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Abstract: Discovering new materials for energy storage requires reliable and efficient protocols for
predicting key properties of unknown compounds. In the context of the search for new organic
electrolytes for redox flow batteries, we present and validate a robust procedure to calculate the
redox potentials of organic molecules at any pH value, using widely available quantum chemistry
and cheminformatics methods. Using a consistent experimental data set for validation, we explore
and compare a few different methods for calculating reaction free energies, the treatment of solva-
tion, and the effect of pH on redox potentials. We find that the B3LYP hybrid functional with the
COSMO solvation method, in conjunction with thermal contributions evaluated from BLYP gas-
phase harmonic frequencies, yields a good prediction of pH =0 redox potentials at a moderate com-
putational cost. To predict how the potentials are affected by pH, we propose an improved version
of the Alberty-Legendre transform that allows the construction of a more realistic Pourbaix diagram
by taking into account how the protonation state changes with pH.

Keywords: redox flow batteries; high-throughput screening; computational protocol; redox
potential prediction; quinones; solvation free energy

1. Introduction

The main goal of this contribution is the establishment and validation of a standard
procedure for the computational prediction of redox potentials of organic molecules un-
dergoing a proton-coupled electron transfer. One of the main motivations for benchmark-
ing such predictions is the computational screening of the vast chemical space of organic
molecules to identify electrolytes for redox flow batteries (RFBs) [1-14]. At some point in
any computational workflow for materials discovery, one needs a reliable method to pre-
dict with reasonable accuracy and moderate computational cost the properties of an al-
ready pre-selected candidate pool. The redox potential is one of the most important prop-
erties of redox-active materials. Its pH dependence is especially important in aqueous
RFBs, where the pH affects the molecules’ solubility and electrochemical behavior and
can even be exploited to increase the voltage [15]. The main theoretical concepts and the
most commonly used computational methods for modeling organic redox materials have
recently been summarized by the present authors in a review article [16]. Here, we will
not repeat those general concepts and focus instead on how different methods and details
of the procedure affect the agreement with experimental data. We will use notation con-
sistent with [16] throughout this article. The experimental redox potentials at pH 0, 7, and
13 reported by Wedege et al. [17] for a set of 28 molecules of the quinone family have been
chosen as a consistent data set for validating our computational protocol. It includes mol-
ecules with a different number of aromatic rings (i.e., benzo-, naphtho- and anthraqui-
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nones) and a diverse range of substituents and therefore span a wide range of redox po-
tentials. Their structures are shown in Scheme 1 and full names in Table S1 in the Supple-
mentary Materials. Although we validate the procedure on quinones, it is generalizable
to other classes of redox molecules regardless of the number of exchanged electrons
and/or protons.
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Scheme 1. Structures and abbreviations of the molecules considered in this study in their oxidized
form and most prevalent protonation state at pH = 0.

2. Computational Protocol and Results

The procedure we present is designed to be integrated into a computational discov-
ery workflow: it takes as input the molecular structures of the oxidized and reduced forms
(Ox and Red), typically in a text string format such as SMILES, and outputs redox poten-
tials as a function of pH. It can briefly be summarized as follows: (1) determine the main
protonation state at pH 0 and find the lowest energy conformer of Ox and Red, (2) calcu-
late the free energies of Ox and Red to obtain the standard redox potential U°, (3) trans-
form U° to the pH values of interest.

In proton-coupled redox reactions, H* is one of the reagents. U° is defined in the
thermodynamic standard state where [H*] =1 M or pH = 0. Redox potentials at other pH
values, i.e., at conditions different from the standard state, are described by the Nernst
equation [18]. The pH of the solution also determines the protonation state of the reactants
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and products, and therefore affects their energies and the number of protons exchanged
in the redox reaction. The redox potential depends essentially on the reaction-free energy
in the solution (see Equations (1) and (2)). In principle, the redox potential at any pH could
be calculated from the free energies at the protonation state most abundant at that pH.
However, at high pH, most OH groups tend to be deprotonated so that the major species
of hydroxylated reduced quinones can have several negative charges (up to 6 in the set
considered here). Such multiple anions can be challenging for the convergence of elec-
tronic structure methods since the additional electrons may not be sufficiently stabilized
[16]. Moreover, the accuracy of implicit solvation models is known to deteriorate when
increasing the charge of the solute [19]. For these reasons, it is preferable to compute the
redox potential at pH = 0 and then transform it to higher pH values [20,21] using expres-
sions based on the Nernst equation, such as Equation (5).

