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Abstract: Discovering new materials for energy storage requires reliable and efficient protocols for 

predicting key properties of unknown compounds.  In  the context of  the search  for new organic 

electrolytes  for redox flow batteries, we present and validate a robust procedure  to calculate  the 

redox potentials of organic molecules at any pH value, using widely available quantum chemistry 

and cheminformatics methods. Using a consistent experimental data set for validation, we explore 

and compare a few different methods for calculating reaction free energies, the treatment of solva‐

tion, and the effect of pH on redox potentials. We find that the B3LYP hybrid functional with the 

COSMO solvation method,  in conjunction with  thermal contributions evaluated  from BLYP gas‐

phase harmonic frequencies, yields a good prediction of pH = 0 redox potentials at a moderate com‐

putational cost. To predict how the potentials are affected by pH, we propose an improved version 

of the Alberty‐Legendre transform that allows the construction of a more realistic Pourbaix diagram 

by taking into account how the protonation state changes with pH. 
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1. Introduction 

The main goal of this contribution is the establishment and validation of a standard 

procedure for the computational prediction of redox potentials of organic molecules un‐

dergoing a proton‐coupled electron transfer. One of the main motivations for benchmark‐

ing such predictions is the computational screening of the vast chemical space of organic 

molecules to identify electrolytes for redox flow batteries (RFBs) [1–14]. At some point in 

any computational workflow for materials discovery, one needs a reliable method to pre‐

dict with reasonable accuracy and moderate computational cost the properties of an al‐

ready pre‐selected candidate pool. The redox potential is one of the most important prop‐

erties of  redox‐active materials.  Its pH dependence  is especially  important  in aqueous 

RFBs, where the pH affects  the molecules’ solubility and electrochemical behavior and 

can even be exploited to increase the voltage [15]. The main theoretical concepts and the 

most commonly used computational methods for modeling organic redox materials have 

recently been summarized by the present authors in a review article [16]. Here, we will 

not repeat those general concepts and focus instead on how different methods and details 

of the procedure affect the agreement with experimental data. We will use notation con‐

sistent with [16] throughout this article. The experimental redox potentials at pH 0, 7, and 

13 reported by Wedege et al. [17] for a set of 28 molecules of the quinone family have been 

chosen as a consistent data set for validating our computational protocol. It includes mol‐

ecules with a different number of aromatic rings (i.e., benzo‐, naphtho‐ and anthraqui‐

Citation: Fornari, R.P.; de Silva, P.   

A Computational Protocol Combin‐

ing DFT and Cheminformatics for   

Prediction of pH‐Dependent Redox 

Potentials. Molecules 2021, 26, 3978. 

https://doi.org/10.3390/ 

molecules26133978 

Academic Editor: James Gauld 

Received: 7 June 2021 

Accepted: 28 June 2021 

Published: 29 June 2021 

Publisher’s Note: MDPI stays   

neutral with  regard  to  jurisdictional 

claims in published maps and   

institutional affiliations. 

 

Copyright: © 2021 by the authors.   

Licensee MDPI,  Basel,  Switzerland. 

This article  is an open access article 

distributed under the terms and   

conditions of the Creative Commons 

Attribution  (CC  BY)  license 

(http://creativecommons.org/ 

licenses/by/4.0/). 



Molecules 2021, 26, 3978  2  of  13 
 

 

nones) and a diverse range of substituents and therefore span a wide range of redox po‐

tentials. Their structures are shown in Scheme 1 and full names in Table S1 in the Supple‐

mentary Materials. Although we validate the procedure on quinones, it is generalizable 

to  other  classes  of  redox molecules  regardless  of  the  number  of  exchanged  electrons 

and/or protons. 

 

Scheme 1. Structures and abbreviations of the molecules considered in this study in their oxidized 

form and most prevalent protonation state at pH = 0. 

2. Computational Protocol and Results 

The procedure we present is designed to be integrated into a computational discov‐

ery workflow: it takes as input the molecular structures of the oxidized and reduced forms 

(Ox and Red), typically in a text string format such as SMILES, and outputs redox poten‐

tials as a function of pH. It can briefly be summarized as follows: (1) determine the main 

protonation state at pH 0 and find the lowest energy conformer of Ox and Red, (2) calcu‐

late the free energies of Ox and Red to obtain the standard redox potential 𝑈଴, (3) trans‐

form 𝑈଴  to the pH values of interest. 

