

Article

Comparison of CO₂ Reduction Performance with NH₃ and H₂O between Cu/TiO₂ and Pd/TiO₂

Akira Nishimura ^{1,*}, Ryouga Shimada ¹, Yoshito Sakakibara ¹, Akira Koshio ² and Eric Hu ³

- ¹ Division of Mechanical Engineering, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507, Japan; nisiaki531@ybb.ne.jp (R.S.); yoshitohockey@gmail.com (Y.S.)
- ² Division of Chemistry for Materials, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507, Japan; koshio@chem.mie-u.ac.jp
- ³ School of Mechanical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia; eric.hu@adelaide.edu.au
- * Correspondence: nisimura@mach.mie-u.ac.jp; Tel./Fax: +81-59-231-9747

Abstract: The aim of this study is to clarify the effect of doped metal type on CO₂ reduction characteristics of TiO₂ with NH₃ and H₂O. Cu and Pd have been selected as dopants for TiO₂. In addition, the impact of molar ratio of CO₂ to reductants NH₃ and H₂O has been investigated. A TiO₂ photocatalyst was prepared by a sol-gel and dip-coating process, and then doped with Cu or Pd fine particles by using the pulse arc plasma gun method. The prepared Cu/TiO₂ film and Pd/TiO₂ film were characterized by SEM, EPMA, TEM, STEM, EDX, EDS and EELS. This study also has investigated the performance of CO₂ reduction under the illumination condition of Xe lamp with or without ultraviolet (UV) light. As a result, it is revealed that the CO₂ reduction performance with Cu/TiO₂ under the illumination condition of Xe lamp with UV light is the highest when the molar ratio of CO₂/NH₃/H₂O = 1:1:1 while that without UV light is the highest when the molar ratio of $CO_2/NH_3/H_2O = 1:0.5:0.5$. It is revealed that the CO₂ reduction performance of Pd/TiO₂ is the highest for the molar ratio of CO₂/NH₃/H₂O = 1:1:1 no matter the used Xe lamp was with or without UV light. The molar quantity of CO per unit weight of photocatalyst for Cu/TiO2 produced under the illumination condition of Xe lamp with UV light was 10.2 µmol/g, while that for Pd/TiO2 was 5.5 µmol/g. Meanwhile, the molar quantity of CO per unit weight of photocatalyst for Cu/TiO2 produced under the illumination condition of Xe lamp without UV light was 2.5 µmol/g, while that for Pd/TiO₂ was 3.5 µmol/g. This study has concluded that Cu/TiO₂ is superior to Pd/TiO₂ from the viewpoint of the molar quantity of CO per unit weight of photocatalyst as well as the quantum efficiency.

Keywords: CO2 reduction; Cu/TiO2 photocatalyst; Pd/TiO2 photocatalyst; molar ratio of reductants

Citation: Nishimura, A.; Shimada, R.; Sakakibara, Y.; Koshio, A.; Hu, E. Comparison of CO₂ Reduction Performance with NH₃ and H₂O between Cu/TiO₂ and Pd/TiO2. *Molecules* **2021**, *26*, 2904. https:// doi.org/10.3390/molecules26102904

Academic Editor: Chiara Bisio

Received: 6 April 2021 Accepted: 10 May 2021 Published: 13 May 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). 1. Introduction

Because of large concerns around the world, the global warming problem is a hot area of R&D. Each country has set a goal to reduce the amount of CO₂ emissions. In Japan, the prime minister has declared the intent to reduce the effective CO₂ emissions to zero by 2050. However, the global mean concentration of CO₂ in atmosphere had increased up to 410 ppmV in September 2019, which was 25 ppmV increase from the value in 2009 [1]. Therefore, development of technologies which can reduce the amount of CO₂ in the atmosphere the is urgently required.

Solar conversion of CO₂ to fuel seems a promising procedure to solve the global warming problem for sustainable development of society. Solar energy, is the form of direct solar irradiation, is widely available and it is imperious to utilize it for solar fuel production [2]. One pathway to realize solar conversion of CO₂ is photochemical reactions. According to a literature survey by the authors, photocatalysts can convert CO₂ into fuel species such as CO, CH₄, CH₃OH, etc. [3–5]. TiO₂ is a popular photocatalyst used for

CO₂ reduction since it is convenient to obtain, inexpensive, and has strong resistance to chemicals and corrosion [6]. Pure TiO₂ can only function under UV light illumination which represent only 4% of the energy available in solar radiation [4]. CO₂ reduction performance is thus greatly improved if the TiO₂ or modified TiO₂ can function under visible light illumination.

Some studies have reported on the development of various modified TiO₂ forms [3– 5]. The modifications included loading TiO₂ with Au, Ag, Pd, Pt, Rh, Ir or bimetals (e.g., Ag-Au and Au-Pt) [7]. A hierarchical pore network and morphology to prepare the biotemplated TiO₂ catalyst [8], heteroleptic iridium complex supported on graphite carbon nitride [9], TiO₂ synthesis using superficial fluid technology [10] and N-doped reduced graphene oxide promoted nano TiO_2 [11] were attempted modifications to prepare TiO_2 to respond to visible light. According to a review paper on the surface modification of TiO_2 to enhance its CO_2 reduction performance [12], there are many approaches for the surface modification of TiO₂ such as impurity doping, metal deposition, alkali modification, heterojunction construction and carbon-based material loading. As an example of impurity doping, the CH₃OH production of Cu/TiO₂ increased with an increase in the amount of Cu doping, while the over-doping of Cu would lead to high defect density in the TiO₂, resulting in degradation of the CO₂ reduction performance [12]. Therefore, there is the optimum ratio of dopant to enhance the CO₂ reduction performance of photocatalyst. As to an example of heterojunction construction, it was reported that the photocatalytic CO₂ reduction performance over Cu/TiO₂ hollow nanoparticles was much better than that of pure TiO₂ and Cu₂O [12]. On the other hand, another recent review paper reported that not only Cu₂O but also Cu₂O/TiO₂ hybrid photocatalyst exhibited a higher CO₂ reduction performance compared to pure TiO₂ [13]. Cu₂O which has a small band gap energy (2.4 V) can help the absorption efficiency in the visible range of the solar spectrum. In addition, Cu₂O can promote the CO₂ reduction performance by concomitantly increasing the electron-hole separation efficiency. It was also reported that Cu₂O/TiO₂ proceeded the photocatalytic reaction, resulting in the increase in the selective formation of CO under the illumination condition of light whose wave length was over 305 nm.

Though various metals have been used for doping, the reductant which is a partner for CO_2 reduction is also important. According to the literatures survey by the authros, H_2O or H_2 were normally used as the reductants for CO_2 reduction [2,7]. The reaction scheme to reduce CO_2 with H_2O can be summarized as shown below according to the previous studies [14–16]:

Photocatalytic reaction

$$\Gamma i O_2 + h \nu \rightarrow h^+ + e^- \tag{1}$$

Oxidation

 $2H_2O + 4h^+ \rightarrow 4H^+ + O_2 \tag{2}$

Reduction

$$CO_2 + 2H^+ + 2e^- \rightarrow CO + H_2O \tag{3}$$

$$CO_2 + 8H^+ + 8e^- \rightarrow CH_4 + 2H_2O \tag{4}$$

The reaction scheme to reduce CO₂ with H₂ can be summarized as follows [17]: Photocatalytic reaction

$$TiO_2 + h\nu \rightarrow h^+ + e^-$$
(5)

Oxidation

$$H_2 \rightarrow 2H^+ + 2e^- \tag{6}$$

Reduction

$$CO_2 + e^- \rightarrow CO_2^-$$
 (7)

 $CO_{2^{-}} + H^{+} + e^{-} \rightarrow HCOO^{-}$ (8)

$$HCOO^{-} + H^{+} \rightarrow CO + H_{2}O \tag{9}$$

$$H^+ + e^- \rightarrow H \tag{10}$$

$$CO_2 + 8H + 8e^- \rightarrow CH_4 + 2H_2O \tag{11}$$

In the reduction process, the same number of H^+ and e^- are necessary. Since the doping metal emits the electron which is contributed to prevent the recombination of h^+ and e^- [17], the number of H^+ should be arranged. Therefore, the combination of doped metal type and reductants is important.