2.1. Initial Guess: Protonation State and Conformer

Step 1 of the procedure outlined above, whose goal is to determine the most likely
molecular structure as an initial guess for the subsequent geometry optimization, is per-
formed with inexpensive cheminformatics and force-field-based tools. For each SMILES
string, the protonation state of the major microspecies at pH = 0 is determined using the
pKa calculator of the cheminformatics software package ChemAxon [22]. The resulting
SMILES string of the pH = 0 structure is then converted to a 3D structure using Open
Babel, [23,24] and its lowest energy conformation is determined using a conformer search
script, part of the AMS software suite [25], which is based on RDKit [26] and was locally
modified by us to use the MMFF9%4 force field [27] instead of UFF. This modification was
necessary because UFF does not correctly identify the lowest energy conformers with in-
tramolecular hydrogen bonds, while MMFF94 does. This is due to a different treatment of
electrostatic interactions (the main component of hydrogen bonding) in the two force
fields [28,29]. The relationship between intramolecular hydrogen bonding and stability
has been reported before [10,30].

2.2. Calculation of the Redox Potential at pH 0

For a general proton-coupled reduction reaction Ox + ne~ + n,H* — Red where n
electrons and n, protons are transferred to the molecule, the standard redox potential is:

1
U® = ——AGg, — Uspg, @

where 1 is the number of electrons exchanged, e is the elementary charge and Usyg =4.43
V [31] is the absolute potential of the standard hydrogen electrode. The reduction free

energy in solution AGY; (expressed in eV) can be written as

AGY) = Go(Red) — G41(Ox) + np,AGO(H™Y), )

sol — Ysol sol

i.e,, the difference between the free energies of solvated Red and Ox, balanced by the solv-
ation free energy of n, protons, where AG? (H+) = —11.38 eV [32]. The accuracy of the
calculated redox potential depends essentially on the electronic structure methods and
approximations adopted to compute the free energies in solution. Our goal is to determine
which combination of methods performs best against experimental reference data.

2.2.1. Choice of Standard Method

The most common choice for computing molecular properties at a quantum chemical
level is density functional theory (DFT), as it offers reasonably high accuracy at a moder-
ate computational cost. We choose as a standard method the B3LYP hybrid density func-
tional, a very popular choice as a general-purpose method for ground-state geometry op-
timizations. The DFT-D3-B] dispersion correction [33] is always included unless stated
otherwise. We use the ADZP basis set (double zeta with polarization and diffuse func-
tions) as it is a good compromise between size and cost for molecular properties. All DFT
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calculations were performed with the Amsterdam Density Functional (ADF) software ver-
sion 2019.302 [25,34].

2.2.2. Solvation and Thermal Contributions to Free Energy

Quantum chemical methods are often used in conjunction with implicit solvation
models to include the effect of the solvent on the molecule’s free energy. Here, we use the
COSMO [35,36] implicit solvation model as a standard method. The geometry optimiza-
tion can be performed directly in solution (with COSMO), or a single point COSMO cal-
culation can be performed at the geometry optimized in the gas phase. The thermal con-
tribution to the free energy, which includes zero-point energy, vibrational enthalpy, and
entropy, is obtained from a harmonic vibrational frequency calculation in the gas phase
at the BLYP/ADZP level, which is much faster than B3LYP since ADF cannot compute
analytical gradients with hybrid functionals. This frequency calculation is done on a ge-
ometry optimized with the same method (BLYP in the gas phase).