In proton‐coupled  redox reactions, H+  is one of  the reagents. 𝑈଴  is defined  in  the 

thermodynamic standard state where [H+] = 1 M or pH = 0. Redox potentials at other pH 

values, i.e., at conditions different from the standard state, are described by the Nernst 

equation [18]. The pH of the solution also determines the protonation state of the reactants 
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and products, and therefore affects their energies and the number of protons exchanged 

in the redox reaction. The redox potential depends essentially on the reaction‐free energy 

in the solution (see Equations (1) and (2)). In principle, the redox potential at any pH could 

be calculated from the free energies at the protonation state most abundant at that pH. 

However, at high pH, most OH groups tend to be deprotonated so that the major species 

of hydroxylated reduced quinones can have several negative charges (up to 6 in the set 

considered here). Such multiple anions can be challenging  for  the convergence of elec‐

tronic structure methods since the additional electrons may not be sufficiently stabilized 

[16]. Moreover, the accuracy of implicit solvation models is known to deteriorate when 

increasing the charge of the solute [19]. For these reasons, it is preferable to compute the 

redox potential at pH = 0 and then transform it to higher pH values [20,21] using expres‐

sions based on the Nernst equation, such as Equation (5). 

2.1. Initial Guess: Protonation State and Conformer 

Step 1 of the procedure outlined above, whose goal is to determine the most likely 

molecular structure as an initial guess for the subsequent geometry optimization, is per‐

formed with inexpensive cheminformatics and force‐field‐based tools. For each SMILES 

string, the protonation state of the major microspecies at pH = 0 is determined using the 

pKa calculator of  the cheminformatics software package ChemAxon  [22]. The resulting 

SMILES string of  the pH = 0 structure  is  then converted  to a 3D structure using Open 

Babel, [23,24] and its lowest energy conformation is determined using a conformer search 

script, part of the AMS software suite [25], which is based on RDKit [26] and was locally 

modified by us to use the MMFF94 force field [27] instead of UFF. This modification was 

necessary because UFF does not correctly identify the lowest energy conformers with in‐

tramolecular hydrogen bonds, while MMFF94 does. This is due to a different treatment of 

electrostatic  interactions  (the main  component of hydrogen bonding)  in  the  two  force 

fields  [28,29]. The relationship between  intramolecular hydrogen bonding and stability 

has been reported before [10,30]. 

2.2. Calculation of the Redox Potential at pH 0 

For a general proton‐coupled reduction reaction Ox ൅  𝑛𝑒ି  ൅  𝑛୮Hା → Red where  𝑛 
electrons and  𝑛୮  protons are transferred to the molecule, the standard redox potential is: 

𝑈଴ ൌ െ ଵ

௡௘
∆𝐺sol

଴ െ 𝑈SHE,  (1)

where n is the number of electrons exchanged, e is the elementary charge and 𝑈SHE  = 4.43 

V  [31]  is  the absolute potential of  the standard hydrogen electrode. The reduction  free 

energy in solution  ∆𝐺sol
଴   (expressed in eV) can be written as 

∆𝐺sol
଴ ൌ 𝐺sol

଴ ሺRedሻ െ 𝐺sol
଴ ሺOxሻ ൅ 𝑛୮∆𝐺s଴ሺH

ାሻ,  (2)

i.e., the difference between the free energies of solvated Red and Ox, balanced by the solv‐

ation free energy of  𝑛୮  protons, where  ∆𝐺s଴൫H
ା൯ ൌ െ11.38 eV  [32]. The accuracy of the 

calculated redox potential depends essentially on  the electronic structure methods and 

approximations adopted to compute the free energies in solution. Our goal is to determine 

which combination of methods performs best against experimental reference data. 

2.2.1. Choice of Standard Method 

The most common choice for computing molecular properties at a quantum chemical 

level is density functional theory (DFT), as it offers reasonably high accuracy at a moder‐

ate computational cost. We choose as a standard method the B3LYP hybrid density func‐

tional, a very popular choice as a general‐purpose method for ground‐state geometry op‐

timizations. The DFT‐D3‐BJ dispersion correction  [33]  is always  included unless stated 

otherwise. We use the ADZP basis set (double zeta with polarization and diffuse func‐

tions) as it is a good compromise between size and cost for molecular properties. All DFT 
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calculations were performed with the Amsterdam Density Functional (ADF) software ver‐

sion 2019.302 [25,34]. 