Though various metals have been used for doping, Cu and Pd are favorite candidates [2]. Cu can improve TiO₂ photoactivity and selectivity in the CO₂ photocatalytic application [2]. Cu can extend the absorption band to 400-800 nm [18,19] which covers the whole visible light range. It was reported that Cu/TiO2 was superior to pure TiO2. Cu/Cu+ fabricated Ti³⁺/TiO₂ can produce 8 µmol/g of CH₄ which is 2.6 times more than in the case of Ti³⁺/TiO₂ [20]. Cu/TiO₂ prepared by a facile solvothermal method had yields of CO and CH₄ up to 4.48 µmol/g and 5.34 µmol/g, which are 10 times higher than those of TiO₂ [21]. It was reported that the synthesized Cu₂O/TiO₂ showed a performance of 3.5 µmol/g of CO production while that of TiO2 was 0.1 µmol/g [18]. These results [18,20,21] were achieved by CO₂ reduction with H₂O under visible light illumination conditions. On the other hand, Pd can also extend the absorption band to 400 -800 nm [22,23], which covers the whole visible light range. Pd/TiO₂ exhibited a higher reduction performance to produce hydrocarbons and H₂ compared to pure TiO₂ [22–24]. This is due to the work function of Pd, which reflects its electron donating or accepting ability. In addition, it is thought that Pd loaded on TiO₂ functions to increase the efficiency of photogenerated electrons for the formation of reductive products. Pd/TiO₂ nanowire produced 50.4 μ mol/g of CO and 26.7 μ mol/g of CH₄ which were an improvement by 54% and 7%, respectively, compared to those of TiO_2 nanowire [25]. The other study reported that the production of Pd/TiO₂ was 3.50 µmol/g which was 2.5 times as large as that of pure TiO₂ [26]. Pd/TiO₂ prepared by a photochemical deposition method exhibited 0.28 µmol/g of CH₄ which was 14 times as large as that of pure TiO₂ (Degussa P-25) [27]. These results [25–27] were obtained from CO₂ reduction with H₂O under the visible light illumination conditions.

Though there are some reports on CO₂ reduction with H₂O or H₂ [3,27], the effect of NH₃ having 3H⁺, which is superior to H₂O and H₂, on CO₂ reduction performance of photocatalyst is not investigated yet with the exception of the previous studies conducted by Nishiura et al. using Fe [28] or Cu [29]. In addition, other doped metals have not been investigated yet from the viewpoint of comparison of several metal ion types. When the combination of CO₂/NH₃/H₂O is considered, the ion number of dopants is important to match the number of electrons emitted from the dopant with H⁺ as shown in the reaction scheme. The same number of electrons and H⁺ is necessary to produce fuel. The reaction scheme to reduce CO₂ with NH₃ can be summarized as shown below [15,30]:

Photocatalytic reaction

$$TiO_2 + h\nu \rightarrow h^+ + e^- \tag{12}$$

Oxidation

$$2NH_3 \rightarrow N_2 + 3H_2 \tag{13}$$

 $H_2 \rightarrow 2H^+ + 2e^- \tag{14}$

Reduction

$$H^+ + e^- \rightarrow H$$
 (15)

$$CO_2 + e^- \rightarrow CO_2$$
 (16)

$$CO_2^- + H^+ + e^- \rightarrow HCOO^-$$
(17)

$$HCOO^{-} + H^{+} \rightarrow CO + H_{2}O$$
(18)

$$CO_2 + 8H + 8e^- \rightarrow CH_4 + 2H_2O \tag{19}$$

It is thought that the total amount of electron which is needed for photochemical reaction is large due to the combination of two H⁺ suppliers such as NH₃ and H₂O, according to the reaction scheme. Since Pd has a high reduction performance [23,24,31] which can assist the progress of reduction reaction in CO₂ reduction with NH₃ and H₂O, this study selected Pd as a dopant as well as Cu.

The purpose of this study was to clarify the effect of doped metal type on the CO₂ reduction characteristics of TiO₂ with NH₃ and H₂O. The CO₂ reduction performance with NH₃ and H₂O using Cu/TiO₂ or Pd/TiO₂ coated on netlike glass fiber as photocatalyst has been investigated under the illumination conditions of a Xe lamp with or without UV light. In the study, the ratio of CO₂/NH₃/H₂O has been set at 1:1:1, 1:0.5:1, 1:1:0.5, 1:0.5:0.5, 3:2:3, 3:8:12, respectively, to determine the optimum molar ratio of CO₂/NH₃/H₂O with Cu/TiO₂ or Pd/TiO₂ as photocatalyst. According to the reaction scheme to reduce CO₂ with H₂O or NH₃, shown above, the theoretical molar ratio of CO₂/NH₃ to produce CO or CH₄ should be 1:1 or 1:4, respectively, while that of CO₂/NH₃ to produce CO or CH₄ should be 3:2, 3:8, respectively. Therefore, this study assumes that the molar ratio of CO₂/NH₃/H₂O = 3:2:3 and 3:8:12 are theoretical molar ratios to produce CO and CH₄, respectively.

2. Materials and Method

2.1. Preparation of Cu/TiO2 and Pd/TiO2 Photocatalyst

TiO₂ film was prepared by sol-gel and dip-coating process [29]. [(CH₃)₂CHO]₄Ti (purity of 95 wt%, Nacalai Tesque Co., Kyoto, Japan) of 0.3 mol, anhydrous C2H5OH (purity of 99.5 wt%, Nacalai Tesque Co., Kyoto, Japan) of 2.4 mol, distilled water of 0.3 mol, and HCl (purity of 35 wt%, Nacalai Tesque Co., Kyoto, Japan) of 0.07 mol were mixed for preparing TiO₂ sol solution. This study coats TiO₂ film on netlike glass fiber (SILIGLASS U, Nihonmuki Co., Kyoto, Japan) by a sol-gel and dip-coating process. Glass fiber having diameter of about 10 µm weaved as a net is collected to give a diameter of approximately 1 mm. The pore diameter of the glass fiber and the specific surface area are approximately 1 nm and $400 \text{ m}^2/\text{g}$, respectively from the specifications of the netlike glass fiber. The netlike glass fiber is composed of SiO₂ (96 wt%). The opening space of the net glass is approximately 2 mm × 2 mm. Since the netlike glass fiber has porous characteristics, the netlike glass fiber can capture TiO₂ film easily during the sol-gel and dip-coating process. Additionally, we can expect that CO_2 is more easily absorbed by the prepared photocatalyst due to the porous characteristics of the netlike glass fiber. This study cut the netlike glass fiber into disc forms having a diameter and thickness of 50 mm and 1 mm, respectively. The netlike glass disc was dipped into a TiO₂ sol solution at the speed of 1.5 mm/s and pulled up it at the fixed speed of 0.22 mm/s. After that, the net was dried out and fired under a controlled firing temperature (FT) and firing duration time (FD) to fasten TiO₂ film on the base material. This study set *FT* and *FD* at 623 K and 180 s, respectively.

After the coating of TiO₂, this study loaded Cu or Pd on the TiO₂ coated netlike glass fiber by a pulse arc plasma gun method [29] emitting nanosized Cu or Pd particles uniformly under an applied high voltage potential difference. The pulse number can control

the quantity of metal loaded on TiO₂. This study set the pulse number at 100. This study applied an ARL-300pulse arc plasma gun device (ULVAC, Inc., Chigasaki, Japan) with a Cu or Pd electrode whose diameter was 10 mm for Cu or Pd loading, respectively. After the netlike glass fiber coated with TiO₂ was set in the evacuated vessel of the pulse arc plasma gun device, the Cu or Pd electrode emitted nanosized Cu or Pd particles by applying a voltage potential difference of 200 V. The pulse arc plasma gun can evaporate Cu or Pd electrodes into fine particle form over the target in a concentric area whose diameter is 100 mm under the condition that the distance between Cu or Pd electrode and the target is set to be 160 mm. Due to the distance between Cu or Pd electrode and TiO₂ film of 150 mm, these conditions can uniformly spread Cu or Pd particles over the TiO₂ film.

2.2. Characterization of Cu/TiO2 and Pd/TiO2 Film

This study evaluated the structure and crystallization characteristics of Cu/TiO₂ film and Pd/TiO₂ film by SEM (JXA-8530F, produced by JEOL Ltd., Tokyo, Japan), EPMA (JXA-8530F, produced by JEOL Ltd., Tokyo, Japan) [29], TEM (JEM-2100/HK, JEOL Ltd., Tokyo, Japan), EDX (JEM-2100F/HK, JEOL Ltd., Tokyo, Japan), STEM (JEM-ARM200F, JEOL Ltd., Tokyo, Japan), EDS (JEM-ARM200F, JEOL Ltd., Tokyo, Japan) and EELS (JEM-ARM2007 Cold, produced by JEOL Ltd., Tokyo, Japan) [32].