In Figure 1, we report the scatter plots of computed vs. experimental redox potentials
comparing different levels of approximation. The mean absolute error (MAE) and mean
signed error (MSE) of each method are reported in the legends. In Figure 1a, we observe
that gas-phase electronic energies, neglecting solvation and thermal contributions,
yielded a rather bad prediction of experimental potentials: data were broadly scattered,
and there was a significant systematic error. Including the solvation contribution im-
proved the agreement (MAE ~ 0.3 V) and geometry optimization with a solvation model
gave slightly better results than in the gas phase. The addition of the thermal contribution
appears crucial for the prediction of redox potentials: the MAE was significantly reduced
to 74 mV and the MSE was very small (6 mV), a negligible systematic error. This method
(BSLYP optimization in COSMO + BLYP thermal correction) is the standard against which
we will compare other methods. Figure 1b shows that computing the frequencies in gas
or in solution had little effect on the thermal contribution, with a slight preference for the
gas phase. We then compared two other solvation methods with COSMO. In Figure 1c,
we show that with SM12 [37] single-point calculations (optimization is not possible in
ADF) at COSMO geometries, we obtained a systematic error of 0.1 V. When empirically
correcting for this error by subtracting the MSE from the computed potentials, the MAE
became comparable with COSMO. In Figure 1d, we assess the performance of the
COSMO-RS method, [38,39] which combines quantum chemistry with statistical mechan-
ics. The solvation free energy obtained with COSMO-RS was added to the gas-phase en-
ergy. In this case, we also observe a systematic error of about 0.1 V, and when correcting
for it, the MAE becomes almost identical to that of COSMO.

2.2.3. Comparing Electronic Structure Methods

Once the best set of approximations to the free energy contributions were deter-
mined, we turned our attention to the electronic structure method. While B3LYP is prob-
ably the most used off-the-shelf density functional for organic molecules, its performance
in benchmark studies of molecular properties does not justify its popularity. In a recent
benchmark study [40] performed with ADF, its performance for general properties and
reaction energies (Figure 3 in [40]) was reported to be mediocre. Therefore, we consider it
useful to compare B3LYP with a few different electronic structure methods: the GGA func-
tional BLYP and two of the best performing functionals according to [40]: the meta-hybrid
MO06-2X-D3(0) and the double hybrid rev-DOD-BLYP-D4. We also recalculated the gas
phase electronic energies using the composite method G4MP2 implemented in the Gauss-
ian 16 software [41]. Both the double hybrid and G4MP2 included an energy term ob-
tained with the second-order Moller-Plesset perturbation theory (MP2). As expected,
BLYP performed worse than B3LYP (Figure 2a) even when correcting for the -0.2 V sys-
tematic error. The potentials obtained with M06-2X-D3(0) and 6-31G(2df,p) basis set with
COSMO using Q-Chem 5.2 [42] (with thermal contribution obtained in the gas phase at
the same level of theory) were affected by a +0.1 V systematic error. When correcting for
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that, the prediction was still slightly worse than B3LYP. With the double hybrid rev-DOD-
BLYP-D4 (Figure 2c), we observed a negative systematic error and, after correcting for it,
the MAE was not better than B3LYP. Similarly, Figure 2d shows that computing the elec-
tronic energies with the G4MP2 composite method and adding the B3LYP solvation free
energy yields a systematic error (MSE = 0.17 V); when corrected, the method was not bet-

ter than B3LYP.
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Figure 1. Computed vs. experimental redox potentials at pH = 0: role of solvation and thermal contributions to the free
energy. All energies computed with BSLYP functional and ADZP basis set. (a) Starting from gas-phase electronic energies,
the effect of adding solvation (COSMO) and thermal contribution (from BLYP gas-phase frequencies). (b) Comparison
between thermal contribution computed in gas or solution. (c) Comparison between COSMO and SM12 solvation models.
SM12 calculated as a single point at COSMO geometries. The systematic error of SM12 was corrected by -MSE. (d) Com-
parison between COSMO and COSMO-RS solvation models. The systematic error of COSMO-RS was corrected by -MSE.

Despite expectations, the B3LYP functional in conjunction with COSMO implicit
solvation model appears to deliver the most accurate prediction of redox potentials
among the several methods we tested. Since this property is essentially an energy differ-
ence, we can attribute the small MAE and MSE achieved by this method to fortuitous error
cancellations. It should be noted that the choices of the two constants that enter Equation
(1), Uspe and AG2(H"), obviously affect all data points by the same amount. The discus-
sion about the correct values of these constants can be found elsewhere, [43-45], and it is
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not clear which values are consistent with the COSMO model, but we note that with the
values chosen here, the B3LYP/COSMO method had a reasonably good predicting power

without the need for empirical correction of systematic errors.
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Figure 2. Computed vs. experimental redox potentials at pH = 0. Comparison between B3LYP and other methods. Sys-
tematic errors are corrected by subtracting MSE from all data points. All potentials include BLYP thermal correction except
(b). (a) BLYP/ADZP optimized in COSMO. (b) M06-2X-D3(0)/6-31G(2d{,p) optimized in COSMO with thermal correction
obtained at the same level of theory in gas. (c) rev-DOD-BLYP-D4/TZ2P in COSMO (single point at BALYP geometries).
(d) G4AMP2 gas-phase energies + B3LYP/COSMO solvation free energies.

