as
spheres. The torsional angle θ for the rotation of the hydroxymethyl group with respect to the sugar
ring is also highlighted.
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For each system, the optimal Reff parameter was determined as the one providing
the lowest sum of squared percentage deviations for T1, T2 and the NOE over the entire
ensemble of experimental data available for that system. In Tables 1–6, for each set of available
experimental data (typeset in boldface in the tables), the optimal theoretical estimates are
reported for each system together with the value of the associated optimal Reff and with
the percentage deviations from the experimental T1, T2, and the NOE (e(T1), e(T2), e(NOE),
respectively).

Table 1. Experimental and calculated relaxation parameters for system R2R. The optimal Reff and the percentage deviations
from the experimental T1, T2, and the NOE (e (T1), e (T2), e (NOE), respectively) are also reported.

Probe: 13CH, Solvent: DMSO-d6, T/K: 298.2, Visc./(Pa s): 2.19× 10−3

Freq./MHz T1/ms T2/ms NOE Reff e (T1) e (T2) e (NOE)

600.1 exp. 440.0 402.6 2.361
calc. 449.9 420.5 2.308 1.6 2.3 4.4 2.3

700.0 exp. 475.6 432.9 2.215
calc. 497.5 456.1 2.150 1.6 4.6 5.4 2.9

Table 2. Experimental and calculated relaxation parameters for system BGL. The optimal Reff and the percentage deviations
from the experimental T1, T2 and the NOE (e (T1), e (T2), e (NOE), respectively) are also reported.

Probe: 13CH2, Solvent: DMSO-d6/D2O 7:3 Molar Ratio, T/K: 253, Visc./(Pa s): 2.82× 10−2

Freq./MHz T1/ms T2/ms NOE Reff e (T1) e (T2) e (NOE)

400 exp. 150 32.5 1.03
calc. 177 31.4 1.22 1.8 17.8 3.2 18.5

600 exp. 284 30.1 1.08
calc. 344 33.1 1.21 1.8 21.1 10.1 12.2

T/K: 263, Visc./(Pa s): 1.42× 10−2

Freq./MHz T1/ms T2/ms NOE Reff e (T1) e (T2) e (NOE)

400 exp. 117 48.0 1.19
calc. 121 53.7 1.26 1.8 3.6 11.8 5.9

600 exp. 205 55.0 1.10
calc. 219 61.0 1.23 1.8 6.9 10.9 12.1

T/K: 293, Visc./(Pa s): 4.30× 10−3

Freq./MHz T1/ms T2/ms NOE Reff e (T1) e (T2) e (NOE)

400 exp. 127 106 1.86
calc. 124 107 1.78 1.8 2.0 1.0 4.5

600 exp. 166 128 1.58
calc. 170 133 1.51 1.8 2.6 3.8 4.5

900 exp. 219 152 1.45
calc. 249 153 1.33 1.8 13.6 0.6 8.3

The analysis of the various oligosaccharides studied in this work allowed us to attempt
a comparative analysis of the model performance and sensitivity to some experimental
parameters, with the caveat that a systematic investigation, which goes beyond the prelimi-
nary nature of this work, should be performed. The most important factor is temperature.
Increasing the temperature implies lowering the viscosity, and thus increasing the princi-
pal values of the diffusion tensor. Assuming that in the range of temperatures at which
the experiments were carried out, the conformational free energy of the molecules is not
changed, increasing the diffusion tensor caused a decrease of the characteristic correlation
times, which became closer to the extreme narrowing limit condition. This, in turn, had the
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effect of increasing T1 and T2, as well as making them much closer to each other (since the
rotational anisotropy is low in small molecules). Reaching the extreme narrowing limit, the
spectral densities tended to become proportional to the overall tumbling correlation time,
thus losing sensitivity on the conformational dynamics. Therefore, a worse performance of
the model was observed and should not be unexpected at lower temperatures/larger vis-
cosities. In the case of BGL at 253 K (Table 2), which is the case of a lower temperature and
a solvent with higher viscosity, we found an agreement with experimental data within 20%
of the relative error, which was the worst scenario in all the test calculations presented here.
Simulations around 298 K and in solvents with a similar viscosity showed an agreement
within 10% with the experiments.

Table 3. Experimental and calculated relaxation parameters for system GGM. The optimal Reff and the percentage
deviations from the experimental T1, T2 and the NOE (e (T1), e (T2), e (NOE), respectively) are also reported.

