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Abstract: COVID-19 represents a new potentially life-threatening illness caused by severe acute
respiratory syndrome coronavirus 2 or SARS-CoV-2 pathogen. In 2021, new variants of the virus with
multiple key mutations have emerged, such as B.1.1.7, B.1.351, P.1 and B.1.617, and are threatening
to render available vaccines or potential drugs ineffective. In this regard, we highlight 3CLpro, the
main viral protease, as a valuable therapeutic target that possesses no mutations in the described
pandemically relevant variants. 3CLpro could therefore provide trans-variant effectiveness that is
supported by structural studies and possesses readily available biological evaluation experiments.
With this in mind, we performed a high throughput virtual screening experiment using CmDock
and the “In-Stock” chemical library to prepare prioritisation lists of compounds for further studies.
We coupled the virtual screening experiment to a machine learning-supported classification and
activity regression study to bring maximal enrichment and available structural data on known 3CLpro

inhibitors to the prepared focused libraries. All virtual screening hits are classified according to
3CLpro inhibitor, viral cysteine protease or remaining chemical space based on the calculated set of
208 chemical descriptors. Last but not least, we analysed if the current set of 3CLpro inhibitors could
be used in activity prediction and observed that the field of 3CLpro inhibitors is drastically under-
represented compared to the chemical space of viral cysteine protease inhibitors. We postulate that
this methodology of 3CLpro inhibitor library preparation and compound prioritisation far surpass
the selection of compounds from available commercial “corona focused libraries”.

Keywords: COVID-19; SARS-CoV-2; Mpro; 3CLpro; 3C-like protease; high-throughput; virtual screen-
ing; inhibitors; in silico drug design; chemical library design; machine learning; compound prioritisation

1. Introduction

Coronavirus disease (COVID-19) is an infectious disease caused by a novel severe
acute respiratory syndrome coronavirus 2 or SARS-CoV-2. COVID-19 was initially reported
in Wuhan province in China and was declared as a global pandemic [1]. COVID-19 is a se-
vere illness similar to flu, with major symptoms being cough, fever and breathing difficulty.
Furthermore, the illness can cause systemic inflammation [2,3]. The pathogen SARS-CoV-2
belongs to the Coronaviridae family, an enveloped positive-sense single-stranded (+ssRNA)
RNA virus, and is closely related to the previously described SARS-CoV and MERS-CoV
coronaviruses [4]. The SARS-CoV-2 genome shares 82% sequence identity with SARS-CoV
and 90% identity with MERS-CoV and shares common pathogenesis mechanisms [5].
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Currently, there are registered vaccines available to fight this global crisis, and multiple
vaccine development programs are underway [6–9]. However, there are only a handful
of therapeutic options for COVID-19 treatment and no registered antiviral drugs against
SARS-CoV-2 at the moment [10–14]. Furthermore, research suggests a minimal variation in
the genome sequence of SARS-CoV-2 pathogen may translate to changes in the structures
of viral proteins rendering available vaccines or even medicines ineffective [15]. In late
2020, early 2021, the emergence of the new SARS-CoV-2 variants was reported; namely
the B.1.1.7 variant, dubbed the UK variant, the B.1.351 variant or South African variant
and B.1.617, known as the Indian variant [16–18]. Both variants are reported to possess
N501Y mutation in the RBD (receptor binding domain) of the Sprot (spike protein) that is
associated with increased viral transmission [19]. The South African variant also possesses
K417N and E484K mutations in the Sprot that are potentially responsible for the diminished
binding of viral Sprot to host antibodies [20]. In Brazil, the P.1 variant with known N501Y,
E484K and novel K417T mutation at the Sprot was identified [21]. A SARS-CoV-2 variant
summary is presented in Table 1.

Table 1. Summary of dominant SARS-CoV-2 variants and relevant mutations.

Variant 1 Alternative Name Sprot/
All Mutations Key Mutations Comment 3CLpro/PLpro

Mutations 2

B.1.1.7 UK Variant 8/23

E69/70 del
144Y del

N501Y (RBD interface)
A570D
P681H

higher
transmissibility none/A1708D

B.1.351 South African
Variant 9/21

K417N (RBD)
E484K (RBD)
N501Y (RBD)

orf1b del

escape host
immune response none/K1655N

P.1 Brasil Variant 10/17

K417N/T (RBD)
E484K (RBD)
N501Y (RBD)

orf1b del

under research none/K1795Q

B.1.617 Indian Variant 7/23

G142D
E154K

L452R (RBD)
E484Q (RBD)

D614G
P681R

Q1071H

under research none/under
research

1 Other known variants are COH.20G, S Q677H (Midwest variant) and L452R, B1429; 2 The mutations on PLpro are located far outside the
enzyme’s active site.