2.2.2. Solvation and Thermal Contributions to Free Energy 

Quantum chemical methods are often used  in conjunction with  implicit solvation 

models to include the effect of the solvent on the molecule’s free energy. Here, we use the 

COSMO [35,36] implicit solvation model as a standard method. The geometry optimiza‐

tion can be performed directly in solution (with COSMO), or a single point COSMO cal‐

culation can be performed at the geometry optimized in the gas phase. The thermal con‐

tribution to the free energy, which includes zero‐point energy, vibrational enthalpy, and 

entropy, is obtained from a harmonic vibrational frequency calculation in the gas phase 

at the BLYP/ADZP  level, which  is much  faster than B3LYP since ADF cannot compute 

analytical gradients with hybrid functionals. This frequency calculation is done on a ge‐

ometry optimized with the same method (BLYP in the gas phase). 

In Figure 1, we report the scatter plots of computed vs. experimental redox potentials 

comparing different levels of approximation. The mean absolute error (MAE) and mean 

signed error (MSE) of each method are reported in the legends. In Figure 1a, we observe 

that  gas‐phase  electronic  energies,  neglecting  solvation  and  thermal  contributions, 

yielded a rather bad prediction of experimental potentials: data were broadly scattered, 

and  there was  a  significant  systematic  error.  Including  the  solvation  contribution  im‐

proved the agreement (MAE ~ 0.3 V) and geometry optimization with a solvation model 

gave slightly better results than in the gas phase. The addition of the thermal contribution 

appears crucial for the prediction of redox potentials: the MAE was significantly reduced 

to 74 mV and the MSE was very small (6 mV), a negligible systematic error. This method 

(B3LYP optimization in COSMO + BLYP thermal correction) is the standard against which 

we will compare other methods. Figure 1b shows that computing the frequencies in gas 

or in solution had little effect on the thermal contribution, with a slight preference for the 

gas phase. We then compared two other solvation methods with COSMO. In Figure 1c, 

we show  that with SM12  [37] single‐point calculations  (optimization  is not possible  in 

ADF) at COSMO geometries, we obtained a systematic error of 0.1 V. When empirically 

correcting for this error by subtracting the MSE from the computed potentials, the MAE 

became  comparable  with  COSMO.  In  Figure  1d,  we  assess  the  performance  of  the 

COSMO‐RS method, [38,39] which combines quantum chemistry with statistical mechan‐

ics. The solvation free energy obtained with COSMO‐RS was added to the gas‐phase en‐

ergy. In this case, we also observe a systematic error of about 0.1 V, and when correcting 

for it, the MAE becomes almost identical to that of COSMO. 

2.2.3. Comparing Electronic Structure Methods 

Once  the best  set of  approximations  to  the  free  energy  contributions were deter‐

mined, we turned our attention to the electronic structure method. While B3LYP is prob‐

ably the most used off‐the‐shelf density functional for organic molecules, its performance 

in benchmark studies of molecular properties does not justify its popularity. In a recent 

benchmark study [40] performed with ADF, its performance for general properties and 

reaction energies (Figure 3 in [40]) was reported to be mediocre. Therefore, we consider it 

useful to compare B3LYP with a few different electronic structure methods: the GGA func‐

tional BLYP and two of the best performing functionals according to [40]: the meta‐hybrid 

M06‐2X‐D3(0) and  the double hybrid rev‐DOD‐BLYP‐D4. We also  recalculated  the gas 

phase electronic energies using the composite method G4MP2 implemented in the Gauss‐

ian 16 software  [41]. Both  the double hybrid and G4MP2  included an energy  term ob‐

tained with  the  second‐order Møller–Plesset  perturbation  theory  (MP2). As  expected, 

BLYP performed worse than B3LYP (Figure 2a) even when correcting for the −0.2 V sys‐

tematic error. The potentials obtained with M06‐2X‐D3(0) and 6‐31G(2df,p) basis set with 

COSMO using Q‐Chem 5.2 [42] (with thermal contribution obtained in the gas phase at 

the same level of theory) were affected by a +0.1 V systematic error. When correcting for 
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that, the prediction was still slightly worse than B3LYP. With the double hybrid rev‐DOD‐

BLYP‐D4 (Figure 2c), we observed a negative systematic error and, after correcting for it, 

the MAE was not better than B3LYP. Similarly, Figure 2d shows that computing the elec‐

tronic energies with the G4MP2 composite method and adding the B3LYP solvation free 

energy yields a systematic error (MSE = 0.17 V); when corrected, the method was not bet‐

ter than B3LYP. 