Solvent: D2O, T/K: 298.6, Visc./(Pa s): 1.09× 10−3, Probe: 13CH on C-2′

Freq./MHz T1/ms T2/ms NOE Reff e (T1) e (T2) e (NOE)

600.13 exp. 456.2 416.6 2.398
calc. 453.2 425.7 2.299 1.8 0.7 2.2 4.1

699.87 exp. 491.1 447.4 2.267
calc. 503.8 463.6 2.148 1.8 2.6 3.6 5.3

Probe: 13CH on C-2′′

Freq./MHz T1/ms T2/ms NOE Reff e (T1) e (T2) e (NOE)

600.13 exp. 491.6 450.2 2.466
calc. 470.0 444.6 2.358 1.8 4.4 1.2 4.4

699.87 exp. 524.5 483.9 2.346
calc. 521.5 483.6 2.203 1.8 0.6 0.1 6.1

Table 4. Experimental and calculated relaxation parameters for system TRI. The optimal Reff and the percentage deviations
from the experimental T1, T2 and the NOE (e (T1), e (T2), e (NOE), respectively) are also reported.

Probe: 13CH2, Solvent: DMSO-d6/D2O 7:3 Molar Ratio, T/K: 298, Visc./(Pa s): 3.66× 10−3

Freq./MHz T1/ms T2/ms NOE Reff e (T1) e (T2) e (NOE)

500 exp. 144.79 111.57 1.670
calc. 143.60 108.21 1.481 2.2 0.8 3.0 11.3

600 exp. 167.59 117.67 1.460
calc. 169.40 118.20 1.422 2.2 1.1 0.4 2.6

700 exp. 188.36 124.55 1.320
calc. 197.78 127.06 1.385 2.2 5.0 2.0 4.9

The relaxation data of the penta-saccharide LNF were calculated on five probes located
on the five different sugar rings. At fixed temperature and viscosity conditions, NMR
relaxation depends on local geometry (i.e., how the C-H probes are oriented with respect
to the diffusion tensor principal axes) and on the conformational free energy. In [38], the
authors studied the effect of the shape of the R2R Potential Energy Surface (PES) along
the Ψ angle on T1, T2, and the NOE. From MD simulations, it was found that the PES was
bistable. The calculation of the NMR relaxation data with the harmonic approximation
around the most important minimum led to a 10% error with respect to the calculation done
with the bistable potential. The reader is encouraged to inspect Figure 5 of [31]. It reported
the 2D PESs along the four (Φ, Ψ) couples of dihedral angles connecting the different
sugar units. The PES along the angles connecting rings C and D was bistable, while the
other three surfaces could be considered, as first approximation, harmonic. A one-to-one
mapping between the probe position and the conformational free energy was not possible.
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Globally, the approximations done in the SFB model implied that the estimation of a few
NMR relaxation data was outside the experimental error (e.g., T1 for the A and the E rings),
and the overall agreement was 5–10% worse than the agreement found with the diffusive
chain stochastic model applied in the past [31].

Table 5. Experimental and calculated relaxation parameters for system LNF. The optimal Reff and the percentage deviations
from the experimental T1, T2 and the NOE (e (T1), e (T2), e (NOE), respectively) are also reported.

Solvent: DMSO-d6/D2O 7:3 Molar Ratio, T/K: 303, Visc./(Pa s): 1.40× 10−3, Probe: 13CH on C-1 (A Residue)

Freq./MHz T1/ms T2/ms NOE Reff e (T1) e (T2) e (NOE)

600 exp. 305.0 222.0 1.460
calc. 349.5 213.0 1.489 3.2 14.6 4.1 2.0

700 exp. 354.0 244.0 1.420
calc. 418.6 227.9 1.451 3.2 18.2 6.6 2.2

Probe: 13CH on C-1 (B residue)

Freq./MHz T1/ms T2/ms NOE Reff e (T1) e (T2) e (NOE)

600 exp. 319.0 241.0 1.600
calc. 336.3 214.4 1.423 3.2 5.4 11.0 11.0

700 exp. 366.0 264.0 1.530
calc. 400.3 229.9 1.386 3.2 9.4 12.9 9.4

Probe: 13CH on C-1 (C residue)

Freq./MHz T1/ms T2/ms NOE Reff e (T1) e (T2) e (NOE)

600 exp. 318.0 225.0 1.630
calc. 336.6 235.9 1.438 3.2 5.9 4.8 11.8

700 exp. 360.0 240.0 1.560
calc. 395.9 254.1 1.392 3.2 10.0 6.9 10.7

Probe: 13CH on C-1 (D residue)