These measuring instruments use electrons to characterize materials, meaning that the samples should conduct electricity. Because the netlike glass disc used for base material to coat Cu/TiO2 or Pd/TiO2 film can't conduct electricity, a carbon vapor was depositied by a dedicated device (JEE-420, produced by JEOL Ltd., Tokyo, Japan) on the netlike glass discs before characterization. The thickness of the carbon deposited on samples is controlled to be approximately 20-30 nm. The electrode emits the electrons to the sample by setting the acceleration voltage of 15 kV and the current at 3.0×10^{-8} A in order to analyze the external structure of samples by SEM. After the X-ray characteristics are analyzed by EPAM, the concentration of chemical elements is clarified referring to the relationship between the characteristic X-ray energy and the atomic number. SEM and EPMA have a spatial resolution of 10 mm. The EPMA analysis can help clarify the structure of the prepared photocatalysts as well as to measure the quantity of loaded metal within TiO₂ film on the netlike glass disc as base material. The electron probe emits electrons to the sample at the acceleration voltage of 200 kV, when the inner structure of the sample is analyzed by TEM and STEM. The size, thickness and structure of loaded Cu and Pu were evaluated by TEM and STEM, respectively. The X-ray characteristics of the sample is detected by EDX and EDS at the same time, so the concentration distribution of chemical element in the thickness direction of the samples is known. The size, thickness and structure of loaded Cu and Pd were evaluated by TEM and STEM, respectively. The characterization of X-ray is detected by EDX and EDS at the same time, resulting in that the concentration distribution of chemical elements in the thickness direction of the samples is analyzed. EELS is used to detect elements as well as to determine the oxidation states of transition metals. The EELS characterization was determined by a JEM-ARM200F system equipped with GIF Quantum having 2048 ch. The dispersion of 0.5 eV/ch for the full width ad half maximum of the zero loss peak was measured in this study.

2.3. CO₂ Reduction Experiment

Figure 1 illustrates the experimental set-up of the reactor consisting of a stainless tube with dimensions of 100 mm (H.) × 50 mm (I.D.), Cu/TiO₂ film coated on netlike glass disc having the scale of 50 mm (D.) × 1 mm (t.) positioned on a Teflon cylinder having dimensions of 50 mm (H.) × 50 mm (D.), a quartz glass disc of 84 mm (D.) × 10 mm (t.), a sharp cut filter cutting off the light whose wavelength is below 400 nm (SCF-49.5C-42L, produced by Sigma Koki Co. Ltd., Tokyo, Japan), a 150 W Xe lamp (L2175, produced by Hamamatsu Photonics K. K., Hamamatsu, Japan), mass flow controller and CO₂ gas cylinder

[29]. The reactor size to charge CO₂ is 1.25×10^{-4} m³. The light of Xe lamp which is positioned on the top of the stainless tube illuminates Cu/TiO₂ film or Pd/TiO₂ coated on the netlike glass disc through the sharp cut filter and the quartz glass disc that are located on the top of the stainless tube. Xe lamp has the wavelength of light ranged from 185 nm to 2000 nm. The sharp cut filter can get rid of UV from the Xe lamp, resulting that the wavelength of light illuminating to Cu/TiO₂ film or Pd/TiO₂ film ranges from 401 nm to 2000 nm with the filter. In this study, the average light intensity of Xe lamp without and with the sharp cut filter is 58.7 mW/cm² and 47.1 mW/cm², respectively.

After filling CO₂ gas of 99.995 vol% purity in the reactor which was pre-evacuated by a vacuum pump for 15 min, the valves positioned at the inlet and the outlet of reactor were closed in the CO₂ reduction experiment with NH₃ + H₂O. After that, we confirmed that the pressure and gas temperature in the reactor at 0.1 MPa and 298 K, respectively. Then, we injected NH₃ aqueous solution (NH₃; 50 vol%), which was changed depending on the planed molar ratio, into the reactor via gas sampling tap, and turned on Xe lamp at a time. Due to the heat of infrared light components illuminated from Xe lamp, the injected NH₃ aqueous solution vaporized completely in the reactor. The temperature in the reactor reached at 343 K within an hour and it was maintained at approximately 343 K during the experiment. We changed the molar ratio of CO₂/NH₃/H₂O at 1:1:1, 1:0.5:1, 1:1:0.5, 1:0.5:0.5, 3:2:3, 3:8:12, respectively. The reacted gas in the reactor was extracted by gas syringe via gas sampling tap and it was analyzed by FID gas chromatography (GC353B, GL Science, Tokyo, Japan) and a methanizer (MT221, GL Science, Tokyo, Japan). The FID gas chromatograph and methanizer have a minimum resolution of 1 ppmV.

Figure 1. Experimental set-up for CO₂ reduction (In this Figure, 1: Xe lamp, 2. Edge cut filter, 3. Quartz glass disc, 4. Stainless tube, 5. Gas sampling tap, 6. Photocatalyst, 7. Teflon cylinder, 8. Valve, 9. CO₂ gas cylinder (99.995 vol%)).

3. Results and Discussion

3.1. Characterization Analysis of Cu/TiO₂ and Pd/TiO₂ Film

Figures 2 and 3 show SEM and EPMA images of Cu/TiO₂ and Pd/TiO₂ film coated on netlike glass disc, respectively. Black and white SEM images at 1500 times magnification

were obtained in this study, which were also used for EPAM analysis. As to the EPMA image, the concentrations of each element in observation area are displayed by diverse colors. Light colors, e.g., white, pink, and red are used to display a large amount of an element. On the other hand, dark colors like black and blue are used to display a small amount of element. According to Figures 2 and 3, it is observed that TiO₂ film having teeth-like shape coated on the netlike glass fiber is formed irrespective of pulse number. Since the thermal conductivity of Ti and SiO2 at 600 K are 19.4 W/(m·K) and 1.82 W/(m·K), respectively [33], the temperature distribution of TiO_2 solution adhered on the net like glass disc was not even during the firing process. Thermal expansion and shrinkage around netlike glass fibers occurred, resulting in the formation of thermal cracks within the TiO₂ film. Therefore, it is believed that TiO₂ film on netlike glass fiber has a teeth-like form. In addition, it was found that nanosized Cu and Pd particles were loaded on TiO2 film uniformly. The observation area which is the center of netlike glass disc having the diameter of 300 µm was analyzed by EPMA to measure the amount of loaded Cu or Pd within the TiO₂ film. The ratio of Cu or Pd to Ti is calculated by averaging the data detected in this area. The weight percentage of element Cu within Cu/TiO₂ film was 1.62 wt%, while the weight percentage of element Pd within Pd/TiO2 film was 1.64 wt%. The weight percentages of loaded Cu and Pd were almost the same, indicating that pulse arc plasma gun method could control the amount of metal doped on TiO₂ irrespective of metal type. On the other hand, total weights of Cu/TiO₂ and Pd/TiO₂ which were measured by an electron balance and averaged among 10 samples are 0.05 g and 0.07 g, respectively.

Figure 2. SEM and EPMA results of Cu/TiO2 film coated on netlike glass disc.

Figures 4 and 5 show TEM and EDX images of Cu/TiO₂ film, respectively. EDX analysis was carried out using TEM images taken at 15,000 times magnification. It is observed from Figure 5 that Cu particles are distributed in the TiO₂ film. Although many Cu particles are loaded on the upside of TiO₂ film, it is not confirmed that a Cu layer is formed [32].

Figure 4. TEM images of Cu/TiO₂ film.

Figure 5. EDX images of Cu/TiO2 film (Left: Ti, Center: O, Right: Cu).

Figure 6 shows STEM and EDS results of Pd/TiO₂ film coated on the netlike glass disc. A 250,000 times magnification STEM image was used in the EDS. It is observed from the STEM image that Pd is coated on the TiO₂ film, which is confirmed by EDS images, too. It is also observed that the layers of Pd and Ti are separated. It is seen that the thickness of the Pd coated is approximately 60 nm. The observation area is small compared to EPMA images shown in Figure 3, suggesting that nano-sized Pd particles are loaded on TiO₂ dispersedly [34].

Figure 6. STEM and EDS result of Pd/TiO₂ film coated on netlike glass disc.