2.2.4. Limits of Implicit Solvation Models

Now we turn our attention to the outliers. For some of the molecules in the data set,
the calculated potential is as much as ~0.4 V away from the experimental value. From the
method comparisons in Figures 1 and 2, we observe that these outliers are not affected by
the choice of solvation model or electronic structure method. Therefore, we suspect that
these large errors are due to the failure of implicit solvation models to capture specific
interactions between molecule and solvent, which appear to have a large impact in iso-
lated cases. This hypothesis can be verified by computing solvation free energies of these
outliers with explicit solvent molecules. Since explicit solvation methods are time-con-
suming (both human and computational time) they are not suitable for high-throughput
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screening. Nevertheless, we select the outlier AQTH14 (for which the redox potential at
pH =0 is underestimated by ~0.4 V) to verify if computing the solvation free energy in the
presence of explicit water molecules improves the agreement with the experimental po-
tential. We adopt a cluster—continuum model as described by Bryantsev et al. [46] and
compute the solvation free energies of the oxidized and reduced forms using the mono-
mer cycle as described in ref. [46]. Under this approximation, the cluster-continuum (cc)
solvation free energy of a solute A solvated by n water molecules is

AGE(A) = MG + AGS([A(H20),]) + 1AGyap (H0). ®)

AGHd is the binding energy of the cluster in the gas phase, calculated as the difference
between the energies of the cluster [A(H,0),] and of its isolated components (A + nH20).
AGs([A(H;0),]) is the solvation free energy of the cluster, i.e., the difference between its
gas-phase and COSMO energies (both optimized in the respective phase). The last term is
the vaporization free energy

AGyap(H,0) = —AGg(H,0) — RT In(55.34) — RT In(24.46), @)

where the first term is the COSMO solvation free energy of one water molecule in water,
the second term is the free-energy change of one mole of water from 55.34 M (concentra-
tion of H20 in water) to 1 M, and the third is the free-energy change of one mole of an
ideal gas from 1 atm to 1 M. The latter two corrections ensure that all reactants and prod-
ucts in gas phase and in solution are in the same 1 M standard state, as explained in ref.
[46]. The free energies GJ;(Red,0x) in Equation (2) are then obtained as G2;(A) =
Ggns(A) + AGS(A) where G,5(A) is the sum of the BSLYP gas-phase energy and the
BLYP thermal contribution.

The literature on cluster—continuum models prescribes [46,47] that n should be in-
creased until the solvation free energy AGS°(A) converges to a plateau. We manually built
several clusters formed by the solute and n water molecules, with the goal of maximizing
the number of solute-solvent and solvent-solvent hydrogen bonds. For each value of n,
we pre-optimized several cluster geometries using the GFN-XTB semi-empirical method
[48], optimized the most stable ones with DFT and then performed a Boltzmann average
of AGS€(A) over the different clusters. We built clusters for n = 1-9, 10, 12, 14, 16, and 18.
The clusters with n = 1-9 were built by placing water molecules on only one side of the
molecular plane, and those with # = 10-18 were built by repeating the clusters with n =5-
9 on the other side of the molecular plane, taking advantage of symmetry. Only one cluster
was considered for n =9, 18 respectively since nine waters were found to form a stable 3
by 3 cluster, and no other stable geometries were found. As shown in Figure 3, the solva-
tion free energies of both redox forms decrease when increasing # thanks to the solvating
effect of the explicit water molecules, but none of them has converged to a plateau yet.
The resulting redox potential becomes closer to the experimental value, although not lin-
early with n, confirming our hypothesis that the error is due to specific solute-solvent in-
teractions missed by implicit solvation (1 = 0). The non-linear behavior may be due to the
fact that the manually built and optimized clusters do not constitute a sample large
enough to achieve a converged average. We anticipate that better sampling and conver-
gence of the solvation free energy to a minimum could be achieved by extracting solute-
solvent clusters from a molecular dynamics simulation at finite temperature, but such un-
dertaking is beyond the scope of this study.
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Figure 3. Left vertical axis: Solvation free energies of the Ox and Red forms of AQTH14 obtained
from the cluster—continuum model as a function of the number n of explicit water molecules. Large
empty symbols are the Boltzmann average over a few cluster conformations (small filled symbols).
Right vertical axis: resulting standard redox potential expressed as the distance from the experi-
mental value (0.200 V).