Freq./MHz T1/ms T2/ms NOE Reff e (T1) e (T2) e (NOE)

600 exp. 372.0 286.0 1.740
calc. 365.8 275.2 1.525 3.2 1.7 3.8 12.3

700 exp. 404.0 302.0 1.690
calc. 421.2 296.7 1.469 3.2 4.3 1.7 13.1

Probe: 13CH on C-1 (E residue)

Freq./MHz T1/ms T2/ms NOE Reff e (T1) e (T2) e (NOE)

600 exp. 325.0 259.0 1.490
calc. 390.1 270.1 1.728 3.2 20.0 4.3 15.6

700 exp. 374.0 262.0 1.500
calc. 455.5 289.9 1.677 3.2 21.8 10.6 11.8

The sensitivity of the method at different spectrometer frequencies can be also dis-
cussed. Even if, again, a trend cannot be strictly highlighted (since there were many factors
playing at the same time: geometry, PES, temperature/viscosity, experimental setup), the
simulations at lower frequencies tended to be more accurate than those at higher frequen-
cies. This observation can be rationalized, partially, as follows: by increasing the Larmor
frequency, NMR relaxation data were more affected by the tails of the spectral densities,
which were in turn more sensitive to the fast-relaxing processes, i.e., internal motions
described by the simplified harmonic PES in the SFB model.
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Table 6. Experimental and calculated relaxation parameters for system GCY. The optimal Reff and the percentage deviations
from the experimental T1, T2 and the NOE (e (T1), e (T2), e (NOE), respectively) are also reported.

Probe: 13CH2, Solvent: DMSO-d6/D2O 7:3 Molar Ratio, T/K: 323, Visc./(Pa s): 2.90× 10−3

Freq./MHz T1/ms T2/ms NOE Reff e (T1) e (T2) e (NOE)

400 exp. 123.5 75.00 1.430
calc. 130.7 81.59 1.458 1.8 5.9 8.8 1.9

600 exp. 187.0 85.00 1.330
calc. 213.3 96.58 1.400 1.8 14.1 13.6 5.3

900 exp. 314.5 110.9 1.250
calc. 370.3 109.4 1.384 1.8 17.7 1.3 10.7

T/K: 343, Visc./(Pa s): 2.30× 10−3

Freq./MHz T1/ms T2/ms NOE Reff e (T1) e (T2) e (NOE)

400 exp. 134.1 107.2 1.630
calc. 132.5 96.8 1.498 1.8 1.1 9.7 8.1

600 exp. 183.8 130.1 1.510
calc. 203.6 117.3 1.405 1.8 10.8 9.9 6.9

900 exp. 274.0 154.8 1.330
calc. 335.3 137.0 1.366 1.8 22.4 11.5 2.7

Overall, the SFB model tended to perform better at higher temperatures, lower vis-
cosities and lower spectrometer frequencies and for molecules with a limited internal
flexibility. However, our purpose here was to propose the SFB approach as a general tool,
with minimal parametrization, capable of interpreting diverse experimental observations
without resorting to ad hoc hypotheses concerning the molecular geometry, internal PES,
dissipative properties and so on. The cases presented in this study showed that in the best
conditions, relative errors within 5% were found, which usually were compatible with
experimental errors. The average percentage deviation over all calculations was 8.5, 5.8
and 7.7 for T1, T2 and the NOE, respectively. The maximum percentage deviation was
22.4, 13.6 and 18.5, respectively. Such results are significant, if one considers the relative
drastic approximations included in the SFB model, confirming—at least for this class of
systems—its performative capabilities, which are amenable to be considerably improved by
lifting some approximations, like the harmonic nature of the internal PES and the upgrade
of the estimates of the friction tensor to include hydrophilicity/hydrophobicity effects. The
latter notation was based on the observed estimates of the only free parameter of the model,
the effective radius Reff. The optimal Reff value was found in the range 1.6–2.2 Å for all
systems except LNF, for which a higher value of 3.2 Å was obtained, which could be due
to the molecule being particularly hydrophilic. This, in turn, implies that the molecular
dimensions should be increased to take into account a layer of water surrounding the
penta-saccharide.