 

Figure 1. Computed vs. experimental redox potentials at pH = 0: role of solvation and thermal contributions to the free 

energy. All energies computed with B3LYP functional and ADZP basis set. (a) Starting from gas‐phase electronic energies, 

the effect of adding solvation (COSMO) and thermal contribution (from BLYP gas‐phase frequencies). (b) Comparison 

between thermal contribution computed in gas or solution. (c) Comparison between COSMO and SM12 solvation models. 

SM12 calculated as a single point at COSMO geometries. The systematic error of SM12 was corrected by −MSE. (d) Com‐

parison between COSMO and COSMO‐RS solvation models. The systematic error of COSMO‐RS was corrected by −MSE. 

Despite  expectations,  the B3LYP  functional  in  conjunction with COSMO  implicit 

solvation model  appears  to  deliver  the most  accurate  prediction  of  redox  potentials 

among the several methods we tested. Since this property is essentially an energy differ‐

ence, we can attribute the small MAE and MSE achieved by this method to fortuitous error 

cancellations. It should be noted that the choices of the two constants that enter Equation 

(1), 𝑈SHE  and  ∆𝐺s଴൫H
ା൯, obviously affect all data points by the same amount. The discus‐

sion about the correct values of these constants can be found elsewhere, [43–45], and it is 



Molecules 2021, 26, 3978  6  of  13 
 

 

not clear which values are consistent with the COSMO model, but we note that with the 

values chosen here, the B3LYP/COSMO method had a reasonably good predicting power 

without the need for empirical correction of systematic errors. 

 

Figure 2. Computed vs. experimental redox potentials at pH = 0. Comparison between B3LYP and other methods. Sys‐

tematic errors are corrected by subtracting MSE from all data points. All potentials include BLYP thermal correction except 

(b). (a) BLYP/ADZP optimized in COSMO. (b) M06‐2X‐D3(0)/6‐31G(2df,p) optimized in COSMO with thermal correction 

obtained at the same level of theory in gas. (c) rev‐DOD‐BLYP‐D4/TZ2P in COSMO (single point at B3LYP geometries). 

(d) G4MP2 gas‐phase energies + B3LYP/COSMO solvation free energies. 

2.2.4. Limits of Implicit Solvation Models 

Now we turn our attention to the outliers. For some of the molecules in the data set, 

the calculated potential is as much as ~0.4 V away from the experimental value. From the 

method comparisons in Figures 1 and 2, we observe that these outliers are not affected by 

the choice of solvation model or electronic structure method. Therefore, we suspect that 

these large errors are due to the failure of  implicit solvation models to capture specific 

interactions between molecule and solvent, which appear to have a large impact in iso‐

lated cases. This hypothesis can be verified by computing solvation free energies of these 

outliers with explicit solvent molecules. Since explicit solvation methods are  time‐con‐

suming (both human and computational time) they are not suitable for high‐throughput 
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screening. Nevertheless, we select the outlier AQTH14 (for which the redox potential at 

pH = 0 is underestimated by ~0.4 V) to verify if computing the solvation free energy in the 

presence of explicit water molecules improves the agreement with the experimental po‐

tential. We adopt a cluster–continuum model as described by Bryantsev et al.  [46] and 

compute the solvation free energies of the oxidized and reduced forms using the mono‐

mer cycle as described in ref. [46]. Under this approximation, the cluster–continuum (cc) 

solvation free energy of a solute A solvated by n water molecules is 

∆𝐺sୡୡሺAሻ ൌ ∆𝐺୥ୟୱୠ୧୬ୢ ൅ ∆𝐺ୱሺሾAሺHଶOሻ௡ሿሻ ൅ 𝑛∆𝐺୴ୟ୮ሺHଶOሻ.  (3)

∆𝐺୥ୟୱୠ୧୬ୢ  is the binding energy of the cluster in the gas phase, calculated as the difference 

between the energies of the cluster  ሾAሺHଶOሻ௡ሿ  and of its isolated components (A + nH2O). 