2.3. Transformation to Higher pH Values

When electron transfer is coupled to proton transfer, the redox potential depends on
the pH. The transformation of the pH = 0 redox potential to higher pH values can be
achieved by modifying the free energies of Red and Ox according to the Alberty-Legendre
transform [21,49]:

GPM = GO, + NyRTIn(10)pH, (5)

sol

where G2 is the free energy at pH=0, Ny is the number of hydrogen atoms at pH =0, R
is the Rydberg constant, and T is the temperature. In contrast to Equations (4)-(10) in [49],
here we neglect the dependence on the ionic strength. At a given pH, the redox potential
U is directly proportional to the free energy difference AGSTI[ and the slope of the U vs.
pH curve at 298.15 K will therefore be RTIn(10) = 0.059 V, multiplied by the number of
protons that are transferred to the molecule at pHO0 (N (Red)—Ny(0x)). This approxima-
tion, under which the slope is constant and independent of pH, neglects the fact that the
redox species will be deprotonated at pH > pK,.

We have refined this method by updating the slopes of GSTI-I (Red) and GSTI[ (0Ox) at

each of the pK, values obtained from ChemAxon [22]. In practice, we construct approxi-

mate Pourbaix diagrams for GS%? (Red) and GSTI{ (0x) and consequently for U PH Foreach

H
redox form, we evaluate G:)lp for a set of pH values pH, = {0, ..., pKy3, ..., PKyp, ..., 14}
which includes any pK, values in the range (0,14). G2, is given by Equation (2), and for
pH, >0 we use the formula

GPIP = PPt 4 NPHRIRTIn (10) (pH,, — pH,_y). 6)

sol sol

The number of hydrogens is that of the major microspecies predicted by ChemAxon
at a pH value pHyu¢ = pHp,_; + 1/2(pH, — pH,_,), i.e., halfway between the current and
the previous. This ensures that the slope of the segment pH,_; — pH, always depends on
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the molecule’s updated protonation state, including cases where pH,_; is one of the
pK,s.

The free energies computed with either Equation (5) or (6) enter Equation (2), and the
potential as a function of pH is then obtained from Equation (1). The resulting Pourbaix
diagrams of all molecules are shown in Figure S1 in the Supplementary Materials. In Fig-
ure 4, we compare the experimental potentials with those computed at pH = 0 and those
transformed to pH =7 and 13 using Equations (5) and (6). At pH =7, there is not much
difference between the two methods because almost all molecules are in the same proto-
nation state as at pH =0, i.e., there are no pK,s below 7. On the other hand, at pH = 13,
most molecules have undergone some deprotonation leading to a smaller slope of the U
vs. pH curve. As a result, using Equation (5) leads to a systematic underestimation of the
potentials (MSE = -0.137 V). The adjustment of the slope using Equation (6) corrects this
systematic error (MSE =-0.016 V) and significantly improves the agreement with the ex-
perimental potentials. Considering the low computational cost of obtaining the pK,s and
protonation states using ChemAxon, the proposed procedure to transform pH = 0 poten-
tials using Equation (6) should become a standard method for predicting redox potentials
at any pH value.

1
Constant slope Variable slope
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Figure 4. Computed vs. experimental redox potentials at different pH values. In the (left panel), the transformation from
pH 0 to 7 and 13 was carried out with Equation (5) using the number of protons at pH = 0. In the (right panel), the trans-
formation is done with Equation (6) where the number of protons and hence the slope of the Pourbaix diagram was up-

dated at every pK,.