4. Discussion

The results reported in the previous section showed that the SFB model reproduced the
observed relaxation times and the NOEs of the set of oligosaccharides reported here, with an
average accuracy of 5–10%, thus proving the ability of capturing the long-range dynamics of
these systems. The study took into account molecules of increasing size, and there was no
significant drift in the performance of the model with increasing molecular dimensions. Such
an observation is promising, suggesting that the model could profitably be employed for large
macromolecules, provided they can be still described as semi-flexible objects, i.e., molecules
that mainly fluctuate about a minimum free energy structure (e.g., globular proteins).

The agreement with experimental data was in most cases within 10% relative error. In
some cases, higher errors up to 22% were observed. Such discrepancies were expected since
free energy profiles along sugars’ Φ, Ψ tetrahedral angles exhibited bistable energy profiles,
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while only harmonic energy profiles were used in SALEM. In the last case analysed here,
GCY, as discussed in [32], the rotation of the hydroxymethyl group with respect to the
sugar ring described by the torsional angle θ—see Figure 7— featured two energy minima
at θ ≈ −70 and θ ≈ +50, with the former conformation being the predominant one. The
Tinker energy minimization led to a structure with six over eight units in the predominant
conformation, and the results shown above were those obtained running SALEM on one of
these six probes.

Still, the present general purpose SFB model showed a good performance if compared
with straightforward results obtained via molecular dynamics simulations, especially
considering that O(µs) trajectories were required in the latter case [28,39]. As mentioned
before, the only free parameter here was Re f f , which was adapted case by case, but as a rule
of thumb, a starting value of 2 Å usually provided good agreement with the experiment.

Perspectives

The main purpose of this paper was to validate, for a class of similar molecular systems
for which we have directly controllable published NMR relaxation data, a general stochastic
model based on a minimal amount of assumed phenomenological information. In our
previous work [18,19], we formulated a systematic approach to describe the dynamics
of a non-rigid molecule, based on elaborations from fundamental classical and statistical
mechanics, in the form of a family of multidimensional Fokker–Planck operators for
the probability density of internal and external degrees of freedom, retaining inertial
effects and dissipation. The SFB model is the simplest implementation of this general
methodology [19]. This approach seemed particularly relevant for the description of large
molecular objects, such as proteins, which represent the main domain of application in
the authors’ perspective. The method provides a physically sound framework and is
amenable to an efficient treatment at a modest computational price. We are currently
working along three possible lines of development: (i) first of all, we are applying the
present implementation of the SFB approach for interpreting NMR relaxation data of
medium-sized folded proteins in solution, without additional improvement, barring a
more accurate evaluation of the internal PES; (ii) at the same time, we are also exploring
the effects of including large amplitude motions in the SFB model to account for locally
more mobile regions; finally, (iii) we are streamlining SALEM, to make its usage as clear
as possible with intuitive interfaces and instructions, to release it as a free tool for the
general community.
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Appendix A. Derivation of Relaxation Observables: An Example

The contribution of the dipolar interaction to T1 was reviewed here as an example.
Following Abragam [20], the (time-dependent) perturbation magnetic Hamiltonian can be
written in spherical coordinates as:

h̄Ĥ1 =
2

∑
k=−2

F(2,k)
LF (t)Â(2,k)

LF (A1)

with the constraints F(2,−k) = (−)kF(2,k)∗ and Â(2,−k) = Â(2,k)†. The rank zero term does
not appear in the previous equation since the dipolar interaction has null average, while
the rank one term is null because of the axial symmetry of the interaction. For the dipolar
interaction, the time dependent functions F(2,k) read:

F(2,0)
LF =

1− 3 cos2(βLD)

r3 = −2
1
r3 D2

0,0(ΩD) (A2)

F(2,1)
LF = − sin(2βLD)e−iγLD

r3 =
1
2

√
8
3

1
r3 D2

1,0(ΩD) (A3)

F(2,2)
LF =

sin2(β)e−2iγ

r3 =

√
8
3

1
r3 D2

2,0(ΩD) (A4)

while the operators Â(2,k) are given by:

Â(2,0)
LF = α

[
−2

3
ÎZŜZ +

1
6
(

Î+Ŝ− + Î−Ŝ+
)]

(A5)

Â(2,1)
LF = α

[
ÎZŜ+ + Î+ŜZ

]
(A6)

Â(2,2)
LF =

1
2

α Î+Ŝ+ (A7)

with α = −3γIγS h̄/2. In deriving the perturbative solution to the spin density matrix
relaxation, the spectral densities of the following correlation functions are required:

Gk,k′(t) = F(k)∗(0)F(k′)(t) =
c∗k ck′

r6 D2
k,0(ΩD(0))D2

k′ ,0(ΩD(t)) (A8)

where the coefficients ck can be deduced from the rightmost equalities of
Equations (A2)–(A4).