∆𝐺ୱሺሾAሺHଶOሻ௡ሿሻ  is the solvation free energy of the cluster, i.e., the difference between its 

gas‐phase and COSMO energies (both optimized in the respective phase). The last term is 

the vaporization free energy 

∆𝐺୴ୟ୮ሺHଶOሻ ൌ െ∆𝐺ୱሺHଶOሻ െ 𝑅𝑇 lnሺ55.34ሻ  െ 𝑅𝑇 lnሺ24.46ሻ,  (4)

where the first term is the COSMO solvation free energy of one water molecule in water, 

the second term is the free‐energy change of one mole of water from 55.34 M (concentra‐

tion of H2O in water) to 1 M, and the third is the free‐energy change of one mole of an 

ideal gas from 1 atm to 1 M. The latter two corrections ensure that all reactants and prod‐

ucts in gas phase and in solution are in the same 1 M standard state, as explained in ref. 

[46].  The  free  energies  𝐺sol
଴ ሺRed, Oxሻ   in  Equation  (2)  are  then  obtained  as  𝐺sol

଴ ሺAሻ ൌ
𝐺୥ୟୱ଴ ሺAሻ ൅ ∆𝐺sୡୡሺAሻ  where  𝐺୥ୟୱ଴ ሺAሻ   is  the  sum  of  the  B3LYP  gas‐phase  energy  and  the 
BLYP thermal contribution. 

The literature on cluster–continuum models prescribes [46,47] that n should be in‐

creased until the solvation free energy  ∆𝐺sୡୡሺAሻ  converges to a plateau. We manually built 

several clusters formed by the solute and n water molecules, with the goal of maximizing 

the number of solute–solvent and solvent–solvent hydrogen bonds. For each value of n, 

we pre‐optimized several cluster geometries using the GFN‐xTB semi‐empirical method 

[48], optimized the most stable ones with DFT and then performed a Boltzmann average 

of  ∆𝐺sୡୡሺAሻ  over the different clusters. We built clusters for n = 1–9, 10, 12, 14, 16, and 18. 

The clusters with n = 1–9 were built by placing water molecules on only one side of the 

molecular plane, and those with n = 10–18 were built by repeating the clusters with n = 5–

9 on the other side of the molecular plane, taking advantage of symmetry. Only one cluster 

was considered for n = 9, 18 respectively since nine waters were found to form a stable 3 

by 3 cluster, and no other stable geometries were found. As shown in Figure 3, the solva‐

tion free energies of both redox forms decrease when increasing n thanks to the solvating 

effect of the explicit water molecules, but none of them has converged to a plateau yet. 

The resulting redox potential becomes closer to the experimental value, although not lin‐

early with n, confirming our hypothesis that the error is due to specific solute‐solvent in‐

teractions missed by implicit solvation (n = 0). The non‐linear behavior may be due to the 

fact  that  the manually  built  and  optimized  clusters  do  not  constitute  a  sample  large 

enough to achieve a converged average. We anticipate that better sampling and conver‐

gence of the solvation free energy to a minimum could be achieved by extracting solute‐

solvent clusters from a molecular dynamics simulation at finite temperature, but such un‐

dertaking is beyond the scope of this study. 
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Figure 3. Left vertical axis: Solvation free energies of the Ox and Red forms of AQTH14 obtained 

from the cluster–continuum model as a function of the number n of explicit water molecules. Large 

empty symbols are the Boltzmann average over a few cluster conformations (small filled symbols). 

Right vertical axis: resulting standard redox potential expressed as  the distance  from  the experi‐

mental value (0.200 V). 