Figures 7 shows the EELS spectra of Cu in Cu/TiO₂ film. According to this figure, peaks at around 932 eV and 952 eV can be observed. Compared to a report investigating the spectral peaks of Cu₂O and CuO [35], the EELS spectra of Cu₂O matches Figure 7. Therefore, Cu in Cu/TiO₂ prepared in this study exists as Cu⁺ ion in Cu₂O. It was reported that Cu⁺ was more active than Cu²⁺ [36]. Consequently, it is expected that Cu⁺ plays a role in enhancing the CO₂ reduction performance.

Figure 7. EELS spectra of Cu in Cu/TiO2.

Figure 8 shows EELS spectra of Pd in Pd/TiO₂ film which displays peaks at around 540 eV. Comparing the spectra peaks of Pd nanowire with that of Pd metal and PdO [28], it is seen that the EELS spectra of Pd metal matches that in Figure 8. Therefore, it can be thought that Pd in Pd/TiO₂ prepared in this study exists as Pd metal. Since the photore-duction performance of Pd/TiO₂ was higher than that of PdO/TiO₂ [31,37], it is confirmed that the desirable Pd/TiO₂ without oxidation was prepared in this study.

Figure 8. EELS spectra of Pd in Pd/TiO2.

3.2. CO₂ Reduction Characteristics of Cu/TiO₂

Tables 1 and 2 list the changes in molar quantity of CO per unit weight of photocatalyst for Cu/TiO₂ film coated on netlike glass disc with the time under the condition of Xe lamp illumination with and without UV light, respectively. In these tables, the impact of molar ratio of CO₂, NH₃ and H₂O is also evaluated. In addition, fuels other than CO were not detected in this study. Before this experiment, a blank test under the condition of CO₂/NH₃/H₂O or CO₂/H₂O without Xe lamp illumination had been carried out as a reference, resulting that no fuel was detected as expected. As to the reproducibility of experiments, this study shows the data from averaging three experiments. Tables 1 and 2 also list the maximum value of molar quantity of CO per unit weight of photocatalyst which is written in bold font.

It can be seen from Table 1 that the CO₂ reduction performance for the molar ratio of $CO_2/NH_3/H_2O = 1:1:1$ is the highest where the molar quantity of CO per unit weight of photocatalyst is 10.2 µmol/g at 6 h. According to the reaction scheme of CO₂ reduction with H₂O or NH₃ shown above, the theoretical molar ratio of CO₂/H₂O to produce CO or CH_4 is 1:1 or 1:4, respectively. In addition, the theoretical molar ratio of CO_2/NH_3 to produce CO or CH4 is 3:2, 3:8, respectively. Based on these theoretical molar ratios, the molar ratio of $CO_2/NH_3/H_2O = 3:2:3$ should be the theoretical molar ratio to produce CO. However, it is revealed that the molar ratio of $CO_2/NH_3/H_2O = 1:1:1$, which exhibits the highest performance of CO production as shown in Table 1, is different from the theoretical molar ratio assumed. Since the ionized Cu doped with TiO2 can provide free electrons to be used for the reduction reaction process [38,39], the theoretically required quantity of the reductant NH₃ and H₂O is reduced from the values according to the theoretical reaction scheme with TiO₂ i.e., $CO_2/NH_3/H_2O = 3:3:3$ to 3:2:3. It is also observed from Table 1 that the produced CO decreases after reaching a maximum value. It is believed that the decrease in the produced CO was caused by the reoxidation reaction with CO and O_2 [40], and not caused by the deactivation of the photocatalyst.

Table 1. Comparison of molar quantity of CO per unit weight of photocatalyst for Cu/TiO₂ under the illumination condition of Xe lamp with UV light (unit: μmol/g).

Time [h]	0	3	6	9	12	15	18	21	24	48	72	96
CO2:NH3:H2O = 1:1:1	0	6.3	10.2	9.5	8.5	8.4	7.4	6.8	5.7	3.8	6.6	4.5
CO ₂ :NH ₃ :H ₂ O = 1:0.5:1	0	3.0	4.4	5.1	5.0	4.8	5.3	5.0	5.0	3.1	2.6	2.7
CO ₂ :NH ₃ :H ₂ O = 1:1:0.5	0	4.8	6.3	6.5	7.1	6.8	6.8	6.8	7.9	4.7	5.4	3.9
CO ₂ :NH ₃ :H ₂ O = 1:0.5:0.5	0	5.3	7.0	5.0	6.4	7.7	8.0	6.5	5.1	3.8	3.6	4.2
CO2:NH3:H2O = 3:2:3	0	4.6	5.9	6.0	4.7	5.4	5.9	5.8	4.0	3.6	1.7	2.3
CO ₂ :NH ₃ :H ₂ O = 3:8:12	0	3.4	5.7	6.3	6.6	4.7	4.3	4.6	5.1	3.5	4.8	6.2

As to the impact of NH3 on CO2 reduction characteristics using Cu/TiO2, the authors' previous study [30] had drawn the following conclusions: Comparing the concentration change of CO along the time under the Xe lamp with UV light for the molar ratio of $CO_2/H_2O = 1:1$ to that for the molar ratios of $CO_2/NH_3/H_2O = 1:1:1$, 1:0.5:1, 3:2:3, it is observed that the concentration of formed CO for the molar ratio of $CO_2/H_2O = 1:1$ shows the peak soon after the start of illumination of Xe lamp and decreases gradually. It is also observed that the concentration of formed CO for the molar ratios of CO₂/NH₃/H₂O = 1:1:1, 1:0.5:1, 3:2:3 are larger than that for the molar ratio of $CO_2/H_2O = 1:1$. In addition, the decrease of formed CO is small after the concentration of formed CO performs the highest value compared to the molar ratio of CO₂/H₂O = 1:1. Therefore, it is revealed that the combination of NH³ and H₂O, that is, the existence of NH³ is effective for the promotion of the CO₂ reduction performance of prepared photocatalyst. On the other hand, comparing the concentration change of CO along the time under the Xe lamp with UV light for the molar ratio of $CO_2/H_2O = 1:0.5$ to that for the molar ratio of $CO_2/NH_3/H_2O = 1:1:0.5$, 1:0.5:0.5, it is observed that the concentration of formed CO for the molar ratio of $CO_2/H_2O = 1:0.5$ shows the peak soon after the start of illumination of Xe lamp and decreases gradually, which displays the same tendency as the result for the molar ratio of $CO_2/H_2O = 1:1$. It is also observed that the concentration of CO for the molar ratios of $CO_2/NH_3/H_2O = 1:1:0.5$ and 1:0.5:0.5 are larger than that for the molar ratio of $CO_2/H_2O = 1:0.5$. In addition, the concentration of formed CO keeps some value approximately without rapid decrease before 24 h for CO₂/NH₃/H₂O conditions compared to the molar ratio of CO₂/H₂O = 1:0.5. According to the reaction scheme to reduce CO₂ with NH₃ as shown above, the more reaction step is needed to produce CO since NH₃ should be converted into H₂ at first. Consequently, it is believed that the time to produce CO is longer compared to the molar ratio of $CO_2/H_2O = 1:0.5$. Moreover, comparing the concentration change of formed CO along

the time under the Xe lamp with UV light for the molar ratio of $CO_2/H_2O = 3:12$ to that for the molar ratio of $CO_2/NH_3/H_2O = 3:8:12$, it is observed that the concentration of formed CO for the molar ratio of $CO_2/H_2O = 3:12$ shows the peak soon after the illumination of Xe lamp and decreases gradually. In addition, the concentration of formed CO restarts to increase gradually and decrease again. This trend is different from the other CO₂/H₂O condition. The ratio of H2O is larger in this condition compared to the others, which indicates larger reductants provided for reduction reaction. Therefore, it is thought to keep CO production even though the oxidization reaction with CO and O₂ starts, which is the reason for the decrease in concentration of CO. Furthermore, it is also observed that the concentration of formed CO for the molar ratio of $CO_2/NH_3/H_2O = 3:8:12$ is larger than that for the molar ratio of $CO_2/H_2O = 3:12$. Consequently, it is revealed that the combination of NH3 and H2O, that is, the existence of NH3, is effective for promotion of the CO2 reduction performance of prepared photocatalyst for all conditions of CO₂/NH₃/H₂O. When comparing the highest quantity produced CO in the case of $CO_2/NH_3/H_2O = 3:8:12$ to that in the case of $CO_2/H_2O = 3:12$, it is confirmed that the highest produced CO in the case of molar ratio of $CO_2/NH_3/H_2O = 3:8:12$ is approximately three times as large as that in the case of molar ratio of $CO_2/H_2O = 3:12$. Consequently, it is clear that NH₃ could promote CO₂ reduction performance of Cu/TiO₂.