Using the properties of Wigner matrices [22]:

D2
k,0(ΩD) =

2

∑
m=−2

D2
k,m(ΩA)D2

m,0(ΩAD) (A9)

Substitution into Equation (A8) leads to:

Gk,k′(t) =
c∗k ck′

r6

2

∑
m,m′=−2

D2 ∗
m,0(ΩAD)D2

m′ ,0(ΩAD)×

×D2
k,m(ΩA(0))D2

k′ ,m′(ΩA(t)) (A10)

The usual assumption carried out in deriving the final equations is to consider cross-
correlation functions (i.e., those with k 6= k′) equal to zero. However, this is not true
in general and holds only for rigid bodies with an isotropic or axial diffusion tensors.
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Following again Abragam, the time evolution of the spin density matrix in the interaction
representation, σ̂∗ = eiĤ0tσ̂e−iĤ0t, reads:

d
dt

σ̂∗ = −∑
k,k′

∑
p,p′

e
i
(

ω
(k)
p +ω

(k′)
p′

)
t
[Â(k′)

p′ , [Â(k)
p , σ̂∗(t)]]Jk,−k′(ω

(k)
p ) (A11)

with:
Jk,−k′(ω

(k)
p ) =

∫ ∞

0
Gk,−k′(τ)e

−iω(k)
p τdτ (A12)

The operators Â(k)
p and the corresponding frequencies ω

(k)
p for the dipolar interaction read:

Â(0)
1 = −2α

3
ÎZŜZ and ω

(0)
1 = 0 (A13)

Â(0)
2 =

α

6
Î+Ŝ− and ω

(0)
2 = ωI −ωS (A14)

Â(0)
3 =

α

6
Î−Ŝ+ and ω

(0)
2 = ωS −ωI (A15)

Â(1)
1 = α Î+ŜZ and ω

(1)
1 = ωI (A16)

Â(1)
2 = α ÎZŜ+ and ω

(1)
2 = ωS (A17)

Â(1)
2 =

α

2
Î+Ŝ+ and ω

(2)
1 = ωI + ωS (A18)

In the secular approximation, only terms for which ω
(k)
p + ω

(k′)
p′ = 0 are retained. For

the dipolar (or any other axially symmetric) interaction, the expression reduces to:

d
dt

σ̂∗ = −1
2

([
Â(0)

1 ,
[

Â(0)
1 , σ̂∗

]]
J0,0(ω

(0)
1 ) +

[
Â(0)

2 ,
[

Â(0)
3 , σ̂∗

]]
J0,0(ω

(0)
2 )+

+
[

Â(1)
1 ,
[

Â(−1)
1 , σ̂∗

]]
J1,−1(ω

(1)
1 ) +

[
Â(1)

2 ,
[

Â(−1)
2 , σ̂∗

]]
J1,−1(ω

(1)
2 )+

+
[

Â(2)
1 ,
[

Â(−2)
1 , σ̂∗

]]
J2,−2(ω

(2)
1 )
)
+ h.c. (A19)

where “h.c.” stands for “Hermitian conjugate”.
The equation shows that in the case of axially symmetric interactions, there is no

need to impose that Gk,k′(t) = δk,k′Gk,k(t). As a result of the secular approximation, only
auto-correlation functions Gk,k(t) need to be considered. Otherwise, in all generality, cross-
correlation functions Gk,k′(t) may enter the calculation, since in general, they are not zero
(see Equation (A8)).

The inverse of T I I
1 is proportional to the expectation value of the ÎZ operator. Following

Abragam, for unlike spins, one obtains:

1
T I I

1
=
( µ0

4π
γIγS h̄

)2
S(S + 1)

[
1
12

J(0)(ωI −ωS) +
3
2

J(1)(ωI) +
3
4

J(2)(ωI + ωS)

]
(A20)

and the cross-relaxation:

1
T IS

1
=
( µ0

4π
γIγS h̄

)2
I(I + 1)

[
− 1

12
J(0)(ωI −ωS) +

3
4

J(2)(ωI + ωS)

]
(A21)

with the spectral densities:

J(k)(ω) =
∫ ∞

−∞
F(k)∗(0)F(k)(t)e−iωtdt (A22)
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