It is of key interest that no mutations have been observed on SARS-CoV-2 3CLpro main
protease (location 3292→ 3582 on ORF1ab polyprotein; YP_009724389.1) and only one
mutation on SARS-CoV-2 PLpro protease (location 1564→ 1882 on ORF1ab polyprotein;
YP_009724389.1) for each variant [22]. It should be stressed, however, that this does not
mean that these proteins cannot mutate in the future. In this context, 3CLpro is an attractive
target for novel antiviral discovery with a potential for trans-variant activity [23–26]

3CLpro (Picornain 3C-like protease, also referred to as Mpro for main protease) is a
homodimeric cysteine protease (EC 3.4.22.69) and is 96% sequence identical with the SARS-
CoV Mpro [27]. The enzyme belongs to the family C30 peptidases in the PA peptidases
clan. It consists of two 306 residues long polypeptide chains, which fold into three domains
(I, II and III). Domains I and II have an antiparallel β-barrel structure, while domain III
is composed of 5 α-helices, which connect to domain II by a long loop region. Judging
by its dimer interface, it seems the dimer (comprised of protomers A and B) is an active
form which is considerably less efficient when isolated in its monomer form. The active
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site is readily accessible to the solvent and is located distal to the dimer interface [28]. The
substrate binding site is comprised of pockets P1, P1’, P2 and P3. The P1 subsite is formed
with Phe140, Asn142, Glu166, His163 and His172 residues (Figure 1) and two conserved
water molecules. P2 is a deep pocket comprised of His41, Met49, Tyr54, Met165 and Asp187
residues while P3 is defined by Leu168 and flanked by Glu166, Pro168 and Gly170 [29].
Proteolysis occurs via a catalytic dyad defined by Cys145 and His41 [30]. The enzyme is
responsible for cleavage on no less than 11 sites on the large viral polyprotein 1ab. Cleavage
generally follows the pattern Leu/Phe/Met-Gln ↓ Gly/Ser/Ala (↓ denotes the cleavage
site). Glutamine at the P1 position is crucial for proteolysis to occur. As there are no known
native human enzymes with such cleavage sites, Mpro looks to be an ideal drug target,
since there is a low risk for toxic effects on host cells [31–33]. Structural data on the enzyme
is available and reporter assays developed making this target suitable for novel antiviral
design [34,35].
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tor depicted in blue coloured stick model. 
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coupled with machine learning classification to offer a prioritisation approach for com-
pounds with potential activity on SARS-CoV-2 3CLpro. We employ fast methodologies to 
cover a comprehensive chemical space based on molecular docking scores in order to offer 
prioritisation lists of compounds for further free energy calculations and suitable for bio-
logical evaluation [36]. We focus on identifying novel potential non-covalent protease in-
hibitors, as we firmly believe they offer the flexibility of optimisation and synthetic or 
commercial availability [37,38]. 

2. Results and Discussion 
2.1. Database Preparation 

For our HTVS (high-throughput virtual screening) experiment, we employed the 
ZINC 15 library [39]. To produce robust results that would enable downstream experi-
mental support and biological evaluation, we specifically selected the "In-Stock" library 
subset that includes commercially readily-available compounds. The subset was trenched 
to exclude small fragments below the molecular weight of 200 g/mol and included 
9,232,022 compounds in total (Figure 2). The next step was compound ionisation at the 
pH of 7.4, the calculation of initial 3D conformations for the whole database, the enumer-
ation of undefined chiral centres, and the removal of structural faults. Smiles strings were 

Figure 1. Active site of SARS-CoV-2 3Clpro or Mpro enzyme (PDB ID: 6Y7M) with emphasised small molecule and pocket
designation on the right. Active site residues are depicted in green coloured line model with emphasized transparent
blue-white surface 6 Å around the small molecule inhibitor depicted in blue coloured stick model.

In this study, we perform a high-throughput virtual screening (HTVS) experiment
coupled with machine learning classification to offer a prioritisation approach for com-
pounds with potential activity on SARS-CoV-2 3CLpro. We employ fast methodologies
to cover a comprehensive chemical space based on molecular docking scores in order to
offer prioritisation lists of compounds for further free energy calculations and suitable for
biological evaluation [36]. We focus on identifying novel potential non-covalent protease
inhibitors, as we firmly believe they offer the flexibility of optimisation and synthetic or
commercial availability [37,38].