It can be seen from Table 2 that the CO₂ reduction performance for the molar ratio of $CO_2/NH_3/H_2O = 1:0.5:0.5$ is the highest where the molar quantity of CO per unit weight of photocatalyst is 2.5 µmol/g. In addition, Table 2 also reveals that the amount of total reductants required is smaller than that in the case with UV light shown in Table 1. When the Xe lamp is illuminated without UV light, the light intensity and wavelength range of light are smaller and narrower respectively, compared to the condition with UV light as described above. According to the reaction scheme of CO₂ reduction with H₂O or NH₃ that an electron is produced by the photochemical reaction which is influenced by the light illumination condition. Additionally, H⁺ whose amount is the same as that of electron is needed to produce CO. Since the number produced electrons might be smaller due to the less light input without UV, it is believed that the numbers of required H⁺ are small. Therefore, the CO₂ reduction performance for the molar ratio of $CO_2/NH_3/H_2O = 1:0.5:0.5$ was the highest, while total reductants required were smaller than that in the case with UV light.

the illumination condition of Xe lamp without UV light (unit: µmol/g).

Table 2. Comparison of molar quantity of CO per unit weight of photocatalyst for Cu/TiO2 under

0	3	6	9	12	15	18	21	24	48	72	96
0	0.6	0.8	0.9	0.9	1.0	1.2	1.4	2.0	1.9	1.5	1.2
0	0.9	1.0	1.3	1.1	1.4	1.6	1.1	1.0	0.7	0.9	1.1
0	0.8	1.4	1.7	1.6	1.4	1.2	1.1	1.0	1.3	1.0	1.6
0	0.5	1.2	1.4	1.4	2.1	2.5	1.7	1.3	1.7	2.3	1.7
0	0.5	1.1	1.6	1.4	0.9	1.3	1.5	2.2	1.4	1.1	1.3
0	0.4	1.1	1.5	1.0	0.7	0.6	0.9	0.9	1.1	1.5	1.4
	0 0 0 0 0 0 0	0 3 0 0.6 0 0.9 0 0.8 0 0.5 0 0.5 0 0.4	0 3 6 0 0.6 0.8 0 0.9 1.0 0 0.8 1.4 0 0.5 1.2 0 0.5 1.1 0 0.4 1.1	0 3 6 9 0 0.6 0.8 0.9 0 0.9 1.0 1.3 0 0.8 1.4 1.7 0 0.5 1.2 1.4 0 0.5 1.1 1.6 0 0.4 1.1 1.5	0 3 6 9 12 0 0.6 0.8 0.9 0.9 0 0.9 1.0 1.3 1.1 0 0.8 1.4 1.7 1.6 0 0.5 1.2 1.4 1.4 0 0.5 1.1 1.6 1.4 0 0.4 1.1 1.5 1.0	0 3 6 9 12 15 0 0.6 0.8 0.9 0.9 1.0 0 0.9 1.0 1.3 1.1 1.4 0 0.8 1.4 1.7 1.6 1.4 0 0.5 1.2 1.4 1.4 2.1 0 0.5 1.1 1.6 1.4 0.9 0 0.4 1.1 1.5 1.0 0.7	0 3 6 9 12 15 18 0 0.6 0.8 0.9 0.9 1.0 1.2 0 0.9 1.0 1.3 1.1 1.4 1.6 0 0.8 1.4 1.7 1.6 1.4 1.2 0 0.5 1.2 1.4 1.4 2.1 2.5 0 0.5 1.1 1.6 1.4 0.9 1.3 0 0.4 1.1 1.5 1.0 0.7 0.6	0 3 6 9 12 15 18 21 0 0.6 0.8 0.9 0.9 1.0 1.2 1.4 0 0.9 1.0 1.3 1.1 1.4 1.6 1.1 0 0.8 1.4 1.7 1.6 1.4 1.2 1.1 0 0.5 1.2 1.4 1.4 2.1 2.5 1.7 0 0.5 1.1 1.6 1.4 0.9 1.3 1.5 0 0.4 1.1 1.5 1.0 0.7 0.6 0.9	0 3 6 9 12 15 18 21 24 0 0.6 0.8 0.9 0.9 1.0 1.2 1.4 2.0 0 0.9 1.0 1.3 1.1 1.4 1.6 1.1 1.0 0 0.8 1.4 1.7 1.6 1.4 1.2 1.1 1.0 0 0.5 1.2 1.4 1.4 2.1 2.5 1.7 1.3 0 0.5 1.1 1.6 1.4 0.9 1.3 1.5 2.2 0 0.4 1.1 1.5 1.0 0.7 0.6 0.9 0.9	0 3 6 9 12 15 18 21 24 48 0 0.6 0.8 0.9 0.9 1.0 1.2 1.4 2.0 1.9 0 0.9 1.0 1.3 1.1 1.4 1.6 1.1 1.0 0.7 0 0.8 1.4 1.7 1.6 1.4 1.2 1.1 1.0 1.3 0 0.5 1.2 1.4 1.4 2.1 2.5 1.7 1.3 1.7 0 0.5 1.1 1.6 1.4 0.9 1.3 1.5 2.2 1.4 0 0.4 1.1 1.5 1.0 0.7 0.6 0.9 0.9 1.1	0 3 6 9 12 15 18 21 24 48 72 0 0.6 0.8 0.9 0.9 1.0 1.2 1.4 2.0 1.9 1.5 0 0.9 1.0 1.3 1.1 1.4 1.6 1.1 1.0 0.7 0.9 0 0.8 1.4 1.7 1.6 1.4 1.2 1.1 1.0 1.3 1.0 0 0.5 1.2 1.4 1.4 2.1 2.5 1.7 1.3 1.7 2.3 0 0.5 1.1 1.6 1.4 0.9 1.3 1.5 2.2 1.4 1.1 0 0.4 1.1 1.5 1.0 0.7 0.6 0.9 0.9 1.1 1.5

Tables 3 and 4 show the trends in molar quantity of CO per unit weight of photocatalyst (Pd/TiO₂) under the condition of Xe lamp illumination with and without UV light, respectively. Tables 3 and 4 also list the maximum value of molar quantity of CO per unit weight of photocatalyst which is written in bold font. It is seen from Table 3 that the highest CO2 reduction performance reached at the illumination time of Xe lamp with UV light of 12 h irrespective of molar ratio of CO₂/NH₃/H₂O. Though it is observed from Table 3 that the molar quantity of CO per unit weight of photocatalyst for the molar ratio of $CO_2/NH_3/H_2O = 3:2:3$ has the highest value at the illumination time of 12 h, the molar quantity of CO per unit weight of photocatalyst decreased rapidly after 12 h. In these figures, the impact of molar ratio of CO₂, NH₃ and H₂O is also presented. Additionally, the other fuels except for CO were not detected in this study. Before the experiment, a blank test without Xe lamp illumination had been carried out as a reference, resulting that no fuel was detected as expected. As to the reproducibility of experiments, this study shows the data from three averaged experiments.

According to Table 3, with the UV illumination, the CO₂ reduction performance for the molar ratio of CO₂/NH₃/H₂O = 1:1:1 is the highest where the molar quantity of CO per unit weight of photocatalyst is 5.5 µmol/g. Though this study assumes that the molar ratio of CO₂/NH₃/H₂O = 3:2:3 is the theoretical molar ratios to produce CO, it is revealed that the optimum molar ratio of CO₂/NH₃/H₂O is 1:1:1. Additionally, the molar ratio exhibiting the highest CO₂ reduction performance for Pd/TiO₂ is the same as that for Cu/TiO₂. As described above, since the ionized Cu doped with TiO₂ can provide free electron to be used for the reduction reaction process [39], the theoretically required quantity of the reductants of NH₃ and H₂O is reduced from the values according to the theoretical reaction scheme i.e., CO₂/NH₃/H₂O = 3:3:3 to 3:2:3. According to the EELS spectra analysis as shown above, it is believed that Pd in Pd/TiO₂ prepared in this study was in the form of Pd metal, which is the different from Cu⁺ ion in Cu/TiO₂ prepared in this study.