2.3. Transformation to Higher pH Values 

When electron transfer is coupled to proton transfer, the redox potential depends on 

the pH. The  transformation of  the pH = 0  redox potential  to higher pH values  can be 

achieved by modifying the free energies of Red and Ox according to the Alberty‐Legendre 

transform [21,49]: 

𝐺sol
୮ୌ ൌ 𝐺sol

଴ ൅ 𝑁ୌ𝑅𝑇𝑙𝑛ሺ10ሻpH,  (5)

where  𝐺sol
଴   is the free energy at pH = 0, 𝑁ୌ  is the number of hydrogen atoms at pH = 0, R 

is the Rydberg constant, and T is the temperature. In contrast to Equations (4)–(10) in [49], 

here we neglect the dependence on the ionic strength. At a given pH, the redox potential 

U is directly proportional to the free energy difference  ∆𝐺sol
୮ୌ
  and the slope of the U vs. 

pH curve at 298.15 K will therefore be 𝑅𝑇𝑙𝑛ሺ10ሻ ൌ 0.059 V, multiplied by the number of 

protons that are transferred to the molecule at pH 0  ൫𝑁ୌሺRedሻെ𝑁ୌሺOxሻ൯. This approxima‐

tion, under which the slope is constant and independent of pH, neglects the fact that the 

redox species will be deprotonated at pH >  pKୟ. 

We have refined this method by updating the slopes of  𝐺sol
୮ୌሺRedሻ  and  𝐺sol

୮ୌሺOxሻ  at 
each of the  pKୟ  values obtained from ChemAxon [22]. In practice, we construct approxi‐

mate Pourbaix diagrams for  𝐺sol
୮ୌሺRedሻ  and  𝐺sol

୮ୌሺOxሻ  and consequently for 𝑈୮ୌ. For each 

redox  form, we  evaluate  𝐺
sol

୮ୌ೛   for a  set of pH values  pH௣ ൌ ሼ0, … , pKୟଵ, … , pKୟଶ, … ,14ሽ 
which includes any  pKୟ  values in the range (0,14).  𝐺sol

଴   is given by Equation (2), and for 

pH௣  > 0 we use the formula 

𝐺
sol

୮ୌ೛ ൌ 𝐺
sol

୮ୌ೛షభ ൅ 𝑁ୌ
୮ୌ౞౗ౢ౜𝑅𝑇𝑙𝑛ሺ10ሻሺpH௣ െ pH௣ିଵሻ.  (6)

The number of hydrogens is that of the major microspecies predicted by ChemAxon 

at a pH value  pH୦ୟ୪୤ ൌ  pH௣ିଵ ൅ 1/2ሺpH௣ െ pH௣ିଵሻ, i.e., halfway between the current and 

the previous. This ensures that the slope of the segment  pH௣ିଵ െ pH௣  always depends on 
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the molecule’s  updated  protonation  state,  including  cases where  pH௣ିଵ   is  one  of  the 

pKୟs. 

The free energies computed with either Equation (5) or (6) enter Equation (2), and the 

potential as a function of pH is then obtained from Equation (1). The resulting Pourbaix 

diagrams of all molecules are shown in Figure S1 in the Supplementary Materials. In Fig‐

ure 4, we compare the experimental potentials with those computed at pH = 0 and those 

transformed to pH = 7 and 13 using Equations (5) and (6). At pH = 7, there is not much 

difference between the two methods because almost all molecules are in the same proto‐

nation state as at pH = 0, i.e., there are no  pKୟs below 7. On the other hand, at pH = 13, 

most molecules have undergone some deprotonation leading to a smaller slope of the U 

vs. pH curve. As a result, using Equation (5) leads to a systematic underestimation of the 

potentials (MSE = −0.137 V). The adjustment of the slope using Equation (6) corrects this 

systematic error (MSE = −0.016 V) and significantly improves the agreement with the ex‐

perimental potentials. Considering the low computational cost of obtaining the  pKୟs and 

protonation states using ChemAxon, the proposed procedure to transform pH = 0 poten‐

tials using Equation (6) should become a standard method for predicting redox potentials 

at any pH value. 

 

Figure 4. Computed vs. experimental redox potentials at different pH values. In the (left panel), the transformation from 

pH 0 to 7 and 13 was carried out with Equation (5) using the number of protons at pH = 0. In the (right panel), the trans‐

formation is done with Equation (6) where the number of protons and hence the slope of the Pourbaix diagram was up‐

dated at every  pKୟ. 