2. Results and Discussion
2.1. Database Preparation

For our HTVS (high-throughput virtual screening) experiment, we employed the
ZINC 15 library [39]. To produce robust results that would enable downstream experimen-
tal support and biological evaluation, we specifically selected the "In-Stock" library subset
that includes commercially readily-available compounds. The subset was trenched to
exclude small fragments below the molecular weight of 200 g/mol and included 9,232,022
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compounds in total (Figure 2). The next step was compound ionisation at the pH of 7.4,
the calculation of initial 3D conformations for the whole database, the enumeration of
undefined chiral centres, and the removal of structural faults. Smiles strings were syntac-
tically validated (all rings/branches closed, no illegal atom types) with RDKit software
(MolFromSmiles). Ionisation was performed using OpenEye QUACPAC 2.1.1.0 software
(OpenEye Scientific Software, Inc., Santa Fe, NM, USA; www.eyesopen.com; accessed on 8
May 2021) with FixpKa module and ionise 7.4 parameters. The initial 3D conformation
was calculated with OpenEye OMEGA 2.5.1.4 software (OpenEye Scientific Software, Inc.,
Santa Fe, NM, USA; www.eyesopen.com). The following parameters were used: maxconfs
1 and flipper: true [40].
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Figure 2. Detailed ZINC 15 database “In-Stock” subset tranche description with a total of 9,322,002 compounds used
for further calculations (As obtained from the https://zinc15.docking.org; accessed on 8 May 2021; at the time of smiles
compound download; the database on the master server is continuously updating).

2.2. Binding Site Identification

Upon examination of available SARS-CoV-2 3CLpro crystal structures at the time, we
selected the complex (PDB ID: 6Y7M) with an excellent resolution of 1.9 Å deposited by
Zhang L. et al. [41]. This complex contained a relatively large peptidomimetic inhibitor
OEW (MW = 585.69 g/mol) occupying major pockets at the enzyme active site, essentially
keeping the S1 pocket in the correct shape and the enzyme in the active conformation. After
superimposition to a reference structure (PDB ID:6LU7) by Yang et al., the catalytic binding
pocket was defined around Cys145 as published previously by Jukic et al. [29,42]. Finally,
the target was prepared as a sphere of 7 Å around the ligand for docking volume calculation
using the CmDock docking package (https://gitlab.com/Jukic/cmdock/; accessed on 8
May 2021; Figure 3; details are in Supplementary Materials).

www.eyesopen.com
www.eyesopen.com
https://zinc15.docking.org
https://gitlab.com/Jukic/cmdock/
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Figure 3. Generated receptor volume with the 3CLpro PDB ID: 6Y7M, the active site near the Cys145
residue and the docking volume defined as a sphere of 7 Å around the reference ligand OEW. Protein
is depicted as a pink-magenta-coloured cartoon model with residues emphasised in the line model
and coloured atoms (carbon in green, oxygen in red, nitrogen in blue and hydrogen in white colour)
with a blue-white transparent active site surface. Docking volume boundary mesh is depicted in
blue colour. Isomesh (0.99) was constructed using PyMol 2.1.0 using a grid calculated with cmgrid
software (v 0.1.1).

2.3. HTVS

For the HTVS campaign, the complete pre-prepared database was docked using
CmDock into the prepared receptor binding site to afford 1‰ of top-scoring compounds
with the Z-score cutoff of –7.7 (Figure 4).
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Figure 4. HTVS workflow with post-docking filtering, cluster analysis, and compound classification according to the
chemical space of 3CLpro inhibitors collected in the ChEMBL database.