Moreover, it can be seen from Table 4 that, without UV light illumination, the CO₂ reduction performance for the molar ratio of $CO_2/NH_3/H_2O = 1:1:1$ is the highest where the molar quantity of CO per unit weight of photocatalyst is 3.5 µmol/g. This optimum molar ratio (1:1:1) without UV light illumination is the same as the optimum molar ratio with UV light illumination. However, it is different from the optimum molar ratio obtained with Cu/TiO₂ photocatalyst. Pd acts as an electron-transfer mediator, rapidly transferring the photoexcited electrons from the conduction band of Pd/TiO2 and the photoexcited electrons are transported to the surface of Pd/TiO₂ [24]. Although Cu can also act an electron-transfer mediator, Pd might conduct the higher performance compared to Cu. As a result, Pd/TiO₂ exhibits better CO₂ reduction performance than Cu/TiO₂ under the visible light illumination condition [24]. The amount of light absorbed by Pd might be enough even the smaller light input under the illumination condition of Xe lamp without UV light. As a result, the required amount of needed H⁺ for CO₂ reduction without UV light is not smaller than the case with UV light, which is different from the case of Cu/TiO₂ without UV light. Consequently, the CO₂ reduction performance with Pd/TiO₂ at the molar ratio of $CO_2/NH_3/H_2O = 1:1:1$ is the highest for Pd/TiO₂ even the illumination condition of Xe lamp without UV light.

Time [h]	0	3	6	9	12
CO ₂ :NH ₃ :H ₂ O = 1:1:1	0	1.6	5.5	5.0	2.8
CO2:NH3:H2O = 1:0.5:1	0	1.4	1.4	0	0.1
CO2:NH3:H2O = 1:1:0.5	0	2.1	1.1	1.1	1.4
CO ₂ :NH ₃ :H ₂ O = 1:0.5:0.5	0	2.0	1.5	0.8	1.2
CO ₂ :NH ₃ :H ₂ O = 3:2:3	0	1.5	1.6	1.4	2.4
CO ₂ :NH ₃ :H ₂ O = 3:8:12	0	1.7	1.2	1.8	1.1

Table 3. Comparison of molar quantity of CO per unit weight of photocatalyst for Pd/TiO2 underthe illumination condition of Xe lamp with UV light (unit: μ mol/g).

Table 4. Comparison of molar quantity of CO per unit weight of photocatalyst for Pd/TiO₂ under the illumination condition of Xe lamp without UV light (unit: µmol/g).

Time [h]	0	24	48	72	96
CO2:NH3:H2O = 1:1:1	0	1.7	3.5	3.2	3.1
CO ₂ :NH ₃ :H ₂ O = 1:0.5:1	0	1.8	2.0	2.1	2.5
$CO_2:NH_3:H_2O = 1:1:0.5$	0	2.5	2.3	3.1	1.6
CO ₂ :NH ₃ :H ₂ O = 1:0.5:0.5	0	2.5	1.4	2.0	2.0
$CO_2:NH_3:H_2O = 3:2:3$	0	1.6	1.6	3.0	2.8
CO ₂ :NH ₃ :H ₂ O = 3:8:12	0	1.7	1.7	1.5	1.8

3.3. The Quantum Efficiency Evaluation

Quantum efficiency is a well-known criterion used to indicate the photocatalytic activity and efficiency [41]. The quantum efficiency is generally calculated by the following equations [34,42]:

$$\eta = (N_{\text{output}}/N_{\text{input}}) \times 100 \tag{20}$$

$$N_{\text{input}} = (I \times t \times \lambda \times A_{\text{re}})/(h \times c)$$
(21)

$$N_{\text{output}} = N_{\text{CO}} M_{\text{CO}} N_{\text{A}}$$
(22)

where η is the quantum efficiency [%], *N*_{input} is the number of protons absorbed by photocatalyst [-], *N*_{output} is the photon number used in photocatalytic reaction [-], *I* is the light intensity of UV light [W/cm²], *t* is the time illuminating UV light [s], λ is the wave length limit of light to trigger the photocatalytic reaction by photocatalyst [m], *A*_{re} is the reaction surface area of photocatalyst assumed to be equal to the surface area of netlike glass disc [cm²], *h* is Plank's constant (=6.626 × 10⁻³⁴) [J·s], *c* is light speed (=2.998 × 10⁹) [m/s], *N*_{co} is the electron number required to form CO of a molecular (=2) [-], *M*_{co} is the molar number of formed CO [mol], *N*_A is Avogadro's number (=6.022 × 10²³) [1/mol]. In this study, *I* averaged during all experiments where the illumination condition of Xe lamp with and without UV light were 58.7 mW/cm² and 47.1 mW/cm², respectively. *t* under both Xe lamp illumination condition with and without UV light were 345,600 s (96 h) in the case of Cu/TiO₂ with UV light and without UV light as well as in the case of Pd/TiO₂ without UV light, while *t* under both Xe lamp illumination condition with UV light was 43,200 s (12 h).

Figures 9 and 10 show the comparison of quantum efficiencies among different molar ratios of CO₂/NH₃/H₂O for Cu/TiO₂ under the condition of Xe lamp illumination with and without UV light, respectively. It is revealed from Figures 9 and 10 that the highest quantum efficiency under the condition of Xe lamp illumination with and without UV light is obtained for the molar ratio of CO₂/NH₃/H₂O = 1:1:1 and 1:0.5:0.5, respectively, which agrees with the results shown in Tables 1 and 2. Comparing the quantum efficiencies shown in Figures 9 and 10, the highest quantum efficiency of 1.96×10^{-4} is obtained when the Xe lamp with UV light is illuminated. If illumination time, *t* for the molar ratio of CO₂/NH₃/H₂O = 1:1:1 with UV light is 6 h when the highest molar quantity of CO per unit weight of photocatalyst is obtained, the highest quantum efficiency for Cu/TiO₂ is 3.14×10^{-3} .

Figure 9. Comparison of quantum efficiency among different molar ratios for Cu/TiO₂ under the illumination condition of Xe lamp with UV light.

Figure 10. Comparison of quantum efficiency among different molar ratios for Cu/TiO₂ under the illumination condition of Xe lamp without UV light.

Figures 11 and 12 show the comparison of quantum efficiencies among different molar ratios of CO₂/NH₃/H₂O for Pd/TiO₂ under the condition of Xe lamp illumination with and without UV light, respectively. Figures 11 and 12 reveal that the highest quantum efficiency under the condition of Xe lamp illumination with and without UV light is obtained when the molar ratio of CO₂/NH₃/H₂O is 1:1:1, which agrees the results shown in Tables 3 and 4. Comparing the quantum efficiencies shown in Figures 11 and 12, the highest quantum efficiency of 4.20×10^{-4} is obtained with UV light. If *t* is set at 96 h which is the same time as the case of Cu/TiO₂, the highest quantum efficiency for Pd/TiO₂ under the condition of Xe lamp illumination with UV light is 0.53×10^{-4} .

According to the previous study [39], Cu/TiO₂ (2 wt% of Cu) photocatalyst performed the quantum efficiency of producing CO of 1.56×10^{-2} in the case of CO₂/H₂O with UV light. Another study reported that Cu/TiO₂ (1 wt% of Cu) performed the quantum efficiency of 1.41×10^{-2} in the case of CO₂/H₂O with UV light [43]. As to Pd/TiO₂, there is no previous study evaluating quantum efficiency of CO production, except for the report [26] which estimated the quantum efficiency of producing CH₄ of 1.49 with Pd/TiO₂ (1 wt% of Pd) and NaOH solution as the reductant.

Figure 11. Comparison of quantum efficiency among different molar ratios for Pd/TiO₂ under the illumination condition of Xe lamp with UV light.

Figure 12. Comparison of quantum efficiency among different molar ratios for Pd/TiO₂ under the illumination condition of Xe lamp without UV light.

The quantum efficiency obtained in the current study is lower than that obtained in previous studies. The reason is thought to be that the total amount of electron needed in this study for photochemical reaction is too large due to the combination of two H⁺ supplies i.e., NH₃ and H₂O. It is thought that, (i) capturing the maximum visible light region, and (ii) draining the photogenerated charges on light irradiation towards Cu/TiO₂ surface [44], which may be possible ways to improve the quantum efficiency.