It is, of course, also possible, instead of transforming the pH = 0 potentials, to com‐

pute the pH = 7 and 13 potentials directly with DFT using the same procedure as for the 

pH = 0 potential:  (1) Determine  the major protonation  state at a given pH using Che‐

mAxon; (2) Find lowest energy conformer; (3) Compute free energies of Ox and Red to 

determine the redox potential with Equations (1) and (2). Since most molecules in our data 

set have the same protonation state at pH = 0 and 7, we only report the potentials obtained 

directly at pH = 13. As shown in Figure S2 (Supplementary Materials), this method leads 

to a large underestimation of the redox potentials, that we attribute to the consistent fail‐

ure of the implicit solvation model to capture the full solvation free energies, especially of 

the reduced forms, which have larger negative charges. This result confirms that, as dis‐

cussed earlier, it is much more accurate to compute free energies at pH = 0 protonation 

states and then transform them to the pH of interest. 
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3. Summary and Conclusions 

In this contribution, we have benchmarked a procedure to predict redox potentials 

of organic molecules from the first principles. Taking as the input the SMILES strings of 

the reduced and oxidized forms, we show that widely available cheminformatics tools can 

be used to determine the main protonation state at pH = 0 and the major conformer. Two 

DFT calculations for each redox form are then needed to compute the redox potential: one 

geometry optimization with COSMO implicit solvation and one geometry optimization 

with subsequent frequency calculation in the gas phase. The former includes a reasonable 

estimate of the solvation free energy, and the latter provides an estimate of the thermal 

contribution to the free energy. Among several electronic structure methods tested (in‐

cluding composite methods), the B3LYP hybrid density functional was found to yield the 

best agreement with a consistent set of experimental potentials (MAE = 0.074 V and MSE 

= −0.006 V without empirical corrections). It may seem surprising that B3LYP, which is the 

most popular but not particularly new or generally accurate functional, performs better 

for redox potentials than other methods reported to perform best in other more compre‐

hensive benchmarks. The very popular combination of B3LYP with double‐ζ polarized 

basis sets (6‐31G* or similarly ADZP) is believed to be the cause of the error cancellations 

(errors due to the functional and to the basis set incompleteness are similar and of oppo‐

site sign) [50] that make it reasonably accurate in many cases, especially when including 

a dispersion correction such as D3 [51]. 

In a few cases, the potential prediction was found to be up to 0.4 V off the experi‐

mental value. By employing a mixed explicit–implicit solvation model on one of  these 

outliers, we have verified that such errors are very likely due to the failure of the implicit 

solvation model  to capture specific solvent‐solute  interactions. These exceptional cases 

cannot be predicted from the outset. In the near future, significantly more effort should 

be dedicated to the establishment of rapid protocols for computing reasonably good solv‐

ation free energies with explicit solvation. Such protocols that overcome the limitations of 

implicit solvation could then be used in high‐throughput screening studies where a more 

accurate prediction of redox potentials is desirable. 

Finally, we presented a novel and computationally inexpensive procedure to trans‐

form the pH = 0 redox potentials computed with DFT to any other pH value. Using the 

pKୟs predicted by the ChemAxon cheminformatics software [22], we construct an accu‐

rate estimation of the Pourbaix diagram that takes into account the changes in slope of the 

U vs. pH curve due to deprotonations of both redox forms. The potential predictions at 

pH = 13 obtained with this variable slope approach correct the systematic underestimation 

resulting from the constant slope transformation that considered only the pH = 0 proto‐

nation states. The MAE with respect to experimental potentials were found to be 0.121 V 

at pH = 7 and 0.144 V at pH = 13 with our new method. 

In summary, we have established and validated a protocol to predict redox potentials 

of organic molecules at a modest computational cost, using standard DFT methods and 

widely available cheminformatics tools that can be easily implemented in high‐through‐

put screening studies. Scheme 2 illustrates all steps of the procedure and the computa‐

tional tools necessary for each step. We have shown that with this protocol, redox poten‐

tials can be predicted with MAE below 0.15 V over a wide range of pH. 



Molecules 2021, 26, 3978  11  of  13 
 

 

 

Scheme 2. Flowchart of the computational protocol described in this article. 
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Figure S1: Pourbaix diagrams (redox potential vs. pH) of all molecules, Figure S2: Computed vs. 

experimental redox potentials computed directly at pH = 13. 
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