In order to inspect all chemical space, filtering was done post-docking, where subse-
quently PAINS [43–45] and REOS structures were filtered out [46,47]. KNIME software
with RDKit nodes was applied to compare all structures in the library to the selection
of SMARTS-formatted PAINS and to remove flagged hits from the database followed by
REOS filtering with Schrödinger SMD software (Schrödinger LLC., New York, NY, USA).
In this way, approximately 40% of the pan-assay interfering and reactive compounds (with
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labile functional groups) were filtered out, and the top 200 scoring compounds were ex-
amined by cluster analysis and classified in the current 3CLpro-actives space. Hierarchical
clustering was performed using Schrödinger SMD (Schrödinger LLC., New York, NY, USA)
using Molprint2D hashed fingerprints, Tanimoto similarity metric and average cluster
linkage method; the 17 clusters have been estimated by the Kelley criterion [48]. The final
compound selection was performed with top-scoring hits with consideration of QuickProp
QPlogS (Schrödinger LLC., New York, NY, USA) descriptor (>−6.5) in order to focus on
compounds that have a greater potential to be soluble. Complete QuickProp descriptor set
was calculated to flag all un-/desired properties and enable further custom prioritisation of
compounds, and the whole set of top 200 hits is supplied in the Supplementary Materials
for the convenience of future research. Upon examination of all top-scoring compounds,
we identified that they all conform to the classic P1-P2-P3 binding pockets, as described
previously [42]. Predicted bound conformations for the top-scoring hit as well as for the
first ten hit compounds are analogous (and in accordance to the crystal ligand OEW),
and compounds interact with key Thr25, Leu27, Gly143, Ser144, Cys145, His163, His164,
Met165, Glu166, Asp187, Thr190, Gln189 and Gln192 residues at the 3CLpro active site
(Table 2, Figure 5).

Table 2. Identified top-scoring compounds in the HTVS on the SARS-CoV-2 main protease for further compound prioritisa-
tion in biological evaluation experiments.

no Structure Mr (g/mol) Cluster/QPlogS 1 CmDock Docking Score 2 Classification 3

1
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Figure 5. Calculated bound conformations in the 3CLpro active site of the top-scoring hit compounds. Protein is presented in
a cartoon model coloured pink with an emphasised molecular surface in light-blue colour. (A); the reference OEW ligand is
presented in stick model cored magenta, while the top-scoring hit is coloured grey. (B) the reference OEW ligand is presented
in stick model cored magenta while the top 10 scoring compounds are depicted in red-coloured line representations to
emphasise their analogous binding mode in the P1-P2-P3 pockets of the active site.

2.4. Chemical Space Prediction and Classification Supported by Machine Learning

We also investigated whether state-of-the-art machine learning algorithms could be
of use for compound prioritisation. In this work, we implemented four different machine
learning algorithms capable of detecting various complexities and evaluated their perfor-
mance on the training data. The training data for the regression experiment consisted of
all compounds with activity on the 3CLpro enzyme (ChEMBL standard value IC50 in nM,
133 compounds with 1k decoy set, available in Supplementary Materials) present in the
ChEMBL database, while the training data for classification consisted of chemical libraries
active on 3CLpro as well as actives on all viral cysteine proteases (3145 compounds with
1k decoy set, available in Supplementary Materials) [49]. For all compounds, we used
RDKit.Chem package. RDKit.Chem.Descriptors module calculated a set of 208 chemical
descriptors in order to capture the respective chemical space. In this manner, we could
effectively classify compounds in the context of their representative chemical space: similar
to known 3CLpro inhibitors, similar to known viral cysteine protease inhibitors, or belong-
ing to a different chemical space to help in future design directions for individual scaffolds.
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The learning algorithms were (from simplest to more complex ones): a majority classifier
(prediction of the most common class), a logistic regression classifier (linear classifier), and
two non-linear classifiers, namely a deep feedforward neural network, designed specif-
ically for this task, as well as the extreme gradient boosting machines (XGB), which are
considered a strong learner in contemporary chemoinformatics [50–53].