This study has confirmed that Cu/TiO2 is superior to Pd/TiO2 from the viewpoint of the molar quantity of CO per unit weight of photocatalyst as well as the quantum efficiency. As the next step, it can be considered to improve the CO₂ reduction performance of TiO2 with NH3 and H2O further. Combination of different doped metals is one way to promote the CO₂ reduction performance further in the near future. According to the previous studies [42,45,46], the co-doped TiO₂ such as PbS-Cu/TiO₂, Cu-Fe/TiO₂, Cu-Ce/TiO₂, Cu-Mn/TiO₂, Cu-CdS/TiO₂ and Au-Pd/TiO₂ were able to promote the CO₂ reduction performance of TiO₂ with H₂O. For the combination of CO₂/NH₃/H₂O, the ion number of the dopant had better match the number of electrons emitted from the dopant with that of H* according to the reaction scheme shown above. The same number of electrons and H⁺ is necessary to produce fuel from CO₂. Although this study dopes only one metal in order to promote the CO₂ reduction performance using TiO₂, co-doping metals, which have larger positive ions compared to Cu, can provide a positive effect to promote the CO₂ reduction performance with NH3 and H2O. Therefore, it is expected that the CO2 reduction performance will be promoted by the combination of different doped metals in the case of CO₂/NH₃/H₂O.

4. Conclusions

From the investigation in this study, the following conclusions can be drawn:

- (1) TiO₂ film coated on netlike glass fiber was teeth like. Cu and Pd particles were loaded on TiO₂ film uniformly. It is confirmed that the pulse arc plasma gun method can control the amount of metal doped on TiO₂ irrespective of metal type.
- (2) Cu in Cu/TiO₂ prepared in this study exists as Cu⁺ ion in Cu₂O. Pd in Pd/TiO₂ prepared in this study exists as Pd metal.
- (3) In the case of Cu/TiO₂ under the illumination condition of Xe lamp with UV light, the CO₂ reduction performance for the molar ratio of CO₂/NH₃/H₂O = 1:1:1 was the highest where the molar quantity of CO per unit weight of photocatalyst was up to 10.2 mol/g.

- (4) In the case of Cu/TiO₂ under the illumination condition of Xe lamp without UV light, the CO₂ reduction performance for the molar ratio of CO₂/NH₃/H₂O = 1:0.5:0.5 was the highest where the molar quantity of CO per unit weight of photocatalyst was 2.5 mol/g.
- (5) In the case of Pd/TiO₂ under the illumination condition of Xe lamp with UV light, the CO₂ reduction performance for the molar ratio of CO₂/NH₃/H₂O = 1:1:1 was the highest where the molar quantity of CO per unit weight of photocatalyst was up to 5.5 mol/g.
- (6) In the case of Pd/TiO₂ under the illumination condition of Xe lamp without UV light, the CO₂ reduction performance for the molar ratio of CO₂/NH₃/H₂O = 1:1:1 was the highest where the molar quantity of CO per unit weight of photocatalyst was up to 3.5 mol/g.
- (7) As to Cu/TiO₂, the highest quantum efficiency was 1.96 × 10⁻⁴ under the illumination condition of Xe lamp with UV light. On the other hand, it was 3.14 × 10⁻³ if *t* was set at 6 h when the highest molar quantity of CO per unit weight of photocatalyst was obtained.
- (8) As to Pd/TiO₂, the highest quantum efficiency was 4.20×10^{-4} under the illumination condition of Xe lamp with UV light. On the other hand, it was 0.53×10^{-4} if *t* was set at 96 h which was the same illumination time of Xe lamp as Cu/TiO₂.

Author Contributions: Conceptualization, A.N.; data curation, R.S. and Y.S.; methodology, A.K.; writing-original draft preparation, A.N.; writing-review, E.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are openly available for all figures and tables.

Conflicts of Interest: The author declares no conflict of interest.

Sample Availability: Samples of the compounds are not available from the authors.

References

- 1. Global Monitoring Laboratory. Available online: https://www/esrl/noaa.gov/gmd/ccgg/trends/global/html (accessed on 15 December 2020).
- Tahir, M.; Amin, N.S. Advances in Visible Light Responsive Titanium Oxide-based Photocatalyts for CO₂ Conversion to Hydrocarbon Fuels. *Energy Conv. Manag.* 2013, 76, 192–214.
- Matavos-Aramyan, S.; Soukhakian, S.; Jazebizadeh, H.M.; Moussavi, M.; Hojjati, M.R. On Engineering Strategies for Photoselective CO₂ Reduction – A through Review. *Appl. Mater. Today* 2020, *18*, 100499.
- 4. Remiro-Buenamanana, S.; Garcia, H. Photoassisted CO₂ Conversion to Fuels. ChemCatChem Minirev. 2019, 11, 342–356.
- Abdullah, H.; Khan, M.M.R.; Ong, H.R.; Yaakob, Z. Modified TiO₂ Photocatalyst for CO₂ Photocatalytic Reduction: An Overview. J. CO₂ Utilizat. 2017, 22, 15–32.
- 6. Tahir, M.; Amin, N.S. Indium-doped TiO₂ Nanoparticles for Photocatalytic CO₂ Reduction with H₂O Vapors to CH₄. *Appl. Catal. B Envion.* **2015**, *162*, 98–109.
- Sohn, Y.; Huang, W.; Taghipour, F. Recent Progress and Perspectives in the Photocatalytic CO₂ Reduction of Ti-oxide-based Nanomaterials. *Appl. Surface Sci.* 2017, 396, 1696–1711.
- 8. Hashermizadeh, I.; Golovko, V.B.; Choi, J.; Tsang, D.C.W.; Yip, A.C.K. Photocatalytic Reduction of CO₂ to Hydrocarbons Using Bio-templated Porous TiO₂ Architectures under UV and Visible Light. *Chem. Eng. J.* **2018**, *347*, 64–73.
- Kumar, A.; Kumar, P.; Borkar, R.; Bansiwal, A.; Labhsetwar, N.; Jain, S.L. Metal-organic Hybrid: Photoreduction of CO₂ Using Graphic Carbon Nitride Supported Heteroleptic Iridium Complex under Visible Light Irradiation. *Carbon* 2017, *123*, 371–379.
- Camarillo, R.; Toston, S.; Martinez, F.; Jimenez, C.; Rincon, J. Preparation of TiO₂-based Catalyst with Supercritical Fluid Technology: Characterization and Photocatalytic Activity in CO₂ Reduction. J. Chem. Tech. Biotech. 2017, 92, 1710–1720.
- Lin, L.Y.; Nie, Y.; Kavadiya, S.; Soundappan, T.; Biswas, P. N-doped Reduced Graphene Oxide Promoted Nano TiO₂ as a Bifunctional Adsorbent/Photocatalyst for CO₂ Photoreduction: Effect of N Species. *Chem. Eng. J.* 2017, *316*, 449–460.