It is, of course, also possible, instead of transforming the pH = 0 potentials, to com-
pute the pH =7 and 13 potentials directly with DFT using the same procedure as for the
pH = 0 potential: (1) Determine the major protonation state at a given pH using Che-
mAxon; (2) Find lowest energy conformer; (3) Compute free energies of Ox and Red to
determine the redox potential with Equations (1) and (2). Since most molecules in our data
set have the same protonation state at pH =0 and 7, we only report the potentials obtained
directly at pH = 13. As shown in Figure S2 (Supplementary Materials), this method leads
to a large underestimation of the redox potentials, that we attribute to the consistent fail-
ure of the implicit solvation model to capture the full solvation free energies, especially of
the reduced forms, which have larger negative charges. This result confirms that, as dis-
cussed earlier, it is much more accurate to compute free energies at pH = 0 protonation
states and then transform them to the pH of interest.
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3. Summary and Conclusions

In this contribution, we have benchmarked a procedure to predict redox potentials
of organic molecules from the first principles. Taking as the input the SMILES strings of
the reduced and oxidized forms, we show that widely available cheminformatics tools can
be used to determine the main protonation state at pH = 0 and the major conformer. Two
DFT calculations for each redox form are then needed to compute the redox potential: one
geometry optimization with COSMO implicit solvation and one geometry optimization
with subsequent frequency calculation in the gas phase. The former includes a reasonable
estimate of the solvation free energy, and the latter provides an estimate of the thermal
contribution to the free energy. Among several electronic structure methods tested (in-
cluding composite methods), the B3LYP hybrid density functional was found to yield the
best agreement with a consistent set of experimental potentials (MAE = 0.074 V and MSE
=-0.006 V without empirical corrections). It may seem surprising that B3LYP, which is the
most popular but not particularly new or generally accurate functional, performs better
for redox potentials than other methods reported to perform best in other more compre-
hensive benchmarks. The very popular combination of B3LYP with double-C polarized
basis sets (6-31G* or similarly ADZP) is believed to be the cause of the error cancellations
(errors due to the functional and to the basis set incompleteness are similar and of oppo-
site sign) [50] that make it reasonably accurate in many cases, especially when including
a dispersion correction such as D3 [51].

In a few cases, the potential prediction was found to be up to 0.4 V off the experi-
mental value. By employing a mixed explicit-implicit solvation model on one of these
outliers, we have verified that such errors are very likely due to the failure of the implicit
solvation model to capture specific solvent-solute interactions. These exceptional cases
cannot be predicted from the outset. In the near future, significantly more effort should
be dedicated to the establishment of rapid protocols for computing reasonably good solv-
ation free energies with explicit solvation. Such protocols that overcome the limitations of
implicit solvation could then be used in high-throughput screening studies where a more
accurate prediction of redox potentials is desirable.

Finally, we presented a novel and computationally inexpensive procedure to trans-
form the pH = 0 redox potentials computed with DFT to any other pH value. Using the
pK,s predicted by the ChemAxon cheminformatics software [22], we construct an accu-
rate estimation of the Pourbaix diagram that takes into account the changes in slope of the
U vs. pH curve due to deprotonations of both redox forms. The potential predictions at
pH =13 obtained with this variable slope approach correct the systematic underestimation
resulting from the constant slope transformation that considered only the pH = 0 proto-
nation states. The MAE with respect to experimental potentials were found to be 0.121 V
at pH=7and 0.144 V at pH = 13 with our new method.

In summary, we have established and validated a protocol to predict redox potentials
of organic molecules at a modest computational cost, using standard DFT methods and
widely available cheminformatics tools that can be easily implemented in high-through-
put screening studies. Scheme 2 illustrates all steps of the procedure and the computa-
tional tools necessary for each step. We have shown that with this protocol, redox poten-
tials can be predicted with MAE below 0.15 V over a wide range of pH.
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redox potential pK,s from cheminformatics + eq. (6) custom script

Scheme 2. Flowchart of the computational protocol described in this article.

Supplementary Materials: The following are available online, Table S1: full names of all molecules.
Figure S1: Pourbaix diagrams (redox potential vs. pH) of all molecules, Figure S2: Computed vs.
experimental redox potentials computed directly at pH = 13.
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