3. Materials and Methods
3.1. Target Preparation

Complex (PDB ID: 6Y7M) contains {tert}-butyl ~{N}-[1-[(2~{S})-3-cyclohexyl-1-[[(2~{S},
3~{R})-4-(cyclopropylamino)-3-oxidanyl-4-oxidanylidene-1-[(3~{R})-2-oxidanylidene-3,4 -
dihydropyrrol-3-yl]butan-2-yl]amino]-1-oxidanylidene-propan-2-yl]-2-oxidanylidene-pyridin-
3-yl]carbamate (OEW), a peptide-like covalent inhibitor where thiohemiketal is formed
by the nucleophilic attack of the catalytic cysteine (Cys145) onto the carbonyl group
of the inhibitor. Residue conformation at the active site was checked by superposition
with PDB ID: 6M2N and 6XMK with an all atom RMSD of 0.330 and 0.662 Å, respec-
tively [54,55]. For the docking receptor preparation, the covalent bond was cleaved, a
small molecule removed, and the Cys145 amino-acid residue regenerated (Open Source
PyMOL, release 2.1). The target was prepared using Schrödinger Small-Molecule Discovery
Suite (Schrödinger LLC., New York), protein preparation module. Missing hydrogens
were added, h-bonding network was optimised using PROPKA tool at pH 7.4, waters
were removed, and restrained minimisation was performed with a convergence of heavy
atoms towards 0.3 Å. Finally, using the cmcavity program from CmDock docking package
(https://gitlab.com/Jukic/cmdock/; accessed on 8 May 2021), we generated a docking
receptor [56–58]. The reference ligand method was employed for cavity calculation (recep-
tor definition), where we used the OEW-cleaved regenerated ligand as a reference and a
sphere of 7 Å around the ligand for the docking volume (cavity volume) calculation. We
calculated a total cavity volume of 3106.25 A3 and included the calculated cavity (Cavity
#1) in the docking receptor definition. Cavity #1 parameters were the size of 24850 points;
min = (−33.5,−53.5,−8.5); max = (−13,−26.5,12); centre = (−24.4138,−38.9632,−0.179235);
coordinates and extent = (20.5,27,20.5) Å (Figure 3, details are in Supplementary Materials).

3.2. Virtual Screening Experiment Design

For the virtual screening experiment (HTVS), a docking approach with a robust
CmDock software, the prepared compound database, and the docking receptor (Cavity
#1), as described in the previous section, were employed [56,57]. Firstly, we conducted
a redocking experiment. The reference-regenerated OEW peptidomimetic ligand (PDB
ID: 6Y7M) was prepared as a SMILES string and energy-minimised in Ligprep tool from
Schrödinger SMD using the OPLS 3e forcefield. The minimised structure was subsequently
used as an input for the redocking experiment into the prepared receptor in a non-covalent
manner. Applied parameters for the CmDock software (v 0.1.1) were standard docking
protocol (dock.prm) with 100 runs, no constraints, and no score filters. We successfully
retrieved the crystal-complex binding conformation of the OEW ligand with an RMSD
of 1.34 Å. Furthermore, we calculated the receiver operating characteristic (ROC) curve
to validate the performance of the classifier docking method. We selected a set of known
SARS-CoV 3CLpro inhibitors from the ChEMBL database with experimental IC50 < 100 µM
values and created a testing database by the addition of negative control compounds that
were calculated decoys based on employed actives using DUD-E: A Database of Useful
(Docking) Decoys [59]. Upon using 1% and 10% of actives in the test database, we obtained
a ROC AUC of 0.80 and 0.79, respectively. We also employed the activity data from the
PostEra Covid Moonshot project (https://covid.postera.ai/covid/activity_data; accessed
on 8 May 2021). We selected compounds with pIC50 above 7 as true actives and compounds
with pIC50 up to 4.00436 as inactives or experimental decoys (compounds with no data
were left out). When using 2% and 10% of actives in the test set, we obtained ROC AUCs

https://gitlab.com/Jukic/cmdock/
https://covid.postera.ai/covid/activity_data
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of 0.61, indicating that our docking protocol can indeed identify active compounds and
produce enriched libraries.

In order to effectively utilise CPU-time in downstream calculations, we analysed the
chemical library performance in HTVS. We sampled a random 10% population of the
designed library and performed an exhaustive docking experiment on 977,600 molecules
(dock.prm protocol, 100 runs per molecule, no constraints, and no score filter). We then
analysed the docking results using the sdreport script (part of CmDock package) and
KNIME software, where the mean docking score was −12.317, and the standard deviation
was 4.273. Upon passthrough analysis using rbhtfinder script (part of CmDock package,
parameters: −15 and −20), the HTVS analysis afforded an optimal HTVS experiment
workflow where up to 5 runs were performed for molecules that possessed docking score
of −18 and up to 15 runs for molecules that were found with docking scores of −25. In
the case of docking scores lower than −25, 50 runs were performed. The first filter was
passed by 25.7% of molecules, the second filter was passed by 1.71% of molecules, and the
run was on average 7.8% CPU-time compared to the exhaustive docking run-time, thereby
effectively improving the HTVS efficiency.