- 12. Low, J.; Cheng, B.; Yu, J. Surface Modification and Enhanced Photocatalytic CO₂ Reduction Performance of TiO₂: A Review. *Appl. Surf. Sci.* **2017**, *392*, 658–686.
- 13. Rej, S.; Bisetto, M.; Naldoni, A.; Fornasiero, P. Well-defined Cu₂O Photocatalysts for Solar Fuels and Chemicals. *J. Mater. Chem. A* **2021**, *9*, 5915–5951.
- 14. Goren, Z.; Willner, I.; Nelson, A.J. Selective Photoreduction of CO₂/HCO₃⁻ to formate by aqueous suspensions and colloids of Pd-TiO₂. *J. Physic. Chem.* **1990**, *94*, 3784–3790.
- Tseng, I.H.; Chang, W.C.; Wu, J.C.S. Photoreduction of CO₂ Using Sol-gel Derived Titania and Titania-supported Copper Catalysts. *Appl. Catal. B* 2002, 37, 37–38.
- 16. Izumi, Y. Recent Advances in the Photocatalytic Conversion of Carbon Dioxide to Fuels with Water and/or Hydrogen Using Solar Energy and Beyond. *Coordin. Chem. Rev.* 2013, 257, 171–186.
- 17. Lo, C.C.; Hung, C.H.; Yuan, C.S.; Wu, J.F. Photoreduction of Carbon Dioxide with H₂ and H₂O over TiO₂ and ZrO₂ in a Circulated Photocatalytic Reactor. *Solar Energy Mater. Sci.* **2007**, *91*, 1765–1774.
- 18. Aguirre, M.E.; Zhou, R.; Eugene, A.J.; Guzman, M.I.; Grela, M.A. Cu₂O/TiO₂ Heterostructure for CO₂ Reduction through a Direct Z-scheme: Protecting Cu₂O from Photocorrosion. *Appl. Catal. B Environ.* **2017**, *217*, 485–493.
- 19. Kavil, Y.N.; Shaban, Y.A.; Farawati, R.K.A.; Orif, M.I.; Zobidi, M.; Khan, S.U.M. Photocatalytic Conversion of CO₂ into Methanol over Cu-C/TiO₂ Nanoparticles under UV Light and Natural Sunlight. *J. Photochem. Photobiol. A Chem.* **2017**, 347, 244–253.
- Zhu, S.; Chen, X.; Li, Z.; Ye, X.; Liu, Y.; Chen, Y.; Yang, L.; Chen, M.; Zhang, D.; Li, G.; et al. Cooperation between Inside and Outside of TiO₂: Lattice Cu⁺ Accelerates Carrier Migration to the Surface of Metal Copper for Photocatalytic CO₂ Reduction. *Appl. Catal. B Environ.* **2020**, *264*, 118515.
- She, H.; Zhao, Z.; Bai, W.; Huang, J.; Wang, L.; Wang, Q. Enhanced Performance of Photocatalytic CO₂ Reduction with Synergistic Effect between Chitosan and Cu: TiO₂. *Mater. Res. Bull.* **2020**, *124*, 110758.
- Chen, W.; Wang, Y.; Shangguan, W. Metal (oxide) modified (M = Pd, Ag, Au and Cu) H₂SrTa₂O₇ for photocatalytic CO₂ reduction with H₂O: The effect of cocatalysts on promoting activity toward CO and H₂ evolution. *Int. J. Hydrog. Energy* 2019, 44, 4123–4132.
- 23. Yu, Y.; Lan, Z.; Guo, L.; Wang, E.; Yao, J.; Cao, Y. Synergetic effects of Zn and Pd species in TiO₂ towards efficient photoreduction of CO₂ into CH₄. *New J. Chem.* **2018**, *42*, 483–488.
- Singhal, N.; Kumar, U. Noble metal modified TiO₂: Selective photoreduction of CO₂ to hydrocarbons. *Mol. Catal.* 2017, 439, 91– 99.
- 25. Su, K.Y.; Chen, C.Y.; Wu, R.J. Preparation of Pd/TiO₂ Nanowires for the Photoreduction of CO₂ into Renewable Hydrocarbon Fuels. *J. Taiwan Inst. Chem. Eng.* **2019**, *996*, 409–418.
- Yu, Y.; Zheng, W.; Cao, Y. TiO₂-Pd/C Composited Photocatalyst with Improved Photocatalytic Activity for Photoreduction of CO₂ into CH₄. *New J. Chem.* 2017, *41*, 3204–3210.
- 27. Yui, T.; Kan, A.; Saitoh, C.; Koike, K.; Ibusuki, T.; Ishitani, O. Photochemical Reduction of CO₂ Using TiO₂: Effects of Organic Absorbates on TiO₂ and Deposition of Pd onto TiO₂. *ACS Appl. Mater. Int.* **2011**, *3*, 2594–2600.
- Nishimura, A.; Ishida, N.; Tatematsu, D.; Hirota, M.; Koshio, A.; Kokai, F.; Hu, E. Effect of Fe Loading Condition and Reductants on CO₂ Reduction Performance with Fe/TiO₂ Photocatalyst. *Int. J. Photoenergy* 2017, 2017, doi:10.1155/2017/1625274.
- 29. Nishimura, A.; Sakakibara, Y.; Inoue, T.; Hirota, M.; Koshio, A.; Kokai, F.; Hu, E. Impact of Molar Ratio of NH₃ and H₂O on CO₂ Reduction Performance over Cu/TiO₂ Photocatalyst. *Physic. Astronomy Int. J.* **2019**, *3*, 176–182.
- Nemoto, J.; Goken, N.; Ueno, K. Photodecomposition of Ammonia to Dinitrogen and Dihydrogen on Platinized TiO₂ Nanoparticles in an Aqueous Solution. J. Photochem. Photobiol. A Chem. 2007, 185, 295–300.
- Kočí, K.; Matějová, L.; Reli, M.; Čapek, L.; Matějka, V.; Lacný, Z.; Kuśtrowski, P.; Obalová, L. Solgel derived Pd supported TiO2-ZrO2 and TiO2 photocatalysts; their examination in photocatalytic reduction of carbon dioxide. *Catal. Today* 2014, 230, 20–26.
- 32. Nishimura, A.; Toyoda, R.; Tatematsu, D.; Hirota, M.; Koshio, A.; Kokai, F.; Hu, E. Optimum reductants ratio for CO₂ reduction by overlapped Cu/TiO₂. *AIMS Mater. Sci.* **2019**, *6*, 214–233.
- 33. Japan Society of Mechanical Engineering. JSME Heat Transfer Handbook, 1st ed.; Maruzen: Tokyo, Japan, 1993; pp. 366–369.
- 34. Nishimura, A.; Inoue, T.; Sakakibara, Y.; Hirota, M.; Koshio, A.; Kokai, F.; Hu, E. Optimum molar ratio of H₂ and H₂O to reduce CO₂ using Pd/TiO₂. *AIMS Mater. Sci.* **2019**, *6*, 464–483.
- Yang, G.; Cheng, S.; Li, C.; Zhong, J.; Ma, C.; Wang, Z.; Xiang, W. Investigation of the oxidization states of Cu additive in colored borosilicate glasses by electron energy loss spectroscopy. J. Appl. Phys. 2014, 116, 223707, doi:10.1063/1.4903955.
- 36. Liu, L.; Gao, F.; Zhao, H.; Li, Y. Tailoring Cu valence and oxygen vacancy in Cu/TiO₂ catalysts for enhanced CO₂ photoreduction efficiency. *Appl. Catal. B Environ.* **2013**, *134–135*, 349–358.
- 37. Nishimura, A.; Inoue, T.; Sakakibara, Y.; Hirota, M.; Koshio, A.; Hu, E. Impact of Pd loading on CO₂ reduction performance over Pd/TiO₂ with H₂ and H₂O. *Molecules* **2020**, *25*, 1468.
- Jensen, J.; Mikkelsen, M.; Krebs, F.C. Flexible substrates as basis for photocatalytic reduction of carbon dioxide. Sol. Energy Mater. Sol. Cells 2011, 95, 2949–2958.
- 39. Paulino, P.N.; Salim, V.M.M.; Resende, N.S. Zu-Cu promoted TiO₂ photocatalyst for CO₂ reduction with H₂O under UV light. *Appl. Catal. B Environ.* **2016**, *185*, 362–370.
- 40. Tahir, M.; Amin, N.A.S. Photo-induced CO₂ reduction by hydrogen for selective CO evolution in a dynamic monolith photoreactor loaded with Ag-modified TiO₂ nanocatalyst. *In. J. Hydrog. Energy* **2017**, *42*, 15507–15522.

- 41. Hoque, M.A.; Guzman, G.J. Photocatalytic activity: Experimental features to report in heterogeneous photocatalysis. *Materials* **2018**, *11*, 1990, doi:10.3390/ma11101990.
- 42. Nahar, S.; Zain, M.F.; Kadhum, A.A.H.; Hasan, H.A.; Hasan, M.R. Advances in photocatalytic CO₂ reduction with water: A review. *Materials* **2017**, *10*, 629, doi:10.3390/ma10060629.
- 43. Li, Y.; Wang, W.N.; Zhan, Z.; Woo, M.H.; Wu, C.Y.; Biswas, P. Photocatalytic reduction of CO₂ with H₂O on Mesoporous Silica Supported Cu/TiO₂ Catalysts. *Appl. Catal. B Environ.* **2010**, *100*, 386–392.
- 44. Razzaq, A.; Ali, S.; Asif, M.; In, S.I. Layered double hydroxide (LDH) based photocatalysts: An outstanding strategy for efficient photocatalytic CO₂ conversion. *Catalyst* **2020**, *10*, 1185, doi:10.3390/catal10101185.
- 45. Olowoyo, J.O.; Kumar, M.; Dash, T.; Saran, S.; Bhandari, S.; Kumar, U. Self-organized copper impregnation and doping in TiO₂ with enhanced photocatalytic conversion of H₂O and CO₂ to fuel. *Int. J. Hydrog. Energy* **2018**, *43*, 19468–19480.
- Jiao, J.; Wei, Y.; Zhao, Y.; Zhao, Z.; Duan, A.; Liu, J.; Pang, Y.; Li, J.; Jiang, G.; Wang, Y. AuPd/3DOM-TiO₂ catalysts for photocatalytic reduction of CO₂: High efficient separation of photogenerated charge carriers. *Appl. Catal. B Environ.* 2017, 209, 228– 239.