3.3. Machine Learning

The deep neural network consisted of six hidden layers, where each layer was acti-
vated with the ReLU activation, followed by dropout-based regularisation, set to 0.3 [60].
The final layer of the neural network was activated with a softmax function to obtain a
distribution across the space of possible classes. During prediction, the most probable class
is selected (argmax across class probabilities). The extreme gradient boosting machines are
a type of tree-based ensemble classifier capable of fast learning and robust and accurate
predictions. The evaluation regime was designed as follows: we randomly sampled ten
different stratified splits, where the training data was used to learn the models, followed
by the evaluation of their predictions on the test data. The splits were in ratio 8:2. We
report the average performance with a standard deviation for the macro F1 score (the task
considered is a multiclass classification). Apart from the classification task, the point was
to differentiate between chemical spaces occupied by known 3Clpro inhibitors reported
in ChEMBL, known viral cysteine protease inhibitors in the ChEMBL database, and other
chemical space. We also conducted a similar series of experiments to assess to what extent
machine learning can predict the inhibition of 3CLpro directly (on the basis of the ChEMBL
standard value IC50 in nM), which is a regression task. The regression variants of the
algorithms mentioned above were considered, namely the XGB with the “req:squarederror”
loss, the neural network’s classification head was replaced with a regression one, and
instead of logistic regression, we used a simple linear regressor. The neural network that
performed best consisted of seven (regularized) hidden layers; other hyperparameters
were the same as in the classification scenario. As the neural network’s expected output is
a positive real number, the final activation used was a ReLU as well, as we observed faster
convergence compared to using no activation at all. Mean squared errors with standard
deviation across ten random splits (see the previous section) are reported (Table 3).

Table 3. Machine learning model accuracy comparison table.

Macro F1/mse 1 NeuralNet 2 XGB 2 Linear 2 Majority/Average 3

Classification 0.895 ± 0.05 0.889 ± 0.014 0.667 ± 0.015 0.283 ± 0.001

Regression 0.002 ± 0.001 0.003 ±0.001 0.012 ± 0.002 0.005 ± 0.001
1 macro F1 for classification and mse for regression; 2 Learner; 3 majority class classifier in classification and
average of the training target space in a regression model.

The neural network and XGB performed, as expected, the best, followed by a simpler
linear learner. Compared to the majority baseline, e.g., the neural network’s performance is
substantially higher, indicating that it learned to differentiate between the classes. On the
contrary, the average-training baseline (averaged train predictions) performed better than
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the linear classifier, indicating that the regression problem at hand is relatively hard and
potentially not linearly separable. The XGB and neural networks performed better than this
baseline, albeit not by a large margin, indicating the actives 3CLpro dataset was insufficient
for effective training. However, the regression task similarly indicates that it is possible to
use non-linear models for direct activity prediction necessitating good data collection on
3CLpro actives in the future. Furthermore, the authors are aware of the generalisation of
the idea on other well-represented datasets and postulate its great value in future in silico
drug design.

4. Conclusions

Herein, we presented a novel in silico approach towards compound prioritisation in
the design of novel 3CLpro inhibitors. Rather than relying on commercial “corona-focused
libraries”, we performed a robust and efficient HTVS experiment to obtain virtual hit
compounds. We then coupled the method to a machine learning classification experiment
where each compound is classified into the chemical space of 3CLpro inhibitors, into general
viral cysteine protease inhibitors, or into a completely novel unrelated chemical space.
In this way, medicinal chemists can turn their attention towards compounds that would
otherwise escape and derive insight into the possible mechanism of action. Therefore, we
employed a complete library of 3CLpro inhibitors and viral cysteine protease inhibitors
obtained from the ChEMBL library using the calculated ensemble of 208 descriptors
for each compound in the library. We reported ten top-scoring compounds as viable
binders supported by CmDock docking calculations considering the QuickProp QPlogS
descriptor that indicates possible soluble compounds. Namely, solubility forms one of
the serious problems when transitioning from in silico enrichment lists towards physical
samples for in vitro evaluation. We supply full lists of hit compounds in the Supplementary
Materials for the reader’s benefit, especially if alternative compound selection criteria are
desired, all with the aim of providing the medicinal chemistry community with a viable
prioritisation library of potential 3CLpro inhibitors tailored for further molecular dynamics
(MD) studies [61] as well as experimental design and development. Namely, reported
enriched lists of compounds can serve as starting points, whereas compounds can be
purchased commercially or be a subject of a synthetic campaign. Compounds can thus
serve as experimental decoys or, if successful, progress as leads or probes.

Supplementary Materials: Details on target preparation and virtual screening. References [62]
and [63] are cited in the supplementary materials.
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